• Nenhum resultado encontrado

V. Conclusões Gerais

1.1 Técnicas de análise

1.2.6. Polarografia

A polarografia é um caso particular de voltametria, cuja resposta é originada pela combinação do transporte de massa por difusão e convecção. Na polarografia linear é utilizado um elétrodo de mercúrio gotejante, DME (“dropping mercury electrode”) e é efetuado um varrimento linear do potencial. Uma representação da corrente em função da diferença de potencial demonstra as oscilações de corrente originadas pelas gotas de mercúrio que caem do capilar. As concentrações de sulfuretos inorgânicos dissolvidos nas amostras de água são, em geral, determinadas com um elétrodo de mercúrio, aproveitando a facilidade de oxidação do mercúrio devido à precipitação do sulfureto.

128 Ricardo M.P.Mendes Usando as técnicas de polarografia diferencial com impulsos (DPP) e de voltametria de redissolução catódica (DPCSV), determina-se o teor em sulfuretos ficando o precipitado adsorvido à superfície da gota de mercúrio num passo prévio, consoante a concentração da amostra (Madureira, 1997).

Na voltametria diferencial de redissolução catódica, o analito é primeiro adsorvido no minielétrodo durante um determinado período de tempo, formando um composto insolúvel, a um potencial mais positivo do que o valor de equilíbrio elétrodo/composto insolúvel/anião em solução.

A análise da solução contendo HS-, fez-se por Polarografia Diferencial por Impulsos (DPP), onde se utilizou um elétrodo getejante de mercúrio (DME), onde ocorrem as seguintes reações:

Os iões HS- reagem com o mercúrio do elétrodo formando sulfureto de mercúrio que é adsorvido a este. A deposição do sulfureto é feita durante 60s a um potencial constante de -400 mV.

HS- + Hg  HgS (precipita) + 2e-

É então feito um varrimento catódico entre -400 e 900 mV com uma velocidade de 5 mV s-1. Nesta fase, o sulfureto de mercúrio é “redissolvido” passando o ião sulfureto à solução e regenerando o mercúrio do elétrodo.

2e- + HgS (precipitado)  Hg + S2-

Tal como na técnica de DPP, os iões HS- reagem com o mercúrio do elétrodo, formando o sulfureto de mercúrio, que é adsorvido a este. Numa segunda fase o sulfureto de mercúrio é redissolvido, regenerando-se o mercúrio do elétrodo e o ião sulfureto passa à solução (Canário, 2000).

Ricardo.M.P.Mendes 129

Glossário

Meios Anóxicos  Meios com maior potencial redutor e elevado teor em espécies reduzidas.

Meios Óxicos Meios com maior potencial oxidante e elevado teor em espécies oxidadas.

Meios Subóxicos  Meios compreendidos entre os meios óxicos e anóxicos com propriedades e espécies intermédias dos dois meios.

Sapal  De uma forma geral, é como uma pradaria de halófitas em sedimentos aluviais na fronteira de corpos de água salgada cujo o nível varia com as marés. Estuário  Localização geral das zonas onde os rios encontram o mar, e onde a água dos rios se mistura com a água do mar.

Rizosfera  Camada sedimentar que é diretamente influenciada pelas raízes das plantas, sendo importante na determinação de processos na mobilidade de metais e a sua disponibilidade para reações físico-químicas.

Corer  Peça metálica com uma extremidade em forma semicilíndrica utilizada para retirar amostras de sedimentos

Core  Amostras de sedimentos obtidas através do corer, em forma cilíndrica.

Tortuosidade  Medida de difusão das águas intersticiais entre os poros do sedimentos.

130 Ricardo M.P.Mendes

Referências

Andrew, A. & Nriagu, J., 1979. The global cycle of mercury. In: J. Nriagu, ed. The biogeochemistry of mercury in the environment. s.l.:Elsevier, North Holland Biomedical Press, pp. 1 - 21.

Antunes Dias, A. & Marques, J., 1999. Estuários. Estúário do Tejo: o seu Valor e um pouco da sua História. Alcochete: Reserva Natural do Estuário do Tejo.

APHA, 1995. Standard methods for the examination of water and waste water. 19ª Ed ed. Washington DC: American Public Health Association.

Avramescu, M.-L.et al., 2011. Biogeochemical factors influencing net mercury methylation in contaminated freshwaters sedimens from the St. Lawrence River in Conrwall, Ontario, Canada. Science of the total Environment, Volume 409, pp. 968-978.

Baldi, F., 1997. Metal ions in Biological Systems. New York: Marcel Dekker, Inc.

Beefting, W., Nieuwenhuize, J., Stoppler, M. & Mohl, C., 1982. Heavy metal accumulation in salt marshes from the Western and Eastern Scheldt. Science of the Total Environment, Volume 25, pp. 199-223.

Berner, R., 1980. Early Diagenesis. A theorical Approach, USA: Princeton University Press.

Bings, N. H., Bogaerts, A. & Broekaert, J. A., 2010. Atomic Spectroscopy: A review. Analytical Chemistry, Volume 82, pp. 4653-4681.

Boudreau, B., 1997. Diagenetic models and their impletation: modelling trasport and reactions in aquatic sediments. Berlin, Heidelberg: Springer.

Brouwer, M., Hoexum-Brouwer, T. & Cashon, R., 1993. a putative gluthatione-binding site in CdZn-metallothionein identified by equilibrium binding and molecular- modellig studies. Biochem. J., Volume 1993, pp. 219-225.

Caçador, I. & Vale, C., 2001. Salt Marshes. In: M. Dekker, ed. Metals in the Environment. Basel(New York): Marcel Dekker, Inc.

Caçador, M., Vale, C. & Catarino, F., 2000. Seasonal variation of Zn, Pb, Cu, and Cd concentrations in the root-system os Spartina maritima and Hamilione portulacoides from Tagus estuary salt marshes. Mar. Environ. Res., Volume 49, pp. 279-290.

Caetano, M., 1998. Biogeoquímica do manganês, ferro, cobre e cádmio em sedimentos da Ria Formosa. Disssertação apresentada à Universidade do Algarve para a obtenção do Grau de Doutor em Ciências do Mar, s.l.: s.n.

Caetano, M., Caçador, I., Duarte, B. & Vale, C., 2009. Stock and losses of trace metals from salt marsh plants. Marine Environmental Research, Volume 67, pp. 75- 82.

Ricardo.M.P.Mendes 131

Caetano, M., Vale, C., Cesário, R. & Fonseca, N., 2008. Evidence for preferential depths retention in roots of salt marsh plants. Science of the Total Environment, Volume 390, pp. 466-474.

Canário, J., 2000. Mercúrio em Sedimentos Contaminados e Águas Intersticiais da Cala do Norte do Estuário do Tejo, Lisboa: Faculdade de Ciências e Tecnologias.

Canário, J., 2004a. Mercúrio e Monometilmercúrio na cala do norte do estuário do Tejo – Diagénese, trocas com a coluna de água e interacção com o biota, s.l.: s.n. Canário, J., Antunes, P., Lavrado, J. & Vale, C., 2004c. Simple method for

monomethylmercury determination in estuarine sediments. Trends in Analytical Chemistry, Volume 23, pp. 798-805.

Canário, J., Branco, V. & Vale, C., 2007b. Seasonal variation of monomethylmercury concentration in surface sediments of the Tagus Estuary (Portugal);. Environmental Pollution, Volume 148, pp. 380-383.

Canário, J., Caetano, M. & Vale, C., 2006. Validation and application of an analytical method for monomethylmercury quantification in aquatic plant tissues. Analytical Chimica Acta, Volume 580, pp. 258-262.

Canário, J. & Vale, C., 2004b. Rapid release of mercury from intertidal sediments exposed to solar radiation: A field experiment. Environmental Science & Technology, Volume 38, pp. 3901-3907.

Canário, J., Vale, C. & Caetano, M., 2003a. Mercury in sediments and pore waters at contaminated site in the Tagus. Ciencias Marinas, 29(4).

Canário, J., Vale, C. & Caetano, M., 2005. Distribution of Monomethylmercury and mercury in surface sediments of the Tagus Estuary (Portugal). Marine pollution Bulletin, Volume 50, pp. 1121-1145.

Canário, J., Vale, C., Caetano, M. & Cesário, R., 2007a. Evidence for elevated production of Methylmercuryin Salt Marshes;. Environmental Science Technology, Volume 41, pp. 7376-7382.

Canário, J., Vale, C., Caetano, M. & Madureira, M. J., 2003b. Mercury in contaminated sediments and pore waters enriched in sulphate (Tagus Estuary, Potugal). Environmental Pollution, Volume 126, pp. 425-433.

Canário, J., Vale, C. & Nogueira, M., 2008b. The pathway of mercury in contaminated waters determined by association with organic carbon (Tagus Estuary, Portugal). Applied Geochemistry, Volume 148, pp. 380 - 383.

Canário, J. et al., 2010. Mercury in sediments and vegetation in a moderately contaminated salt marsh (Tagus Estuary, Portugal). Journal of Environmental Sciences, Volume 22, pp. 1151-1157.

Carvalho, A., 2009. Mecanismos de resposta a mercúrio em plantas de sapal, Aveiro: Universidade de Aveiro.

132 Ricardo M.P.Mendes Castro, R. et al., 2009. Accumulation, distribution and cellular partitioning of mercury in several halophytes of a contaminated salt marsh. Chemosphere, Volume 76, pp. 1348-1355.

Catarino, F. & Caçador, I., 1981. Produção de Biomassa e estratégia de Desenvolvimento em Spartina Maritima e outros Elementos da Vegetação dos Sapais do Estuátio do Tejo. Boletim da Sociedade Broteriana, 34(Série 2).

Choi, S. & Bartha, R., 1994. Cobalamin-mediated mercury methylation by Desulfovibrio desulfuricans L.S.. Apllied and Environmental Microbiology, Volume 59, pp. 290 - 295.

Compeau, G. & Bartha, R., 1985. Sulphate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Applied and Environmental Microbiology, Volume 50, pp. 498 - 502.

Compeau, G. C. & Bartha, R., 1984. Methylation and demethylation of mercury under controlled redox, pH and salinity conditions. Applied and Environmental Microbiology, Volume 50, pp. 1203 - 1207.

Coquery, M. & Cossa, D., 1995. Mercury speciation is surface sediments of the North Sea. Netherlands Journal of Sea Research, 34(4), pp. 245-257.

Cossa, D. G. C. & Couran, P., 1988. Dissolved mercury behavior in the saint Lawrence Estuary. Estuarine, Coastal and Shelf Science, Volume 26, pp. 227 - 230. Costley, C. T. et al., 2000. Determination of mercury in environmental and biological

samples using pyrolysis atomic absorption spectrometry with gold amalgamation;. Analytica Chimica Acta, Volume 405.

Covelli, S., Faganeli, J., Horvart, M. & Bramati, A., 1999. Porewater distribution and benthic flux measurements of mercury and methylmercury in the Gulf of Triest (Northern Adriatic Sea). Estuarine, Coastal and Shelf Science, Volume 48, pp. 415-428.

Davidson-Arnott, R. G. D., Proosdij, D., Ollerhead, J. & Schostak, L., 2002. Hydrodynamics and sedimentation in salt marshes: examples from a macrotidal marsh, Bay of Fundy. Geomorphology, Volume 48, pp. 209-231. De Souza, M. P., Huang, C. P., Chee, N. & Terry, N., 1999. Rhizospherebactéria

enhance the accumulation of selenium and mercury in wetland plants. Planta, Volume 209.

Diez, S., Carrasco, L. & Bayona, J. M., 2009. Simultaneous determination of methyl- and ethyl- mercury by solid-phase microextraction followed by gas chromatography atomic fluorescence detection. Journal of Chromatography A, Volume 1216.

Doyle, M. & Otte, M., 1997. Organism-induced accumulation of Fe, Zn and As in wetland soil. Environ Pollut, 96(1), pp. 1-11.

Ricardo.M.P.Mendes 133

Duarte, B. et al., 2010. Accumulation and biological cycling of heavy metal in four march species, from Tagus estuary (Portugal). Environmental Pollution, Volume 158, pp. 1661-1668.

Dyrssen, D. & Wedborg, M., 1991. The sulfur-mercury(II)system in natural waters. Water Air Soil Pollut., Volume 56, pp. 507-519.

EPA, 1998. Method 1630: Methylmercury in Water by Distilation, Aqueous Ethylation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry, Washington: United States Environmental Protection Agency.

EPA, 2002. Method 1631, Revision E: Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry, Washington: United States Environmental Protection Agency.

Ernst, W., 1990. Ecophysiology of plants in waterlogged and flooded environments.. Aqua Bot, Volume 38, pp. 73-90.

Evans, E. et al., 1999. Comparison of AFS and ICP-MS detection coupled with gaschromatograpgy for the determination of methylmercury in marine samples. Analytica Chimica Acta, Volume 390, pp. 245-253.

Ferreira, J. G., 1988. Mercúrio em Algas Macrófitas no Estuário do Tejo; Dissertação apresentada à Faculdade de Ciencias e Tecnologia da Universidade Nova de Lisboa para a obtenção do Grau de Doutor em Ciencias do Ambiente, Lisboa: s.n.

Förstner, U. & Wittmann, G., 1981. Metal Pollution in the Aquatic Environment. Berlim: Springer-Verlag.

Furutani, A. & Rudd, J., 1980. Measurement of Mercury methylation in lake water and sediment samples. Appl. Environ. Microbiol., Volume 40, pp. 770-776.

Gagnon, C., Pelletier, E. & Mussi, A., 1997. Behaviour of anthropogenic mercury in coastal marine sedimens. Marine Chemistry, Volume 59, pp. 159-176.

Gill, G. & Bruland, K., 1990. Mercury speciation in surface freshwaters systems in California and other areas. Environmental Science Technology, 24(9), pp. 1392-1400.

Gilmoure, C. C., Henry, E. A. & Mitchell, R., 1992. Sulfate stimulation of mercury methylation in freshwater sediment. Environmental Science Technology, Volume 26, pp. 2281-2287.

Gómes-Ariza, J., Lorenzo, F., Garcia-Barrera, T. & Sánchez-Rodas, D., 2004. Analytical approach for routine methylmercury determination in seafood using gas chromatography – atomic fluorescence spectrometry;. Analytica Chimica Acta, Volume 511, pp. 165-173.

Gonçalves, M. d. L. S., 2001. Métodos Instrumentais para Análise de Soluções - Analise Quantitativa. 4ª Edição ed. s.l.:s.n.

134 Ricardo M.P.Mendes Guimarães, J. R. et al., 2000. Mercury net methylation in five tropical flood plain regions of Brasil: high in the root zone of floating macrophyte mats but low in surface sediments and flooded soils. Science of the Total Environment, Volume 261, pp. 99-107.

Guimarães, J. et al., 2006. Hg methylation and the microbial consortium in the sediment and in periphyton of tropical macrophytes: effect of different inhibitors. Wisconsin, EUA, Proceedings 8th International Conference Mercury as a Global pollutant.

Haese, R., 2000. The Reactivity of Iron. In: H. Schulz & M. Zabel, edits. Marine Geochemistry. Heidelberg: Springer, pp. 233-261.

Horvat, M., 1996. Mercury analysis and speciation in environmental samples.. In: W. Baeyens, R. Ebinghaus & O. Vasiliev, edits. Regional and global mercury cycles: sources, fluxes and mass balances.. Dordrecht: Kluweer, pp. 1 - 31.

INAG, 2012. www.inag.pt/estuarios/Inicio/frame_page.htm. [Online].

IUPAC, 1998. The determination of Mercury species in environmental and biological Samples. Pure & Applied Chemistry, Volume 70, 8, pp. 1585 -1615.

Jackson, L., Kalff, J. & Rasmussen, J., 1993. Sediment pH and redox potencial affect the bioavailability of Al, cu, Fe, Mn and Zn to rooted aquatic macrophytes. Can. J. Fish. Aquat. Sci., Volume 50, pp. 143-148.

Jackson, T. A., 1998. Mercury in Aquatic Ecosystems . In: Metal Metabolism in Aquatic Enviroments. London: Chapman & Hall, pp. 77-739.

Kelley, B. & Tuovinen, O., 1988. Microbiological oxidations of minerals in mine tailings. In: W. Salomons & U. Forstner, edits. Chemistry and biology of Solid waste - Dredged Material and mine Tailings. New York: Springer-Verlag, pp. 33-53.

King, J., Kostka, J., Fischer, M. & Saunders, F., 2000. Sulfate-reducing bacteria methylare mercury at variables rates in pure culture and marine sediments. Applied Environmental Microbiology, Volume 66, pp. 2430-2437.

Kumar , V. & Tate, B., 1982. Mercury. Journal of Chemical Education, Volume 11, 59, pp. 971-972.

LECO, 2012. http://www.leco.com/products/organic/ama254/ama_254.html. [Online]. Lee, J., 1980. Química Inorgânica. 3ª Ed. ed. S. Paulo: s.n.

Leopold, K., Foulke, M. & Worsfol, P. J., 2009. Gold-Coated Silica as a Preconcentration Phase for the Determination of Total Dissolved Mercury in Natural Waters Using Atomic Fluorescence Spectrometry. Analytical Chemistry, Volume 81, (9), pp. 3421-3428.

Leopold, K., Harwardt, . L., Schuster, . M. & Schlemmer, G., 2008. A new fully automated on-line digestion system for ultra trace analysis of mercury in natural waters by means of FI-CV-AFS. Talanta, Volume 76, pp. 383-388.

Ricardo.M.P.Mendes 135

Lombi, E., Wenzel, W., gobran, G. & Adriano, D., 2001. Dependency of Phytoavailability of metals on Indigenous and Induced Rhizorphere Processes: a review. In: G. Gobran, W. Wenzel & E. Lombi, edits. Trace elements in the Rhizosphere. Boca Raton: CRC Press LLC, pp. 3-24.

Loring, D., 1991. Normalization of heavy-metal data from estuarine and coastal sediments. ICES Journal os Marine Science , Volume 48, pp. 101-115.

Luther, G., Ferdelman, T., Kostka, J. T. E. & Church, T., 1989. Concentrations and form of dissolves sulfide in the oxic water column of the ocean. Mar. Chem., Volume 27, pp. 165-177.

Luther, G., Giblin, A. E. & Varsolona, R., 1985. Polarographic analysis of sulphur species in marine porewaters. Limnol. Oceanog.l, Volume 30, pp. 727-736. MacFarlane, G. & Burchett, M., 2000. Celullar distribution of copper, lead, and zinc in

the grey mangrove Avicennia marina (Forsk.) Vierh. Aqua. Bot., Volume 68, pp. 45-59.

Madureira, M. J., 1997. Biogeoquímica do Enxofre em Sedimentos de Sapais. Efeitos na Química do Ferro e Manganês., Lisboa: Instituto Superior Técnico.

Marins, R., Lacerda, L., Gonçalves, G. & Paiva, E., 1997. Effects of root metabolism on the post-depositional mobilization of mercury in salt marsh soil. Bulletin of Environmental Contamination and Toxicology, Volume 58, pp. 733-738.

Marschner, H., 1995. Mineral Nutrition of higher Plants. Second Ed. ed. Londos: Academic Press Limited.

Mason, R., Fitzgerald, W. & Morel, F., 1995. The Role of Microoganisms in Elemental Mercury Formation in Natural Waters. Water, air and soil Pollutant, Volume 80, pp. 775-787.

Mason, R. P. et al., 1999. Mercury in the Chesapeake Bay. Marine Chemistry, Volume 65, pp. 77-96.

Matheus, D., Moran, B., McCabe, P. & Otte, M., 2004. Zinc tolerance, uptake, accumulation and distribution in plant and protoplasts of five european populations of the wetland grass Glyceria fluitans. Aqua Bot, Volume 80, pp. 39-52.

Meili, M., 1997. Mercury in lakes and rivers. In: M. Dekker, ed. Metal Ions in Biological Systems. Mercury and its effects on Environment and Biology. New York: s.n., pp. 21-51.

Merrit, K. A. & Amirbahman, A., 2009. Mercury methylation dynamics in estuarine and coastal marine environments – a critical review;. Earth-Science Reviews, Volume 96, pp. 54-66.

Meteorologia, I. d., 2012a. Boletim climatológico mensal - Março de 2012, s.l.: s.n. Meteorologia, I. d., 2012b. Boletim climatológico mensal - Maio de 2012, s.l.: s.n.

136 Ricardo M.P.Mendes Method, M. M., 2003. Millenium Merlin Method for total mercury in drinking, surface,

ground, industrial & domestic waste waters and saline waters, Kent: s.n.

Mikac, N., Niessen, S., Ouddane, B. & Wartel, M., 1999. Speciation os mercury in sediments of the Seine estuary (France). Applied Organometallic Chemistry, Volume 13, pp. 715-725.

Miranda, M. et al., 2007. Mercúrio em sistemas aquáticos: Factores ambientais que afectam a metilação. Oecologia Brasiliensis, 11(2), pp. 240 - 251.

Mitsh, W. & Gosselink, J., 2000. Wetlands. 3ª ed. s.l.:John Wiley & Sons Inc.

Monteiro, C. E. S. S., 2010. Mercúrio e Meteilmercúrio em cores de sedimento do Estuário do Tejo, Aveiro: Universidade de Aveiro.

Morel, F., Kraepiel, A. M. L. & Amyot, M., 1998. The chemical cycle and bioaccumulation of mercury. Annual Review of Ecology and Systematics, Volume 29, pp. 543-566.

Nagase, H., Ose, Y., Sato, T. & Isikawa, T., 1982. Methylation of Mercury by humic substances in aquatic environment. Science of the Total Environment, Volume 24, pp. 133 - 142.

NOAA, 1996. Contaminants in aquatic habitats at hazardous waste sites: Mercury;, Seattle: s.n.

Nye, P., 1981. pH changes across the rizosphere induced by roots. Plant and Soil, Volume 61, pp. 7-26.

O’Driscoll, N., Canário, J., Crowell, N. & Webster, T., 2011. Mercury Speciation and distribution on coastal wetlands and tidal mudflats. Water, Air, & Soil Pollution, Volume 220, pp. 313-326.

O’Neil, P., 1985 . Environmental Chemistry. London: George Allen & UnWin.

Otte, M., 1991. contamination of coastal wetlands with heavy metals: factors affecting uptake of heavy metals by salt marsh plants.. In: L. Rozema & J. Verkleij, edits. Ecological responses to Environmental Stress. s.l.:Kluwer academic Publisher, pp. 126-133.

Otte, M. & Haarsma, M. B. R. R. J., 1993. Relation between heavy metal concentration in salt marsh plants and soil. Environ. pollut, Volume 82, pp. 13-22.

Otte, M. L. & Jacob, D. L., 2003. Conflicting processes in the wetland plant rhizosphere: metal retention or mobilization?. Water, Air and Soil Pollution, Volume 3, pp. 91 - 104.

Pacyna, J. M., Pacyna, E. G., Styeenhuisen, F. & Wilson, S., 2008. Global anthropogenic mercury emission of mercury to the atmosphere. In: C. J. Cleveland, ed. Enciclopedia of Earth. s.l.:s.n.

Pereira, M. E. et al., 1998. Tidal export of particlate mercury from the most contaminated area of Aveiro's laggon, Portugal. Science of the Total Environment, Volume 213, pp. 157-163.

Ricardo.M.P.Mendes 137

Pirrone, N. et al., 2008. Global Mercury Emissions to the atmosphere from Natural and Antropogenic Sources. Rome, Italy, s.n.

Porchenriedes, C. B. J., 2003. Estrés por Metales Pesados. In: M. Reigosa, N. Pedrol & A. Sanchez, edits. Ecofisiologia Vegetal. Madrid: Paraninfo.

Pyzik, A. & Sommer, S., 1981. Sedimentary iron monosulfides: kinetics ena mechanism of formation. Geochimica et Cosmochimica Acta, Volume 45, pp. 687-698.

Ramalhosa, E., 2002. Mercúrio na Ria de Aveiro: Associações, Reactividade e Especiação, s.l.: s.n.

Rantala, R. & Loring, D., 1975. Multi-element analysis of silicate rocks and marine sediments by atomic absorption spectrophotometry. Atomic Absorption Newsletter, Volume 14, pp. 117-120.

Rozema, J., Bijwaard, P., Prast, G. & Broekman, R., 1990. Ecophysiological adaptations of coastal halophytes from foredunes and salt marshes. Vegetatio, Volume 62, pp. 499-521.

Schafer, J. et al., 2006. mercury in the Lot-Garonne river system (France): sourcer, fluxes and anthropogenic componenet. Applied Geochemistry, Volume 21, pp. 515-527.

Schindler, P. & Sposito, G., 1991. Surface complexation at (hydr)oxide surfaces. In: G. Bolt, ed. Interactions at the Soil Colloid-Soil Solution Interface. Dordrecht: Kluwer Academic Publishers, pp. 115-145.

Schulz, H. D., 2000. Quantification of Early diagenesis: Dissolved constituents in Marine Pore Waters. In: H. D. Schulz & M. Zabel, edits. Marine Geochemistry. s.l.:Springer, pp. 85 - 128.

Schuster, E., 1991. The Behaviour of Inorganic Mercury in the Soil With Special Emphasis on Complexation and Adsorption Processes – An Overview. Water, Air and Soil Pollution, Volume 56, pp. 667-680.

Siciliano, S. et al., 2005. Abiotic production of methylmercury by solar radiation. Environmental Science Technology, Volume 39, pp. 1071-1077.

Sirgado, P., 1995. Contaminação de Sedimentos da Cala do Norte do Estuário do Tejo, s.l.: DCEA/FCT.

Skinner, K., Wright, N. & Porter-Goff, E., 2007. Mercury uptake and accumulation by four apecies of aquatic plants. Environ. Pollut, Volume 145, pp. 234-237. Skoog, D. & Leary, J., 1992. Principles of Instrumental Analysis. 4ª ed. New York:

Saunders College Publishing.

Skoog, D., West, D. & Holer, F., 1996. Fundamentals of Analytical Chemistry. 7ª ed. s.l.:Saunders College Publishing.

138 Ricardo M.P.Mendes Skoog, D., West, D. & Holler, F., 1992. Fundamentals of Analytical Chemistry. 6ª ed.

s.l.:Saunders College Publishing.

Stumm, W. & Morgan, J., 1996. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. Canada: John Wiley & Sons.

Sunby, B., Vale, C. C. M. C. F., Madureira, M. & Caetano, M., 1998. Metal- rich concretions on the roots of salt marsh plants. Limn Ocean, Volume 43, pp. 245-252.

Tomyasu, T. et al., 2006. Spatial variation os mercury in sediment of Minamata Bay, japan. Science of the Total Environment, 368(1), pp. 283 - 290.

Ullrich, S. M., Tanton, T. W. & Abdrashitova, S. A., 2001. Mercury in the Aquatic Environment: A review of factors affecting methylation. Critical Reviews in Environmental Science and Technology, Volume 31, 3, pp. 241-293.

Válega, M. et al., 2008a. Mercury mobility in a salt marsh colonized by Halimione portulacoides. Chemosphere, Volume 72, p. 1607 – 1613.

Válega, M. et al., 2008b. Mercury mobility in a salt marsh colonized by Halimione portulacoides. Chemosphere, Volume 73, pp. 1224-1229.

Válega, M. et al., 2008. Assessment of methylmercury production in a temperate salt marsh (Ria de Aveiro Lagoon, Portugal). Marine Pollution Bulletin, 56(1), pp. 136-162.

Vesk, P., Nockolds, C. & Allaway, W., 1999. Mechanisms of metal tolerance in higher plants. In: A. Shaw, ed. Heavy Metal Tolerance in Plants: Evolutionary Aspects. s.l.:s.n., pp. 179-194.

Wang, S. et al., 2009. Total mercury and monomethylmercury in water, sediments, and hydrophytes from the rivers, estuary, and bay along the Bohai sea coast, northeastern china. Applied Geochemistry, 24(9), pp. 1702 - 1711.

Wang, Y. & Greger, M., 2004. Plant and environment interections. J. Environ. Qual., Volume 33, pp. 1779-1785.

Weis, J. & Weis, P., 2004. Metal uptake, transport and release by wetland plants: implication for phytoremediation. Environmental International, Volume 30, pp.

Documentos relacionados