• Nenhum resultado encontrado

Capítulo 7 Conclusões gerais

7.8 Proposta de trabalhos futuros

Nesta secção, são apresentadas propostas que poderão ser objeto de futuros trabalhos, nomeadamente:

o Realização de um maior número ensaios para os provetes ENF, uma vez que as cinco unidades ensaiadas não são um número plausível de amostras. Aconselha-se a utilização única dos provetes VM,uma vez que apresentaram um comportamento mais

- 134 -

o No ensaios ENF, procurar calibrar experimentalmente a flexibilidade para vários comprimentos de fenda e mantendo o vão constante.

o Realização de ensaios para as ligações DLJ, de modo a obter-se uma maior amostragem de resultados para construção de uma curva S-N estatisticamente mais representativa.

o Realização dos mesmos ensaios com uma frequência de ensaio de 40 Hz, velocidade de ensaio utilizada na ficha técnica do adesivo. Se possível, ensaiar provetes DCB com dimensões normalizadas, para que se possa utilizar o método CBBM na sua análise, por exemplo.

o Estudo dos ensaios pelo método de Correlação Digital de Imagem, para se avaliar os processos de iniciação e progressão das fendas de fadiga e, de um modo geral, fornecer informação de campo importante na análise de resultados.

o Usando os resultados gerados, adaptar modelos de dano coesivo para fadiga e validar modelo com as juntas DLJ.

- 137 - [1] Wahab, M. M. A. 2012, ‘Fatigue in Adhesively Bonded Joints: A Review’,

International Scholarly Research Network, vol. 2012, article ID 746308, pp. 25.

[2] Xavier, J., Morais, J., Dourado, N. e Moura, M. F. S. F. de 2011, ‘Measurement of Mode I and Mode II Fracture Properties of Wood-Bonded Joints’, Journal of Adhesion

Science and Technology, vol. 25, pp. 2881–2895.

[3] Jen, Y. -M. 2012, ‘Fatigue life evaluation of adhesively bonded scarf joints’,

International Journal of Fatigue, vol. 36, no. 1, pp. 30–39.

[4] Topçu, G. M. e Çallioğlu, H. 2009, ‘The effects of the butterfly joints on failure loads and fatigue performance of composite structures’, Science and Engineering of Composite

Materials, vol. 17, no. 3, pp. 199–212.

[5] Fessel, G., Broughton, J. G., Fellows, N. A., Durodola, J. F. e Hutchinson, A. R. 2009, ‘Fatigue performance of metallic reversebent joints’, Fatigue & Fracture of Engineering

Materials &Structures, vol. 32, no. 9, pp. 704–712.

[6] Zeng, Q. e Sun, C. T. 2004, ‘Fatigue performance of a bonded wavy composite lap joint’, Fatigue & Fracture of Engineering Materials & Structures, vol. 27, no. 5, pp. 413– 422.

[7] Jen, Y. -M. e Ko, C. -W. 2010, ‘Evaluation of fatigue life of adhesively bonded aluminum single-lap joints using interfacial parameters’, International Journal of Fatigue, vol. 32, no. 2, pp. 330–340.

[8] Mazumdar, S. K. e Mallick, P. K. 1998, ‘Static and fatigue behavior of adhesive joints in SMC-SMC composites’, Polymer Composites, vol. 19, no. 2, pp. 139–146.

[9] Azari, S., Papini, M. e Spelt, J. K. 2011, ‘Effect of adhesive thickness on fatigue and fracture of toughened epoxy joints—part I: experiments’, Engineering Fracture Mechanics, vol. 78, no.1, pp. 153–162.

[10] Azari, S., Papini, M. e Spelt, J. K. 2011, ‘Effect of adhesive thickness on fatigue and fracture of toughened epoxy joints-part II: analysis and finite element modeling’,

EngineeringFracture Mechanics, vol. 78, no. 1, pp. 138–152.

[11] Khalili, S. M. R., Shokuhfar, A., Hoseini, S. D., Bidkhori, M., Khalili, S. e Mittal, R. K. 2008, ‘Experimental study of the influence of adhesive reinforcement in lap joints for composite structures subjected to mechanical loads’, International Journal of Adhesion and

Adhesives, vol. 28, no. 8, pp. 436–444.

[12] Kumar, S. e Pandey, P. C. 2011, ‘Fatigue life prediction of adhesively bonded single lap joints’, International Journal of Adhesion and Adhesives, vol. 31, no. 1, pp. 43–47.

- 138 -

[13] Markolefas, S. I. e Papathanassiou, T. K. 2009, ‘Stress redistributions in adhesively bonded double-lap joints, with elasticperfectly plastic adhesive behavior, subjected to axial lapshear cyclic loading’, International Journal of Adhesion and Adhesives, vol. 29, no. 7, pp. 737–744.

[14] Kumar, S. e Pandey, P. C. 2006, ‘Cyclic-fatigue performance of adhesively bonded lap joint’, Computational Methods, vol. 2, pp. 541–546.

[15] Crocombe, A. D. 1999, ‘Predicting the response of adhesively bonded structures under a range of service load conditions using finite element methods’, International Journal of

Materials and Product Technology, vol. 14, no. 5-6, pp. 411– 429.

[16] Imanaka, M. e Iwata, T. 1998, ‘Estimation of fatigue strength for adhesively-bonded lap joints based on fatigue failure criterion under multiaxial stress conditions’, The Journal of

Adhesion, vol. 65, no. 1–4, pp. 7–24.

[17] Dessureault, M. e Spelt, J. K. 1997, ‘Observations of fatigue crack initiation and propagation in an epoxy adhesive’, International Journal of Adhesion and Adhesives, vol. 17, no. 3, pp. 183–195.

[18] Gomatam, R. R. e Sancaktar, E. 2006, ‘The effects of stress state, loading frequency and cyclic waveforms on the fatigue behavior of silver-filled electronically-conductive adhesive joints’, Journal of Adhesion Science and Technology, vol. 20, no. 1, pp. 53–68. [19] Crocombe, A. D. e Richardson, G. 1999, ‘Assessing stress state and mean load effects on the fatigue response of adhesively bonded joints’, International Journal of Adhesion and

Adhesives, vol. 19, no. 1, pp. 19–27.

[20] Azari, S., Papini, M., e Spelt, J. K. 2010, ‘Effect of surface roughness on the performance of adhesive joints under static and cyclic loading’, The Journal of Adhesion, vol. 86, no. 7, pp. 742–764.

[21] Pereira, A.M., Ferreira, J.M., Antunes, F. V., e Bártolo, P. J. 2009, ‘Study on the fatigue strength of AA 6082-T6 adhesive lap joints’, International Journal of Adhesion and

Adhesives, vol.29, no. 6, pp. 633–638.

[22] Silva, L. F. M. da, Ferreira, N. M. A. J., Richter-Trummer, V., e Marques, E. A. S. 2010, ‘Effect of grooves on the strength of adhesively bonded joints’, International Journal of

Adhesion and Adhesives, vol. 30, no. 8, pp. 735–743.

[23] Gomatam, R. R. e Sancaktar, E. 2005, ‘Effects of various adherend surface treatments on fatigue behavior of joints bonded with a silver-filled electronically conductive adhesive’,

- 139 - [24] Shenoy, V., Ashcroft, I. A., Critchlow, G. W., e Crocombe, A. D. 2010, ‘Unified methodology for the prediction of the fatigue behaviour of adhesively bonded joints’,

International Journal of Fatigue, vol. 32, no. 8, pp. 1278–1288.

[25] Solana, A. Graner, Crocombe, A. D. e Ashcroft, I. A. 2010, ‘Fatigue life and backface strain predictions in adhesively bonded joints’, International Journal of Adhesion and

Adhesives, vol. 30, no. 1, pp. 36–42.

[26] Imanaka, M., Taniguchi, M., Hamano, T. e Kimoto, M. 2005, ‘Fatigue life estimation of adhesively bonded scarf joints based on a continuum damage mechanics model’, Polymers

and Polymer Composites, vol. 13, no. 4, pp. 359–370.

[27] Shenoy, V., Ashcroft, I. A., Critchlow, G. W., Crocombe, A. D. e Wahab, M. M. A. 2009, ‘Strength wearout of adhesively bonded joints under constant amplitude fatigue’,

International Journal of Fatigue, vol. 31, no. 5, pp. 820–830.

[28] Quaresimin, M. e Ricotta, M. 2006, ‘Life prediction of bonded joints in composite materials’, International Journal of Fatigue, vol. 28, no. 10, pp. 1166–1176.

[29] Wahab, M. M. A., Ashcroft, I. A., Crocombe, A. D., e Joussot, L. 2003, ‘Lifetime prediction for fatigue damage in bonded joints’, Key Engineering Materials, vol. 245-246, pp. 43–50.

[30] Imanaka, M., Hamano, T., Morimoto, A., Ashino, R. e Kimoto, M. 2003, ‘Fatigue damage evaluation of adhesively bonded butt joints with a rubber-modified epoxy adhesive’,

Journal of Adhesion Science and Technology, vol. 17, no. 7, pp. 981–.

[31] Wahab, M. M. A., Hilmy, I., Ashcroft, I. A. e Crocombe, A.D. 2010, ‘Evaluation of fatigue damage in adhesive bonding: part 1: bulk adhesive’, Journal of Adhesion Science and

Technology, vol. 24, no. 2, pp. 305–324.

[32] Wahab, M. M. A., Hilmy, I., Ashcroft, I. A. e Crocombe, A. D. 2010, ‘Evaluation of fatigue damage in adhesive bonding: part 2: single lap joint’, Journal of Adhesion Science and

Technology, vol. 24, no. 2, pp. 325–345.

[33] Shenoy, V., I. Ashcroft, A., Critchlow, G. W., Crocombe, A. D. e Wahab, M. M. A. 2009, ‘An investigation into the crack initiation and propagation behaviour of bonded singlelap joints using backface strain’, International Journal of Adhesion and Adhesives, vol. 29, no. 4, pp. 361–371.

[34] Crocombe, A. D., Ong, C. Y., Chan, C. M., Wahab, M. M. A. e Ashcroft, I. A. 2002, ‘Investigating fatigue damage evolution in adhesively bonded structures using backface strain measurement’, The Journal of Adhesion, vol. 78, no. 9, pp. 745–776.

- 140 -

[35] Moroni, F. e Pirondi, A. 2011, ‘A procedure for the simulation of fatigue crack growth in adhesively bonded joints based on the cohesive zone model and different mixed-mode propagation criteria’, Engineering Fracture Mechanics, vol. 78, no. 8, pp.1808–1816.

[36] Pirondi, A. e Moroni, F. 2011, ‘Simulation of mixed mode I/II fatigue crack propagation in adhesive joints with a modified cohesive zone model’, Journal of Adhesion

Science and Technology, vol. 25, no. 18, pp. 2483–2499.

[37] Pirondi, A. e Moroni, F. 2010, ‘A progressive damage model for the prediction of fatigue crack growth in bonded joints’, The Journal of Adhesion, vol. 86, no. 5-6, pp. 501– 521.

[38] Azari, S., Papini, M., Schroeder, J. A. e Spelt, J. K. 2010, ‘The effect of mode ratio and bond interface on the fatigue behavior of a highly-toughened epoxy’, Engineering

Fracture Mechanics, vol. 77, no. 3, pp. 395–414.

[39] Pirondi, A. e Moroni, F. 2009, ‘An investigation of fatigue failure prediction of adhesively bonded metal/metal joints’, International Journal of Adhesion and Adhesives, vol. 29, no.8, pp. 796–805.

[40] Xu, X. X., Crocrombe, A. D. e Smith, P. A. 1994, ‘Fatigue behaviour of joints bonded with either filled, or filled and toughened, adhesive’, International Journal of Fatigue, vol.16, no. 7, pp. 469–477.

[41] Xu, X. X., Crocombe, A. D. e Smith, P. A. 1994, ‘Frequency effect on fatigue-crack growth-rate in joints bonded with either filled or filled and toughened adhesive’, Vide Science

Technique et Applications, vol. 272, pp. 232–236.

[42] Moura, M. F. S. F. de e Gonçalves, J. P. M. 2014, ‘Development of a cohesive zone model for fatigue/fracture characterization of composite bonded joints under mode II loading’, International Journal of Adhesion & Adhesives, vol. 54, pp. 224–230.

[43] Du, Y. e Shi, L. 2014, ‘Effect of vibration fatigue on modal properties of single lap adhesive joints’, International Journal of Adhesion & Adhesives, vol. 53, pp. 72–79.

[44] Guo, Y., Ogin, S. L., Capell, T. F. et al. 2009, ‘Effect of disband propagation on the reflected spectra of CFBG sensors embedded within the bond-line of composite bonded joints’, Advanced Materials Research, vol. 79–82, pp. 2067–2070.

[45] Brussat, T. R. e Chiu, S. T. 1978, ‘Fatigue crack growth of bondline cracks in structural bonded joints’, Journal of EngineeringMaterials and Technology, vol. 100, no. 1, pp. 39–45.

- 141 - [46] Ashcroft, I. A., Erpolat, S. e Tyrer, J. 2003, ‘Damage assessment in bonded composite joints’, Key Engineering Materials, vol. 245-246, pp. 501–508.

[47] Du, T., Liu, M., Seghi, S., K. Hsia, J., Economy, J. e Shang, J. K. 2001, ‘Piezoelectric actuation of fatigue crack growth along polymer/metal interface’, in Long Term Durability of

Structural Materials: Durability 2000, pp. 187–192.

[48] Cheuk, P. T., Tong, L., Wang, C. H., Baker, A. e Chalkley, P. 2002, ‘Fatigue crack growth in adhesively bonded composite-metal double-lap joints’, Composite Structures, vol. 57, no. 1–4, pp.109–115.

[49] Khoramishad, H., Crocombe, A. D., Katnam, K. B. e Ashcroft, I. A. 2011, ‘Fatigue damage modelling of adhesively bonded joints under variable amplitude loading using a cohesive zone model’, Engineering Fracture Mechanics, vol. 78, no. 18, pp. 3212–3225. [50] Eskandarian, M. e Jennings, R. M. 2011, ‘A new test methodology for simultaneous assessment of monotonic and fatigue behaviors of adhesive joints’, Journal of Adhesion

Science and Technology, vol. 25, no. 18, pp. 2501–2520.

[51] Shenoy, V., I. Ashcroft, A., Critchlow, G. W., Crocombe, A. D. e Wahab, M. M. A. 2009, ‘An evaluation of strength wearout models for the lifetime prediction of adhesive joints subjected to variable amplitude fatigue’, International Journal of Adhesion and Adhesives, vol. 29, no. 6, pp. 639–649.

[52] Shenoy, V., I. Ashcroft, A., Critchlow, G. W. e Crocombe, A. D. 2010, ‘Fracture mechanics and damage mechanics based fatigue lifetime prediction of adhesively bonded joints subjected to variable amplitude fatigue’, Engineering Fracture Mechanics, vol. 77, no. 7, pp. 1073–1090.

[53] Kelly, G. 2006, ‘Quasi-static strength e fatigue life of hybrid (bonded/bolted) composite single-lap joints’, Composite Structures, vol. 72, no. 1, pp. 119–129.

[54] Chang, B. H., Shi, Y. W. e Lu, L. Q. 2001, ‘Studies on the stress distribution and fatigue behavior of weld-bonded lap shear joints’, Journal of Materials Processing

Technology, vol. 108, no. 3, pp. 307–313.

[55] Wang, P. C., Chisholm, S. K., Banas, G. e Lawrence, F. V. 1995, ‘The role of failure mode, resistance spot weld and adhesive on the fatigue behavior of weld/bonded aluminum’,

Welding Journal, vol. 74, no. 2, pp. S41–S47.

[56] Moroni, F., Pirondi, A. e Kleiner, F. 2010, ‘Experimental analysis and comparison of the strength of simple and hybrid structural joints’, International Journal of Adhesion and

- 142 -

[57] Portillo, P., Kreiner, J. e Lancey, T. 2007, ‘Torsional fatigue behavior of adhesively joined tubes’, Journal of Materials Processing Technology, vol. 191, no. 1–3, pp. 339–341. [58] Dorigato, A. e Pegoretti, A. 2011, ‘The role of alumina nanoparticles in epoxy adhesives’, Journal of Nanoparticle Research, vol. 13, no. 6, pp. 2429–2441.

[59] Leitão, A. C. C. 2015, Aplicação de um método de correlação de imagem para a

determinação da tenacidade à fratura em corte de adesivos estruturais. Tese de Mestrado em

Engenharia Mecânica, Instituto Superior de Engenharia do Porto.

[60] ASM aerospace specification metals Inc., de ASM. Disponível em: <http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA6061t6>. [19 de Dezembro de 2015]

[61] Structural adhesives, de HUNTSMAN. Disponível em:

<http://www.kirkside.com.au/Uploads/Images/2015.pdf>. [19 de Dezembro de 2015]

[62] Kanninen, M. F. e Popelar, C. H. 1985, Advanced fracture mechanics. New York, Oxford University Press.

[63] Constante, C. J. 2014. Utilização de métodos óticos de correlação de imagem para a

determinação da tenacidade à fratura de adesivos estruturais. Tese de Mestrado em

Engenharia Mecânica, Instituto Superior de Engenharia do Porto.

[64] Section 7.2.2.1. - Crack Growth Rate Testing, de DTD Handbook. Disponível em: <http://www.afgrow.net/applications/dtdhandbook/sections/page7_2_2_1.aspx>. [8 de Fevereiro de 2016]

[65] Paris, P. e Erdogan, F. 1963, ‘A Critical Analysis of Crack Propagation Laws’,

Documentos relacionados