• Nenhum resultado encontrado

7. CONCLUSÕES E PERSPECTIVAS

7.2 Propostas para futuros trabalhos

Pretendemos continuar com a aplicação da modelagem computacional no estudo dos defeitos e das suas propriedades ópticas, como também estudar os aspectos ainda em aberto na estrutura da HAP. Entre as atividades a serem realizadas estão:

1. Obter o limite de solubilidade utilizando o método de solução ideal para todos os defeitos calculados neste trabalho.

2. Calcular os parâmetros do campo cristalino de alguns terras raras da HAP.

REFERÊNCIAS BIBLIOGRÁFICAS

A. ALMIRALL, G. LARRECQ, J.A.A. DELGADO, Biomaterials.17(2004) 367.

ARAÚJO, R.M., Modelagem Computacional dos Defeitos Substitucionais e Propriedades Opticas no LiNbO3.2010. 168 f. Tese (Doutorado)- Universidade Federal de Sergipe,

UFS, Núcleo de Pós- Graduação em Física, 2010.

ARAUJO, R. M; LENGYEL, K; JACKSON, R.A; KOVACS, L AND M E G VALERIO, J. Phys: Condens. Matter, 19, p. 046211, 2007.

ARAUJO, T.S.; MACÊDO, Z.S.; OLIVEIRA, P.A.S.C; VALÉRIO,M.EG., Production and characterization of pure and Cr3+ doped hydroxyapatite for biomedical applications as fluorescent probes. J Mater. Sci (2007) 42:2236–2243.

ARBIB, E.H; ELOUADI, B; CHAMINADE, J.P; DARRIET, J., New refinement of the crystal structure of o (P2O5). Journal of Solid State Chemistry (1996) 127, pp.350-353

ASHCROFT, W; MERMIM, N; N, D; Física do Estado Sólido. [S.1]: CENGAGE Learning, 2011.

BANDYOPADHYAY, S.; CHAKRABORTY, S.; BALASUBRAMANIAN, S.; PAL, S.; BAGCHI, S. Atomistic simulation study of the coupled motion of amino acid residues and Water molecules around protein HP-36: Fluctuation at and around the active sites. Journal of Physical Chemistry B, Washington , V. 108, n, 33, PP. 12608-1216, 2004. BADRAOUI B, THOUVENOT R, DEBBABI H. X-ray powder diffraction, solid-state P-31-

MAS-NMR and IR spectroscopy of cadmium–strontium mixed hydroxyapatites. CR Acad Sci Ser IIC Chim.2000 ;3: 107–12.

BEN-DOR, L.; FISCHBEIN, E.; KALMAN,(1967) Z.H. Acta Crystallographica B 32, 667-667.

BIGI A, FALINI G, FORESTI E, GAZZANO M, RIPAMONTI A, ROVERI N. RIETVELD structure refinements of calcium hydroxylapatite containing magnesium. Acta Cryst Sect B Struct Sci 1996;B52:87e92.

BIGI, A ET AL., „‟ Structural refinements of strontion substituted hydroxyapatites‟‟ Materials Science Forum, v. 278-281, n 2, pp. 814-819, 1998.

BIGI, A; FORESTI, E; GANDOLFI, M; GAZZANO, M; ROVERI, N., Inhibiting effect of zinc on hydroxylapatite crystallization. J Inorg Biochem.1995;58:49–58.

BOANINI, E; GAZZANO, M; BIGI, A., 2010, „‟Ionic substitutions on calcium phosphates synthesized at low temperature‟‟ Acta Biomaterials. V.6, pp. 1882-1894.

BOLZAN, A.A; FONG, C; KENNEDY, B.J; HOWARD, C.J., Powder neutron diffraction study of pyrolusite, beta-MnO2. Australian Journal of Chemistry (1993) 46, p.939- p.944.

BONFIELD, W. Advances in Biomaterials:, biomaterials and clinical applications. Amsterdam: Elsevier, 1987, v.7, p.13.

BORN, M; LANDÉ, A. Verhandlunger der Deutschen Phys. Gesellsschaft, v, 21-24, 1918 BORN, M; HUANG, K., Dynamical theory of crystal lattices, Oxford, 1954.

BORN, M; MAYER, M., Zeitschrift für Physik A Hadrons and Nuclei, vol 75, n 1-2, pp. 1-18, 1932.

BLANUSA, J; MITRIC, M.; RODIC, D; SZYTULA, A.; SLASKI, M. (2000) Jornal do Magnetismo e Materiais Magnéticos. 213, 75-81.

BLAU, P. J. Friction Science and Tecnology. New York: CRC Press, 2008.

BLASSE, G. Influence of local charge compensation on site occupation and luminescence of apatites. J Solid State Chem 1975; pp.14:181–4.

BOUCETTA, C., KACIMI, M., ENSUQUE, A., et al., “ Oxidative dehydrogenation of propane over chromium-loaded calcium-hydroxyapatite”, Applied Catalysis A: General, vol. 356, pp 201-210, 2009.

CATLOW, C. R. A., Computer Modelling in Inorganic Crystallography, Academic Press, 1997.

CATLOW, C. R. A.; Ackermann, L; Bell, R. G ; Cora, F; Gay, H.D; Nygren, M.A; Pereira, J.C; Sastre, G; B. S. and P. E. Sinclair, Faraday Discuss.,1997, 106, 1-40

CATLOW, C. R. A., Diller K M and Norgett M J, J. (1977) Phys. C: Solid State Phys. 1395 CATLOW, C.R.A ., Computer Simulation of Solids, Springer Verlag, 1982

CATLOW, C.R.A., Theory of Simulation methods for lattice and defect energy

calculations in crystal, Lecture Notes in Physics – Computer simulation of Solids 166, ed Catlow, C.R.A. end Mackrodt, W.C, Berlin, 3-20 1982

CEPERLEY, D. M.; Rev. Mod. Phys. 1999, 71, S438.

CHRISTEL, P., MEUNIER, A., DORLOT, J. M., CROLET, J. M.,WITVOET, J., SEDEL, L., BOUTIN, P. Biomechanical compatibility and design of ceramic implants for

orthopedic surgery. Annals of the New York Academy of Sciences, v.523, p.234 256,1988.

CHITHAMBO, M; RAYMOND, S; CALDERON, T., TOWNSEND P (1995) J.African Earth Sciences 20:53–60.

COSTA, A.C.F; LIMA, M.G; L.H.M.A; CORDEIRO, V.V; VIANA, K.M.S; SOUZA, C.V; LIRA, H.L. 2009, Hidroxiapatita: Obtenção, Caracterização e Aplicações, Revista Eletrônica de materiais e Processos, V. 42, pp.29-38.

DIEULESAINT, E., ROYER, D., 1980. Elastic Waves in Solids. Wiley, Chichester. DOAT, A; PELLE, F; GARDANT, N; LEBUGLE, A., Synthesis of luminescent bioapatite

nanoparticles for utilization as a biological probe. J Solid State Chem. 2004;177:1179. DOAT, A; FANJUL, M; PELLÉ, F; HOLLANDE,E; LEBUGLE, A., Biomaterials. 24 (2003)

3365.

DOROZHKIN, S.V; EPPLE, M., Biological and medical significance of calcium phosphates. Angew Chem Int Ed 2002. pp.41–46.

EANES, E. D. 1980 . Prog. Crystal Growth Caract., vol 3, p 3-15.

ELLIS, D.E; Terra, J; Rossi, A.M; Morales, M.A; Baggio, E.M.S.,Fe2+/Fe3+ substitution in hydroxyapatite: Theory and experiment. PHYSICAL REVIEW B 66, 224107, 2002. ELLIS,D.E; X.M., Initial stages of hydration and Zn substitution/occupation on hydroxyapatite

(0001) surfaces. Biomaterials 29 (2008) 257–265.

ELLIOTT, J.C.; MACKIE, P.E.; YOUNG, R.A., Monoclinic hydroxyapatite Science (1973) 180, p1055-p1057.

ELLIOT, J. C., “Structure and chemistry of the apatite and other calcium orthophosphates”, Amsterdan, Ed. Elsevier Sci, 1994.

ERCIT, T.S.,Refinement of the structure of zeta-Nb2O5 and its relationship to the rutile and thoreaulite structure. Mineralogy and Petrology (1991) 43, p217-p223.

EWALD., (1921), Ann. Phys. 5. Folge 34, 14.

FARHAT BEN, L; AMAMI, M.; HLIL, EK; BEN HASSEN, R.(2009).Journal of Alloys Compd. 479, 594-598

FEYNAM R.P., LEIGHTON R.B., SANDS M. The Feynman Lectures on Physics. 1963. Reading: Addison Wesley Publishing Co., 1963.

FLEET, E.M; LIU, X., „‟ Site Preference of Rare Earth Elements in Hydroxyapatite [Ca10(PO4)6(OH)2]‟‟, Journal of Solid State Chemistry, V. 149, pp. 391-398, 2000. FUIERER, T.A; LORE, M; PUCKETT, S.A; NANCOLLAS, G.H., A mineralization

adsorption and mobility study of hydroxyapatite surfaces in the presence of zinc and magnesium ions. Langmuir 1994;10:4721–5.

GALE, J. D; R. A. L The General Utility Lattice Program (GULP). Molecular Simulation, V. 29, pp. 291-314, 2003.

GALE, J.D., J. Chem. Soc. Faraday Trans. (1997) 629.

GARCIA-MARTINEZ, O; ROJAS, R.M; VILA, E.; MARTIN DE VIDALES,

J.L.,Microstructural characterization of nanocrystals of Zn O and Cu O obtained from basic salts. Solid State Ionics (1993) 63, pp.442-449.

GARDNER, T.N; ELLIOITT, J.C; SKLAR, Z; BRIGGS, G.A.D., J. Biomech. 25 (1992) 1265. GATF, M.; PANCZER, G; REISFELD, R.; USPENSKY, E., Laser-indued time-resolved

luminescence as a tool for rare-earth element identification in minerals, Phys Chem Minerals (2001) 28: 347-363.

GAFT, M; REISFELD, R; PANCZER, G; SHOVAL, S; CHAMPAGNON, B; BOULON, G., J. Lumin.72–74 (1997) 572.

GAFT, M; REISFELD, R; PANCZER, G; USPENSKY, E; VARREL, B; BOULON, G., Luminescence of Pr3+in minerals. Opt. Mat. 13 (1999). 71-79.

GELLER, S. Structures of alpha (Mn2O3), (Mn0,983Fe0.017)2 O3, (Mn 0.37Fe 0.63)2 O3 and relation to magnetic ordering. Acta Crystallographica B (24,1968-38,1982) (1971) 27, p. 821- p.828.

E.V.GIGER,J.PUIGMARTI-LUIS, R.SCHLATTER,B.CASTAGNER,P.S.DITTRICH, J.C. Leroux,J. Controlled. Release150 (2011) p.87.

GIMENES, ROSSANO. Preparação e Caracterização de Compósitos Polímero/Cerâmica com Potencial de Aplicações Médicas. Araraquara-SP: Instituto de Química,

Universidade Estadual Paulista “Júlio de Mesquita Filho”, 2001. 119p. Dissertação (Mestrado).

GRAEVE, O.A; RAGHUNATH KANAKALA; ABHIRAM MADADI; BRANDON C. WILLIAMS; KATELYN C. GLASS., Luminescence variations in hydroxyapatites doped with Eu2+ and Eu3+ ions. Biomaterials, 31, pp.4259–4267, 2010.

HAYES, W; STONEHAM, A.M., ‘’Defects and Defect Processes in Nonmetallic Solids’’, Dover, 2004.

HARDING, J.H; HARRIS, D.J. Simulation of grain-boundary diffusion in ceramics by kinetic Monte Carlo. Physical Review B, EUA, V. 63, n. 9, marc. 2001.

HAUPTMANN, S; DUFNER, H; BRICKMANN, J;KAST, S.M; BERRY, S.R., Phys. Chem. Chem.Phy. 5 (2003) 635.

HEIBA, Z.K; AKIN, Y. SIGMUND;, W; HASCICEK, Y.S., Jornal de Cristalografia Aplicada 36, 1411-1416, 2003.

HENCH, L.L. Bioceramics. Journal of the American Ceramic Society, v. 81, n. 7, p. 1705-1728, 1998.

HENCH, L.L; J. WILSON, Science 226 (1984) 630.

HELMUS, M. N., TWEDEN, K.. Encyclopedic Handbook of Biomaterials and

Bioengineering. New York: M. Dekker, 1995. Part A, v.1: Materials Selection, p.27-59. H.LI,K.A.KHOR,V.CHOW, P.CHEANG, J. Biomed.Mater.Res. A82 (2007) 296.

HILL, R.G. ET AL., „‟The influence of stroncium substitution in fluorapatite glasses and glass-ceramics‟‟, Journal of Non-Crystalline Solids, V. 336, n. 3, pp. 223-229, 2004. HIROSAKI, N.; OGATA, S.; KOCER, C. Ab initio calculation of the crystal structure of the

lanthanide Ln2O3 sesquioxides. Journal of Alloys Compd. (2003) 351, p.31-p.34. HUGHES, J.M; CALMERON, M; CROWLEY, K.D., Am.Mineral. 74 (1989) 870. HUGHES, J. M; CAMERON, M; MARIANO, A. N., Am. Miner. 76, 1165 (1991). HUGHES, J.M; FRANSOLET, A.M; SCHREYER, W., NEUES JAHRB. MINERAL.,

MONATSH. 11, 504, 1993.

M. ITOKAZU, W. YANG, T. AOKI, A. OHARA, Biomaterials. 19 (1998) 817.

IVANOVA, T.I; FRANK, O.V; KOLTSOV, A.B., UGOLKOY, V.L“ Crystals structure of calcium deficient carbonated hydroxyapatite. Termal decomposition”, Journal of Solids State Chemistry., vol. 160, issue 2, pp 340-349, 1998.

ISHIDA, H., KUMAR, G. Molecular Characterization of Composite Interfaces. New

York: Plenum Press, 1985. In: GIMENES, ROSSANO. Preparação e Caracterização de Compósitos Polímero/Cerâmica com Potencial de Aplicações Médicas. Araraquara- SP:Instituto de Química, Universidade Estadual Paulista “Júlio de Mesquita Filho”, 2001.119p. Dissertação (Mestrado).

ISHIKAWA,T; M. WAKAMURA, K. KANDORI ., Influence of chromium(Ill) on the formation of calcium hydroxyapatite. Polyhedron Vol. 16, No. 12, pp. 2047 2053, 1997.

JAGANNATHAN, R; KOTTAISAMY, M., Eu3+ luminescence: a spectral probe in M5(PO4)3X apatites (M=Ca or Sr; X=F-, Cl-, Br- or OH-). J Phys Condens. Matter 1995;7:8453–66. KATZ, J.L; UKRAINCIK, K., J. Biomech. 4 (1971) 221.

KAY, M. I.., Crystal structure of hydroxyapatite. Nature, v 204, p.1050-1055, 1964.

KAWAMURA, H., ITO, A.,MIYAKAWA, S., OJIMA, K., ICHINOSE, N., AND TATEISHI, T., 2000, Bioceramics, 192, 387.

KIM, E.J; CHOI, S.W; HONG, S.H., J. Am. Ceram. Soc. 90 (2007) 2795.

KHUDOLOZHKIN, B.O; URUSOV, V.S; KURASH, V.V., Geokhimiya, 7, 1081, 1974. KITTEL, C. Introduction to Solid State Physics, John Wiley & Sons, 1996.

KROGER, F.A; H J Vink, Solid State Physics, v.3, Edited by Seitz, F., Turnbull, P., Academic, Press: New York, 1956.

LAURENCIN, D.; BARRIOS, A.N; LEEUW, N.H; GERVAIS, C.; BONHMMEC; MAURI, F; CHRZANOWSKI, KNOWLES, J.C; NEWPORT, R.J; WONG, A; GAN, Z; SMITH, M.E., 2011, „‟Magnesium incorporation into hydroxyapatite‟‟, Biomaterials, V.32, pp. 1826-1837.

LACERDA, K. A., LAMEIRAS, F. S., “Avaliação da biodegradação de matrizes porosas à base de hidroxiapatita para aplicação como fontes radioativas em braquiterapia” . Química Nova, vol. 32, pp.1216-1221, 2009.

LANDI, E; LOGROSCINO, G; PROIETTI, L; TAMPIERI, A; SANDRI, M; SPRIO., S. Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behavior. J Mater Sci.Mater Med. 2008; 19:239-47.

LANG, J. (1981). Bull. Soc. Sci. Bretagne, 53, 95-124. LANGER, J. S.; Phys. Today 1999, July, 11.

LEGEROS, RZ., 2001, „’Formation and transformation of calcium phosphates: relevance to vascular calcification‟‟, Zeitschrift fur Kardiologie, V 90, pp 116-124.

LEGEROS R.Z. Calcium Phosphates in Oral Biology and Medicine. Monographs in Oral Science, v. 15, Switzerland: Karger, 1991.

LEGEROS, R. Z.; LEGEROS, J. P. Phosphate minerals in human tissues. In: phosphate minerals, (J.O Niagru and P.B. Moore.Eds.), p. 351-385, 1984.

LEGEROS, R.Z., Calcium phosphate-based osteoinductive materials. Chem.Ver 2008; 108:4742–53.

LEGEROS, R.Z.; LEGEROS, J.P; KEY., Eng.Mater.240–242 (2003) 3.

LEEUW,DE; N.H., BOWE, J.R., RABONE, J., 2007. A computational investigation of stoichiometric and calcium-deficient oxy- and hydroxy-apatites. Faraday Discuss. 134, 195–214.

LEE, W.T; DOVE, M T AND SALJE, E.K.H., Surface relaxations in hydroxyapatite. J.Phys: Condens. Matter 12 (2000) 9829–9841.

LEEUW, N.H. D; RABONE, J.A.L., Molecular dynamics simulations of the interaction of citric acid with the hydroxyapatite (0001) and (0110) surfaces in an aqueous environment. CrystEngComm, 2007, 9, 1178–1186.

LEEUW, N.H., Chem. Commun. 17 (2001) 1646 LEES, S; ROLLINS, F.R., J. Biomech. 5 (1972) 557.

LEE,Y.R;TANG,Y;CHAPPELL,F.H; DOVE, T.M; REEDER, J.R., 2009, „‟Zinc incorporation into hydroxyapatite‟‟ Acta Biomaterials. V.30, pp. 2864-2872.

LEE, W.T; DOVE, M.T; SALJE, E.K.H., J. Phys.: Condens. Matter 12 (2000) 98-29. LEWIS, G.V; CATLOW, C.R.A., J.Phys.C Solid State Phys. 18 1149-1161. 1985

LIDIARD, A.B; NORGETT, M.J., Point Defect in Ionic Crystals in Computational Solid State Physics, Plenum Press, 1972.

LINDSAY, W. L., Chemical equilibria in soils; John Wiley & Sons, Inc.: New York, 1979. LIU, DEAN-MO, 1997. Fabrication of hydroxyapatite ceramic with controlled porosity.

Journal of materials science: materials in medicine, vol 8, p. 227-232.

LIU, J.-F.; YIN, S.; WU, H.-P.; ZENG, YW, HU, XR, WANG, YW, LV, GL; JIANG, JZ, J. Phys. Chem. B (2006) 110, pp. 21588-21592.

LOPEZ, F.A; C R A CATLOW, P D TOWNSEND., Point Defects in Materials, Academic Press, 1988.

MACKIE, P. E; YOUNG, R. A., J. Appl. Crystallogr. 6, 26 (1973).

MAYER, I; ROTH, R.S; BROWN, W.E., J. Solid State Chem. 11 (1974)33–37.

MAVROPOULOS, E., A hidroxiapatita como removedora de chumbo. Dissertação de M.Sc, Fundação Oswaldo Cruz – Escola Nacional de Saúde Pública e Toxicológica, Rio de Janeiro, RJ, Brasil, 1999.

MAYER, I., „‟TEM study of morphology of Mn2+

doped calcium hydroxyapatite and tricalcium phosphate‟‟. Journal of Inorganic Biochemistry v. 102,n.2, pp. 311-317, 2008.

MAYER, I; Roth, R.S; Brown, W.E., J. Solid State Chem. 11 (1974) 33–37.

MAYER, I; JACOBSOHN, O; NIAZOV, T; WERCKMANN, J; ILIESCU, M; RICHARD- PLOUET, M., Manganese in precipitated hydroxyapatites. Eur J Inorg Chem. 2003:1445–51.

MARSELLA, L; FIORENTINI, V., Physical Review, 3 Serie. B - Materia Condensada 69, 172103-1-172103-4, 2004.

MARTIN, P; CARLOT, G; CHEVARIER, A; DEN-AUWER, C; PANCZER, G., Mechanisms involved in thermal diffusion of rare earth elements in apatites. J Nucl. Mater 1999; 275:268–76.

MATSUNAGA, K; MURUTA, H; MIZOGUCHI, T; NAKAHIRA, A, 2010,‟‟Mechanism of incorporation of zinc hydroxyapatite‟‟, Acta Biomaterials, V. 6, pp. 2289-2293.

MEDVECKY, L; STULAJTEROVA, R; PARILAK, L; TRPCEVSKA, J; DURISIN, J; BARINOV, S.M., Influence of manganese on stability and particle growth of hydroxyapatite in simulated body fluid. Colloids Surf A 2006; 281:221–9. MEISER, F; CORTEZ, C; CARUSO, F; ANGEW. Chem. Int. Ed. 43.(2004) 5954. M.A.MEYERS, A.MISHRA,D.J.BENSON,PROG.Mater.Sci.51 (2006) 427.

MING JIANG; TERRA, J; ROSSI, A. M; MORALES, M. A; BAGGIO SAITOVITCH, E. M; ELLIS D. E., Fe2+/Fe3+ substitution in hydroxyapatite: Theory and experiment.

PHYSICAL REVIEW B 66, 224107. 2002.

MOSTAFA, N.Y; BROWN, P.W., Journal of Physics and Chemistry of Solids 68 pp.431-437. 2007.

MOTT, N. F., LITTLETON, M. J., Conduction in Polar Crystals, Electrolitic Conduction in Solid Salts, Trans. Faraday Soc. 34, 485-499, (1938).

MOTT, N.F; LITTLETON, M.J., (1983). Trans. Faraday Soc. 34, 485. NISHIKAWA, H. et al, 1992. Shigen Kankyo Taisaku, 28 V50, 431-436.

ONO, S; BRODHOLT, J.P; PRICE, G.D., Física e Química de Minerais 35, pp. 381-386, 2008.

OSATHANON, T.; BESPINYOWONG, K.; ARKSORNNUKIT, M.; TAKAHASHI, H.; PAVASANT, P.; Ti6Al7Nb promotes cell spreading and fibronectin and osteopontin synthesis in osteoblast-like cells; J Mater Sci: Mater Med. 2006, 17, 619–625.

PHELPS, D. K; POST, C. B. Molecular dynamics investigation of the effect of an antiviral compound on human rhinovirus. Protein Science, Nova York, V. 8, n. 11, pp. 2281- 2289, Nov. 1999.

PILLIAR, R. M., BLACKWELL, R., MACNAB, I., CAMERON, H. U. Carbon fiber reinforced bone cement in orthopedic surgery. Journal of Biomedical Materials Research,

v.10, issue 6, p.893-906, 1976.

PORTA, P; MAREZIO, M; REMEIKA, J.P; DERNIER, P.D., Chromium dioxide. High pressure synthesis and bond lengths. Materials Research Bulletin (1972) 7, p157-p162. QUENZERFI, R.E.L; ARIGUIB, N.K; AAYEDI, N.T; PIRIOU, B., J. Lumin. 85 (1999) 71. RABONE, J.A.L; LEEUW, N.H., J. Comput. Chem. 27 (2) (2006) 253.

RAPAPORT, D. C., The art of molecular dynamics simulation, Cambridge Univ. Press, 1995. RATNER, B. D., HOFFMAN, A. S., SCHOEN, F. J., LEMONS, J. E. Biomaterials

RAVIKUMAR, R. V. S. S. N;YAMAUCHI, J; CHANDRASEKHAR, A. V; REDDY, Y. P; RAO, P. S., Identification of chromium and nickel sites in zinc phosphate glasses. Journal of Molecular Structure, v. 740, p. 169-173, 2005.

RAYNAUD S, CHAMPION E, BERNACHE-ASSOLLANT D, LAVAL JP. Determination of calcium / phosphorus atomic ratio of calcium phosphate apatites using X-ray

diffractometry. JAm Ceram.Soc.2001;84(2):359–66.

REN, F; XIN, R; GE, X; LENG, Y; Characterization and structural analysis of zincsubstituted hydroxyapatites. Acta Biomater. 2009;5:3141–9.

RUSTAD, J.R.,Density functional calculations of the enthalpies of formation of rare-earth orthophosphates. American Mineralogist (2012) 97, (5-6) p791-p799.

RUTLEDGE, G.C; SUTER, U.W. Detailed atomistic simulation of oriented pseu-docystalline polymers and application to a stiff-chain aramid. Macromolecules, Washington, V.24, n, 8, pp. 1921-1933, abr. 1991.

SANTOS, L.A. Desenvolvimento de cimentos de fosfato de cálcio reforçado por fibras para uso na área médico-odontológica. 2002. Tese (Doutorado) – Universidade Estadual de Campinas (UNICAMP), São Paulo.

SANTOS, M.L; FLORENTINO, A.O; SAEKI, M.J; APARECIDA, A.H; FOOK, M.V.L; GUASTALDI, A.C., „‟Síntese de hidroxiapatita pelo método sol-gel utilizando precursores alternativos: nitrato de cálcio e ácido fosfórico‟‟,Eclética Química, V;30, n.3, pp29-35, 2005.

SNYDERS, R., MUSIC, D., SIGUMONRONG, D., SCHELNBERGER, B., JENSEN, J., SCHNEIDER, J.M., 2007. Experimental and ab initio study of the mechanical properties of hydroxyapatite. Appl. Phys. Lett. 90, 193902-1-3.

SOARES, GLÓRIA DE ALMEIDA, 2005. Biomateriais. Internet [Acesso em 21/05/2013].Avaliável em: <www.anbio.org.br/pdf/2/tr10_biomateriais.pdf>. SÓLTESZ, U. Ceramics in composites. Review and current status. Annals of the New York

Academy of Sciences, v.523, p.137-156, 1988.

SPRIO S, PEZZOTTI G, CELOTTI G, LANDI E, TAMPIERI A. Raman and

cathodoluminescence spectroscopies of magnesium-substituted hydroxyapatite powders. J Mater Res 2005; 20:1009-16.

STANIC, V; DIMITRIJEVIC, S; ANTIC-STANKOVIC, J; MITRIC, M; JOKIC, B; PLECAS, I.B; RAICEVIC, S., 2010, „‟Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowdres‟‟, Appleid Surface Science. V.256,

STONEHAM, A. M., Theory of Defects in Solids, Oxford University Press, 2001.

SYGNATOWICZ, M; KEYSHAR, K; TIWARI, A., 2010 „‟Antimicrobial Properties of Silver-doped Hydroxyapatite Nano-powders and Tihn Filns‟‟, Biological and Biomedical Materials, v.62, pp. 65-70.

SUCHANEK WL, BYRAPPA K, SHUK P, RIMAN RE, JANAS VF, TENHUISEN KS. Preparation of magnesium-substituted hydroxyapatite powders by the

mechanochemical- hydrothermal method. Biomaterials 2004; 25:4647-57.

SUITCH, P.R; LA COUT, J.L; HEWAT, A; YOUNG, R.A.,The structural location and role of Mn2+ partially substituted for Ca2+ in fluorapatite. Acta Crystallogr 1985; B41:173–9. SUCHANEK, W; YOSHIMURA, M., J. Mater. Res. 13 (1998) 94.

TADA, S; CHOWDHURY, E.H; CHO, C.S; AKAIKE,T., Biomaterials. 31(2010)1453. TAMAI, M; ISAMA, K; NAKAOKA, R; TSUCHIYA, T., Synthesis of a novel b-tricalcium

phosphate/ hydroxyapatite biphasic calcium phosphate containing niobium ions and evaluation of its osteogenic properties; J Artif Organs. 2007, 10, 22.

TAMPIERI A, CELOTTI G, LANDI E, SANDRI , M., Magnesium doped hydroxyapatite: synthesis and characterization. Key Eng Mater. 2004; 264-268:2051.

TANAKA, Y.; IWASAKI, T.; KATAYAMA, K.; HOJO, J.; YAMASHITA, K. Effect of ionic polarization on crystal structure of hydroxyapatite ceramic with hydroxide

nonstoichiometry. Funtai Oyobi Funmatsu Yakin (Journal of the Japan Society of Powder Metallurgy) (2010) 57, p520-p528.

TANIZAWA, Y; SAWAMURA, K; SUZUKI, T., J. Chem. Soc., Faraday Trans. 86 (1990) PP.4025-4029.

TARASCHAN, A., Luminescence of minerals. Naukova Dumka, Kiev, 1978.

TAYLOR, D.,Transações e Jornal da Sociedade Britânica de cerâmica, 83 pp. 5-9, 1984. TERRA, T; JIANG M; ELLISY, D.E.,Characterization of electronic structure and bonding in

hydroxyapatite: Zn substitution for Ca. PHILOSOPHICAL MAGAZINE A, 2002, VOL. 82, N. 11, 2357-2377.

TERRA, J; RODRIGUES, D.E, EON, J.G; ELLIS, D.E; GONZALEZ, G; MALTA, R.A., The structure of strontium-doped hydroxyapatite: an experimental and theoretical study. Phys Chem Chem Phys 2009;11:568–77.

TERPSTRA, R. A. & DRIESSENS, F. C. M. (1986). Calcif. Tissue Int.39, 348-354. TILLEY, R.J.D, Defects in Solids, John Wiley, 2008.

TROYANCHUK, I.O; TRUKHANOV S.V; BOBRIKOV, IA; SIMKIN, VG; BALAGUROV, PM (2007).

UGLIENGO, P; PEDONE, A; CORNO, M; CIVALLERI, B; MALAVASI, G; MENZIANI, M.C; SEGRE, U., An ab initio parameterized interatomic force field for

hydroxyapatite. J. Mater. Chem., 2007, 17, 2061–2068.

URUSOV VS, KHUDOLOZHKIN VO. An energy analysis of cation ordering in apatite. Geochem Int 1975;11:1048–53.

VERBRAEKEN, M.C.; SUARD, E.; IRVINE, J.T.S., Structural and electrical properties of calcium and strontium hydrides. Journal of Materials Chemistry (2009) 19, pp. 2766- 2770.

VORONKO, Y.K; MAKSIMOVA,G.V; SOBOL, A.A, Opt Spectosc.(USSR) 70(2).1991, 203. WANG, F; TAN, W.B; ZHANG, Y; FAN, X; WANG, M., Nanotechnology.17 (2006).

WEBSTER, T. J., ERGUN, C., DOREMUS, R. H., AND BIZIOS, R., 2002, J. biomed. Mater. Res., 59, 312.

WILLIAMS, D.F. Definitions in biomaterials. Amsterdam: Elsevier, p. 66-71, 1987.

YANG, P; YANG, C; WANG, W; WANG, J; ZHANG, M; LIN, J.,„‟ Solvothermal synthesis and characterization of Ln (Eu3+, Tb3+) doped hydroxyapatite‟‟, Journal of Colloid and Interface Science, V. 328, pp. 203-210, 2008.

WRIGHT, A.O; SELTZER, M.D; GRUBER, J.B; CHAI, B.H.T., J. Appl. Phys. 78 (4) (1995) 2456.

WU BO; ZINKEVICH, M.; ALDINGER, F.; WEN DINGZHONG; CHEN LU., Ab initio study on structure and phase transition of A- and B-type rare-earth sesquioxides Ln2O3 (Ln= La-Lu, Y and Sc) based on density function theory. Journal of Solid State Chemistry (2007) 180, p3280-p3287.

YAMAGUCHI, M., Role of zinc in bone formation and bone resorption. J Trace Elem Exp. Med. 1998;11:119–35.

YANG, J.(2008). Acta Crystallographica B 64, 281-286.

YASUKAWA A, OUCHI S, KANDORI K, ISHIKAWA T. Preparation and characterization of magnesium-calcium hydroxyapatites. J Mater Chem 1996;6:1401.

YUPING, XU; SCHWARTZ, F. W., 1994. Sorption of Zn2+ and Cd2+on Hydroxyapatite Surfaces. Environ. Sci. Technol. Vol.28, p. 1472-1480.

ZHOU JINGJING; HUILEI HAN CHUANYU; ZHANG; TUO CAI; CHENGQUN SONG; GAO TAO, (2009), Journal of Alloys Compd. 471, 492-497.

ZHU K, YANAGISAWA K, SHIMANOUCHI R, ONDA A, KAJIYOSHI K. Preferential occupancy of metal ions in the hydroxyapatite solid solutions synthesized by

Documentos relacionados