• Nenhum resultado encontrado

Os resultados obtidos neste trabalho mostraram que é possível utilizar sólido fermentado contendo lipases em reação de esterificação na presença de CO2, porém ainda não foi encontrado o ponto ótimo de máxima conversão com tempo reacional reduzido. Para isso, as perspectivas para trabalhos futuros são:

1. Otimizar, com pressurização de CO2, a síntese enzimática do oleato de etila em relação a razão molar (ácido oleico:etanol), variando a proporção de álcool adicionado.

2. Utilizar na reação de síntese de éster álcoois com diferentes tamanhos de cadeia, porém mantendo o ácido oleico como substrato.

3. Estudar o efeito do pré-tratamento do sólido fermentado com CO2 para sua posterior aplicação na síntese de ésteres.

4. Estudar o efeito da pressurização do sistema na síntese de ésteres catalisada pelo sólido fermentado na reação de transesterificação etanólica utilizando óleos vegetais como substrato.

REFERÊNCIAS

AGUIEIRAS, E. C. G.; OLIVEIRA, E. D. C.; FREIRE, D. M. G. Current status and new developments of biodiesel production using fungal lipases. Fuel, v. 159, p. 52– 67, 2015.

AGUIEIRAS, E. C. G.; BARROS, D. S. N.; FERNANDEZ-LAFUENTE, R.; FREIRE, D. M. G. Production of lipases in cottonseed meal and application of the fermented solid as biocatalyst in esterification and transesterification reactions. Renewable Energy, v. 130, p. 574-581, 2019.

ALNOCH, R. C.; STEFANELLO; A. A.; MARTINI, V. P.; RICHTER, J. L.; MATEO, C.; SOUZA, E. M.; MITCHELL, D. A.; SANTOS, M. M.; KRIEGER, N. Co-expression, purification and characterization of the lipase and foldase of Burkholderia

contaminans LTEB11. International Journal of Biological Macromolecules, v.

116, p. 1222–1231, 2018.

AMERICAN OIL CHEMIST'S SOCIETY (AOCS). Official methods and recommended practices of the American Oil Chemists' Society (Ca 5a-40), 4 ed, Champaign, 1989. BADGUJAR, V. C.; BADGUJAR, K. C.; YEOLE, P. M.; BHANAGE, B. M. Enhanced biocatalytic activity of immobilized steapsin lipase in supercritical carbon dioxide for production of biodiesel using waste cooking oil. Bioprocess and Biosystems Engineering, v. 42, p. 47–61, 2019.

BEZBORODOV, A. M.; ZAGUSTINA, N.A. Lipases in Catalytic Reactions of Organic Chemistry. Applied Biochemistry and Microbiology, v. 50, n. 4, p. 313-337, 2014. BOTTON, V.; PIOVAN, L.; MEIER, H. F.; MITCHELL, D. A.; CORDOVA, J.; KRIEGER, N. Optimization of biodiesel synthesis by esterification using a fermented solid produced by Rhizopus microsporus on sugarcane bagasse. Bioprocess and Biosystems Engineering, v. 41, p. 573–583, 2018.

CASTRO, R. J. S.; SATO, H. H. Enzyme production by solid state fermentation: general aspects and an analysis of the physicochemical characteristics of substrates for agro-industrial wastes valorization. Waste Biomass Valor, v. 6, p. 1085–1093, 2015.

CELIA, E.; CERNIA, E.; PALOCCI, C.; SORO, S.; TURCHET, T. Tuning

Pseudomonas cepacea lipase (PCL) activity in supercritical fluids. Journal of

Supercritical Fluids, v. 33, p. 193–199, 2005.

CHEN, D.; PENG, C.; ZHANG, H.; YAN, Y. Assessment of Activities and Conformation of Lipases Treated with Sub- and Supercritical Carbon Dioxide. Applied Biochemistry and Biotechnology, v. 169, n. 7, p. 2189-2201, 2013a.

CHEN, D.; ZHANG, H.; XU, J.; YAN, Y. Effect of sub- and supercritical CO2 treatment on the properties of Pseudomonas cepacia lipase. Enzyme and Microbial Technology, v. 53, p. 110– 117, 2013b.

COLOMBO, T. S.; MAZUTTI, M. A.; LUCCIO, M.; OLIVEIRA, D.; OLIVEIRA, J. V. Enzymatic synthesis of soybean biodiesel using supercritical carbon dioxide as solvent in a continuous expanded-bed reactor. The Journal of Supercritical Fluids, v. 97, p. 16-21, 2015.

CORADI, G. V.; VISITAÇÃO, V. L.; LIMA, E. A.; SAITO, L. Y. T.; PALMIERI, D. A.; TAKITA, M. A.; NETO; P. O.; LIMA, V. M. G. Comparing submerged and solid-state fermentation of agro-industrial residues for the production and characterization of lipase by Trichoderma harzianum. Annals of Microbiology, v. 63, n. 2, p. 533-540, 2013.

COUTO, S. R.; SANROMAN, M. A. Application of solid-state fermentation to food industry - A review. Journal of Food Engineering, v. 76, p. 291-302, 2006.

DAMASO, M. C. T.; COURI, S. Fermentação. Disponível em: <https://www.agencia.cnptia.embrapa.br/gestor/tecnologia_de_alimentos/arvore/CO NT000fid5sgif02wyiv80z4s4737dnfr3b.html#targetText=Um%20exemplo%20cl%C3 %A1ssico%20de%20meio,na%20superf%C3%ADcie%20de%20substratos%20s%C 3%B3lidos.>. Acesso em: 13 ago. 2019.

DIAS, GLAUCO SILVA. Aumento de Escala da Produção de Ésteres Etílicos em Reatores de Leito Fixo com Sólido Fermentado de Burkholderia lata CPQBA 515-12 DRM 01. 2015. 130 f. Dissertação (Mestrado em Bioquímica) – Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, 2015.

DIAS, G. S.; LUZ JR., L. F. L.; MITCHELL, D. A.; KRIEGER, N. Scale-up of biodiesel synthesis in a closed-loop packed-bed bioreactor system using the fermented solid produced by Burkholderia lata LTEB11. Chemical Engineering Journal, v. 316, p. 341–349, 2017.

DIAS, A. L. B.; DOS SANTOS, P.; MARTÍNEZ, J. Supercritical CO2 technology applied to the production of flavor ester compounds through lipase-catalyzed reaction: A review. Journal of CO₂ Utilization, v. 23, p. 159–178, 2018.

FERNANDES, M. L. M.; SAAD, E. B.; MEIRA, J. A.; RAMOS, L. P.; MITCHELL, D. A.; KRIEGER, N. Esterification and transesterification reactions catalysed by addition of fermented solids to organic reaction media. Journal of Molecular Catalysis B: Enzymatic, v. 44, n. 1, p. 8-13, 2007.

HABULIN, M.; KNEZ, Z. Activity and stability of lipases from different sources in supercritical carbon dioxide and near-critical propane. Journal of Chemical Technology and Biotechnology, v. 76, p. 1260-1266, 2001.

HASAN F.; SHAH, A. A.; HAMEED, A. Industrial applications of microbial lipases. Enzyme and Microbial Technology, v. 39, p. 235–251, 2006.

JAEGER, K. E.; RANSAC, S.; DIJKSTRA, B. W.; COLSON, C.; HEUVEL, M. V.; MISSET, O. Bacterial lipases. Microbiology Reviews, v. 15, p. 29-63, 1994.

JAEGER, K. E; DIJKSTRA, B. W.; REETZ, M. T. Bacterial Biocatalysts: Molecular Biology, Three-Dimensional Structures, and Biotechnological Applications of Lipases. Annu. Rev. Microbiol., v. 53, p. 315–51, 1999.

KNEZ, Z.; HABULIN, M. Compressed gases as alternative enzymatic-reaction solvents: a short review. Journal of Supercritical Fluids, v. 23, p. 29–42, 2002. LAUDANI, C. G.; HABULIN, M.; KNEZ, Z.; PORTA, G. D.; REVERCHON, E. Lipase- catalyzed long chain fatty ester synthesis in dense carbon dioxide: Kinetics and thermodynamics. J. of Supercritical Fluids, v. 4, p. 1 92–101, 2007.

LEE, J. H.; KWON, C. H.; KANG, J. W.; PARK, C.; TAE, B.; KIM, S. W. Biodiesel Production from Various Oils Under Supercritical Fluid Conditions by Candida

antartica Lipase B Using a Stepwise Reaction Method. Appl Biochem Biotechnol,

v. 156, p. 454–464, 2009.

LIMA, V.M.G.; KRIEGER, N.; MITCHELL, D.A.; BARATTI, J.C.; FILIPPIS, I.; FONTANA, J.D. Evaluation of the potential for use in biocatalysis of a lipase from a wild strain of Bacillus megaterium. Journal of Molecular Catalysis B-Enzymatic, v. 31, p. 53-61, 2004.

LIU, Y.; LI, C.; MENG, X.; YAN, Y. Biodiesel synthesis directly catalyzed by the fermented solid of Burkholderia cenocepacia via solid state fermentation. Fuel Processing Technology, v. 106, p. 303-309, 2013a.

LIU, Y.; CHEN, D.; WANG, S. Effect of sub- and super-critical CO2 pretreatment on conformation and catalytic properties evaluation of two commercial enzymes of CALB and Lipase PS. Journal of Chemical Technology and Biotechnology, v. 88, n. 9, p. 1750-1756, 2013b.

LIU, Y.; CHEN, D.; YAN, Y. Effect of ionic liquids, organic solvents and supercritical CO2 pretreatment on the conformation and catalytic properties of Candida rugosa lipase. Journal of Molecular Catalysis B: Enzymatic, v. 90, p. 123–127, 2013c. MARTÍNEZ-RUIZ, A.; TOVAR-CASTRO, L.; GARCÍA, H. S.; SAUCEDO-CASTAÑEDA, G.; FAVELA-TORRES, E. Continuous ethyl oleate synthesis by lipases produced by solid-state fermentation by Rhizopus microsporus. Bioresource Technology, v. 265, p. 52–58, 2018.

MARTY, A.; CHULALAKSANANUKUL, W.; CONDORET, J. S.; WILLEMOT, R. M.; DURAND, G. Comparison of lipase-catalysed esterification in supercritical carbon dioxide and in n-hexane. Biotechnology Letters, v. 12, nº 1, p. 11-16, 1990.

MELGOSA, R.; SANZ, M. T.; SOLAESA, A. G.; BUCIO, S. L.; BELTRAN, S. Enzymatic activity and conformational and morphological studies of four commercial lipases treated with supercritical carbon dioxide. The Journal of Supercritical Fluids, v. 97, p. 51-62, 2015.

MORE, S. B.; WAGHMARE, J. S.; GOGATE, P. R.; NAIK, S. N. Improved synthesis of medium chain triacylglycerol catalyzed by lipase based on use of supercritical

carbon dioxide pretreatment. Chemical Engineering Journal, v. 334, p. 1977–1987, 2018.

NAGESHA, G. K.; MANOHAR, B.; SANKAR, K. U. Enzymatic esterification of free fatty acids of hydrolyzed soy deodorizer distillate in supercritical carbon dioxide. J. of Supercritical Fluids, v. 32, p. 137–145, 2004.

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY(NIST). U. S.

Department of commerce. Disponível em

<https://webbook.nist.gov/cgi/fluid.cgi?T=15&PLow=70&PHigh=200&PInc=10&Applet =on&Digits=5&ID=C124389&Action=Load&Type=IsoTherm&TUnit=C&PUnit=bar&D Unit=g%2Fml&HUnit=kJ%2Fmol&WUnit=m%2Fs&VisUnit=uPa*s&STUnit=N%2Fm& RefState=DEF>. Acesso em: 14 mar. 2019.

NYARI, N. L. D.; ZABOT, G. L.; ZAMADEI, R.; PALUZZI, A. R.; TRES, M. V.; ZENI, J.; VENQUIARUTO, L. D.; DALLAGO, R. M. Activation of Candida antarctica lipase B in pressurized fluids for the synthesis of esters. J Chem Technol Biotechnol, v. 93, p. 897–908, 2018.

OLIVEIRA, D.; FEIHRMANN, A. C.; DARIVA, C.; CUNHA, A. G.; BEVILAQUA, J. V.; DESTAIN,J.; OLIVEIRA, J. V; FREIRE, D. M. G. Influence of compressed fluids treatment on the activity of Yarrowia lipolytica lipase. Journal of Molecular Catalysis B: Enzymatic, v. 39, n. 1-4, p. 117-123, 2006a.

OLIVEIRA, D.; FEIHRMANN, A. C.; RUBIRA, A. F.; KUNITA, M. H.; DARIVA, C.; OLIVEIRA, J. V. Assessment of two immobilized lipases activity treated in compressed fluids. The Journal of Supercritical Fluids, v. 38, n. 3, p. 373-382, 2006b.

POLLARDO, A. A.; LEE, H.; LEE, D.; KIM, S.; KIM, J. Effect of supercritical carbon dioxide on the enzymatic production of biodiesel from waste animal fat using immobilized Candida antarctica lipase B variant. BMC Biotechnology, v. 17, p. 70, 2017.

REZAEI, K.; TEMELLI, F.; JENAB, E. Effects of pressure and temperature on enzymatic reactions in supercritical fluids. Biotechnology Advances, v. 25, n. 3, p. 272-280, 2007a.

REZAEI, K.; JENAB, E; TEMELLI, F. Effects of water on enzyme performance with an emphasis on the reactions in supercritical fluids. Critical Reviews in Biotechnology, v. 27, p.183–195, 2007b.

SALUM, T. F. C.; VILLENEUVE, P.; BAREA, B.; YAMAMOTO, C. I.; COCCO, L. C.; MITCHELL, D. A.; KRIEGER, N. Synthesis of biodiesel in column fixed-bed bioreactor using the fermented solid produced by Burkholderia cepacia LTEB11. Process Biochemistry, v. 45, n. 8, p. 1348-1354, 2010.

SANDERS, N. Food legislation and the scope for increased use of near-critical fluid extraction operations in the food, flavouring and pharmaceutical

industries. In: KING, M. B.; BOTT, T. R. Extraction of natural products using near-critical solvents. London: Chapman & Hall, 1993.

SANTOS, J. C. S.; BONAZZA, H. L.; MATOS, L. J. B. L.; CARNEIRO, E. A.; BARBOSA, O.; LAFUENT , R. .; Ç L , R. L. B.; ’ , . B.; SANTIAGO-AGUIAR, R. S. Immobilization of CALB on activated chitosan: Application to enzymatic synthesis in supercritical and near-critical carbon dioxide. Biotechnology Reports, v. 14, p. 16–26, 2017.

SANTOS, P.; REZENDE, C. A.; MARTÍNEZ, J. Activity of immobilized lipase from Candida antarctica (Lipozyme 435)and its performance on the esterification of oleic acid in supercriticalcarbon dioxide. J. of Supercritical Fluids, v. 107, p. 170–178, 2016.

SARMAH, N.; REVATHI, D.; SHEELU, G.; RANI, K., Y.; SRIDHAR, S.; MEHTAB, V.; SUMANA, C. Recent Advances on Sources and Industrial Applications of Lipases. Biotechnol. Prog., v. 34, n. 1, p. 6-28, 2018.

SCHMID, R. D.; VERGER, R. Lipases: Interfacial Enzymes with Attractive Applications. Angew. Chem. Int. Ed., v. 37, p. 1608-1633, 1998.

SILVA, J. R.; SOUZA, C. E. C.; VALONI, E.; CASTRO, A. M.; COELHO, M. A. Z.; RIBEIRO, B. D.; HENRIQUES, C. A.; LANGONE, M. A. P. Biocatalytic esterification of fatty acids using a low-cost fermented solid from solid-state fermentation with

Yarrowia lipolytic. 3 Biotech, v. 9, p 38, 2019.

SINGHANIA, R. R.; PATEL, A. K.; SOCCOL, C. R.; PANDEY, A. Recent advances in solid-state fermentation. Biochemical Engineering Journal, v. 44, p. 13–18, 2009. SOARES, D.; PINTO, A. F.; GONÇALVES, A. G.; MITCHELL, D. A.; KRIEGER, N. Biodiesel production from soybean soapstock acid oil by hydrolysis in subcritical water followed by lipase-catalyzed esterification using a fermented solid in a packed-bed reactor. Biochemical Engineering Journal, v. 81, p. 15-23, 2013.

SOARES, D. Desenvolvimento do Processo de Esterificação Etílica Enzimática de Ácidos Graxos em Reator de Leito Fixo. 2014. 156 f. Tese (Doutorado em Bioquímica) – Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, 2014.

TAHER, H.; AL-ZUHAIR, S.; AL-MARZOUQI, A. H.; HAIK, Y.; FARID, M. Enzymatic biodiesel production of microalgae lipids under supercritical carbon dioxide: Process optimization and integration. Biochemical Engineering Journal, v. 90, p. 103–113, 2014.

TISS, A.; CARRIERE, F.; VERGER, R. Effects of gum arabic on lipase interfacial binding and activity. Analytical Biochemistry, v. 294, p. 36-43, 2001.

TODO BOM, MARITZA ARAUJO. Utilização do sólido fermentado de Rhizopus

microsporus CPQBA 312-07 DRM na resolução de álcoois secundários:

(Mestrado em Bioquímica) - Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, 2014.

TSITSIMPIKOU, C.; STAMATIS, H.; SERETI, V.; DAÝOS, H.; KOLISIS, F. N. Acylation of Glucose Catalysed by Lipases in Supercritical Carbon Dioxide. J.Chem.Technol.Biotechnol. v. 71, p. 309-314. 1998.

VANLAERE, E.; BALDWIN, A.; GEVERS, D.; HENRY, D.; DE BRANDT, E.; LIPUMA, J. J.; MAHENTHIRALINGAM, E.; SPEERT, D. P.; DOWSON, C.; VANDAMME, P. Taxon K, a complex within the Burkholderia cepacia complex comprises at least two novel species: Burkholderia contaminans sp. nov. and Burkholderia contaminans sp. nov. Int. J. Syst. Evol. Microbiol. Reading. v. 59, p. 102-111. 2009.

VILLALOBOS, M. C.; GONÇALVES, A. G; NOSEDA, M. D.; MITCHELL, D. A.; KRIEGER, N. A novel enzymatic method for the synthesis of methyl 6-O-acetyl-α-Dglucopyranoside using a fermented solid containing lipases produced by

Burkholderia contaminans LTEB11. Process Biochemistry, v. 73, p. 86–93, 2018. YU, Z. R.; RIZVI, S. S. H.; ZOLLWEG, J. A. Enzymatic esterification of fatty acid mixtures from milk fat and anhydrous milk fat with canola oil in supercritical carbon dioxide. Biotechnol. Prog, v. 8, p. 508-513, 1992.

ZAGO, E.; BOTTON, V.; ALBERTON, D.; CORDOVA, J.; YAMAMOTO, C. I.; COCCO, L. C.; MITCHELL, D. A.; KRIEGER, N. Synthesis of Ethylic Esters for Biodiesel Purposes Using Lipases Naturally Immobilized in a Fermented Solid Produced Using Rhizopus microsporus. Energy Fuels, v. 28, n. 8, p. 5197-5203, 2014.

Documentos relacionados