• Nenhum resultado encontrado

Figura 5.15 Temperatura na face superior no ciclo de descarga

6.2. Propostas para trabalhos futuros

No subcapítulo anterior foram revistas as diferentes fases do trabalho desenvolvido. Em seguida, apresentam-se algumas propostas para trabalhos futuros nesta área de estudo.

A análise calorimétrica revela-se um ensaio importante neste tipo de estudo porque demostra a capacidade de acumulação de energia térmica na argamassa, num intervalo de temperaturas que inclua a região de transição de fase da parafina.

Outra proposta para futuros desenvolvimentos passa por comparar estas argamassas com argamassas que utilizem a parafina microencapsulada. Esta parafina deverá ser misturada com os restantes constituintes da argamassa na fase da sua preparação. Neste novo tipo de argamassa não existirá o problema de misturar a parafina com a argamassa que conduzirá a maiores ganhos na condutibilidade térmica e na “inércia térmica”. Outra vantagem passa pela sua produção, que se revela mais rápida e portanto mais económica.

93

Referências bibliográficas

[1] Abhat A., “Low temperature latent heat thermal energy storage: heat storage materials”,

Solar Energy 30 (1983), 313–332.

[2] Ahmad M. et al., “Thermal Testing and Numerical Simulation of a Prototype Cell Using

Light Wallboards Coupling Vacuum Isolation Panels and Phase Change Material”, Energy and Buildings, 38 (2006) 673-681.

[3] Ahmad M., Bontemps A., Sallee H., Quenard D., “Thermal testing and numerical

simulation of a prototype cell using light wallboards coupling vacuum isolation panels and phase change material”, Energy and Buildings 38 (2006), 673–681.

[4] Alawadhi E.M., “Thermal analysis of a building brick containing phase change material”,

Energy and Buildings, 40 (2008), 351-357.

[5] Athienitis A.K. et al., “Investigation of the Thermal Performance of a Passive Solar Test-

Room with Wall Latent Heat Storage”, Building and Environment, 32 (1997), 405-410.

[6] Barroca Paula, “Comportamento reológico e mecânico de argamassas com agregados

leves” Departamento de Engenharia Civil e Arquitectura, Universidade da Beira Interior, 2012.

[7] Borreguero A. et al., “Improvement of the thermal behaviour of gypsum blocks by the

incorporation of microcapsules containing PCMS obtained by suspension polymerization with an optimal core/coating mass ratio” Applied Thermal Engineering 30 (2010), 1164– 1169.

[8] Cabeza L. et al., “Use of Microencapsulated PCM in Concrete Walls for Energy Savings”,

Energy and Buildings, (2007), 113-119 .

[9] Cabeza L., “Storage Techniques with Phase Change Materials”, Thermal energy storage

for solar and low energy buildings, State of the art by the IEA Solar Heating and Cooling Task 32, June 2005, 77-105.

[10] Cabeza L., Heinz A. e Streicher W., “Inventory of phase change materials (PCM)”, A Report of IEA Solar Heating and Cooling Programme – Task 32, Report C of Subtask C, 2005,1-33.

[11] Cardoso I., “Aplicação de Microcápsula do PCM em Materiais de Isolamento Térmico para Fatos de Protecção e Combate ao Fogo”, Departamento de Engenharia Têxtil, Universidade do Minho, Guimarães, Dezembro de 2006.

[12] Castellon C. et al., “Effect of microencapsulated phase change material in sandwich panels” Renewable Energy 35 (2010), 2370–2374.

[13] Chen C. et al., “A New Kind of Phase Change Material (PCM) for Energy Storing Wallboard”, Energy and Buildings 40 (2007), 882-890.

[14] Conferência “Eficiência Energética de Edifícios”, Saint Gobain, ISEL, Abril 2007. [15] Coutinho Ana, “Fabrico e propriedades do betão – vol. I”, LNEC, Lisboa, 1988

94

(2006), 425-435.

[17] Dincer I., Rosen M.A., “Thermal energy storage”, Systems and Applications, John Wiley & Sons, Chichester (England), 2002.

[18] Encyclopedia of Eoeath, , acedido em 4 de Setembro 2013, em

http://www.eoearth.org/view/article/51cbef047896bb431f69bdc9/.

[19] Especificação LNEC E 64, “Cimentos. Determinação da massa volúmica”, 1979.

[20] European Committee of Standardization EN 1015-10, “Methods of test for mortar for masonry. Part 10: Determination of dry bulk density of hardened mortar”, Bruxelas, Agosto, 1999.

[21] European Committee of Standardization EN 1015-11, “Methods of test for mortar for masonry. Part 11: Determination of flexural and compressive strength of hardened mortar”, Bruxelas, Agosto, 1999.

[22] European Committee of Standardization EN 1015-3, “Methods of test for mortar for masonry. Part 3: Determination of consistence of fresh mortar (by flow table)”, Bruxelas, Fevereiro, 1999.

[23] Ghonein A., Klein S., “The effect of phase change material properties on the performance of solar air based heating systems” Solar Energy 42 (1989), 441–447.

[24] Gonçalves Mariana, “Estudo de novos materiais de mudança de fase”, Departamento de Química, Universidade de Aveiro, 2009.

[25] Griffiths P.W., Eames, P.C., “Performance of Chilled Ceiling Panels Using Phase Change Material Slurries as the Heat Transport Medium”, Applied Thermal Engineering, 27 (2007), 1756-1760.

[26] Hadjieva M., Stoykov R., Filipova T., “Composite salt-hydrate concrete system for building energy storage”, Renewable Energy 19 (2000), 111–115.

[27] Harland Alice, Mackay Christina, Brenda Vale, “Phase change materials in architecture”, SB10 New Zealand, Paper Number: 4.

[28] Hawes D., Banu D., Feldman D., “Latent heat storage in concrete II”, Solar Energy Material 61 (1990), 61–80.

[29] Hawes D., Banu D., Feldman D., “The stability of phase change materials in concrete”, Solar Energy Materials and Solar Cells 27 (1992) 103–118.

[30] Hawes D., Feldman D., “Absorption of phase change material in concrete”, Solar Energy Material 27 (1992), 91–101.

[31] Hawlader M., Uddin M., Khin M., “Microencapsulated PCM thermal-energy storage system”, Applied Energy 74 (2003), 195–202

[32] Henriques Francisco, “Reabilitação térmica dos edifícios”, Alambi, Agosto 2007.

[33] Huang L., Doetsch C., Pollerberg C., “Latent Heat Storage Media for Cooling Applications”, Proceedings of 4th International Renewable Energy Storage Conference, IRES 2009.

95 the Environment.

[35] Ismail K.A.R., Henriquez J.R., “Parametric study on composite and PCM glass systems”, Energy Conversion and Management 43 (2002), 973–993.

[36] Ismail K.A.R., Henriquez J.R., “Thermally effective windows with moving phase change material curtains”, Applied Thermal Engineering 21(2001), 1909–1923.

[37] Jurinak J., Adbel-Khalik S.I., “On the performance of air-based solar heating systems utilizing phase change energy storage” Solar Energy 24 (1979), 503–22.

[38] Kelly R., “Latent Heat Storage in Building Material”, AMEC Design.

[39] Koschenz M., Lehmann B., “Development of a thermally activated ceiling panel with PCM for application in lightweight and retrofitted buildings”, Energy and Buildings 36 (2004), 567–578.

[40] Kuznik F. et al., “Energetic Efficiency of Room Wall Containing PCM Wallboard: A Full Scale Experimental Investigation”, Energy and Buildings, 40 (2008), 148-156.

[41] Kuznik F., Virgone J., Roux JJ., “Energetic efficiency of room wall containing PCM wallboard: a full-scale experimental investigation”, Energy and Buildings 40 (2008), 148– 156.

[42] Lane G.A., “Solar Heat Storage: Latent Heat Material”, vol. I, Background and Scientific Principles, CRC Press, Florida, 1983.

[43] Lane G.A., “Solar Heat Storage: Latent Heat Material”, vol. II, Technology, CRC Press, Florida, 1986.

[44] Lee S. et al., “Development of building materials by using micro-encapsulated phase change material” Korean Journal of Chemical Engineering 24(2) (2007), 332–335.

[45] Lee T. et al., “Control Aspects of Latent Heat Storage and Recovery in Concrete”, Solar Energy Materials & Solar Cells, 62 (2000) 217-237.

[46] Lee T., Hawes D., Banu D., Feldman D., “Control aspects of latent heat storage and recovery in bottom concrete slab”, Solar Energy Material Solar Cells 62 (2000) 217–37. [47] Lin K. et al., “Experimental study of under-floor electric heating system with shape-

stabilized PCM plates”, Energy and Buildings 37 (2005), 215–220.

[48] Liu H., Awbi H.B., “Performance of phase change material boards under natural convection”, Building and Environment 44 (2009) 1788–93.

[49] Medved S., Arkar C., “Correlation Between the Local Climate and the Free Cooling Potential of Latent Heat Storage”, Energy and Buildings, 40 (2008), 429-437.

[50] Mendes João et al., “Armazenamento de Energia Solar Térmica”, Laboratório Nacional de Energia e Geologia, L.P.

[51] Morrision D.J., Abdel-Khalik S.I., “Effect of phase change energy storage on the performance of air-based and liquid-based solar heating system”, Solar Energy 20 (1978), 57–67.

[52] Nagano K. et al., “Study of a Floor Supply Air Conditioning System Using Granular Phase Change Material to Augment Building Thermal Mass Storage – Heat Response in Small Scale

96

Experiments”, Energy and Buildings, 38 (2006), 436-446.

[53] Norma Portuguesa NP EN 1008, “Água de amassadura para betões. Especificações para a amostragem, ensaio e avaliação da aptidão da água, incluindo água recuperada nos processos da indústria de betão, para o fabrico de betão”, IPQ, Lisboa, 2003.

[54] Norma portuguesa NP EN 1097-3, “Ensaio das propriedades mecânicas e físicas dos agregados. Parte3: Determinação da Baridade e do volume de vazios”, IPQ, Lisboa 2002. [55] Norma Portuguesa NP EN 1097–6, “Ensaios das Propriedades mecânicas e físicas dos

agregados. Parte 6: Determinação da massa volúmica e da absorção de água”, IPQ, Lisboa, 2003.

[56] Norma Portuguesa NP EN 197–1, “Cimento. Parte 1: Composição, especificações e critérios de conformidade para cimentos correntes”, IPQ, Lisboa, 2001.

[57] Norma Portuguesa NP EN 933–1, “Ensaios das propriedades geométricas dos agregados. Parte1: Análise Granulométrica. Método de Peneiração”, IPQ, Lisboa, 2000.

[58] Norma Portuguesa NP EN 934-2, “Adjuvantes para betão, argamassa e caldas de injeção. Parte 2: Adjuvantes para betão. Definições, requisitos, conformidade, marcação e etiquetagem”, IPQ, Lisboa, 2009.

[59] Pasupathy A. et al., “Experimental Investigation and Numerical Simulation Analysis on the Thermal Performance of a Building Roof Incorporating Phase Change Material (PCM) for Thermal Management”, Applied Thermal Engineering, 28 (2008), 556-565.

[60] Pasupathy A., Velraj R., Seeniraj R.V., “Phase change material-based building architecture for thermal management in residential and commercial establishments”, Renewable and Sustainable Energy Reviews 12 (2008) 39–64.

[61] Pires Luis, Dinho Pedro, “Estudo Experimental da Transferência de Calor por Condução”, Departamento de Engenharia Electromecânica, Universidade da Beira Interior, 2004. [62] Rodrigues Maria, “argamassas de revestimentos para Alvenarias antigas – contribuição

para o estudo da influência dos ligantes”, Universidade Nova de Lisboa – faculdade de Ciências e tecnologia, 2004.

[63] Rodriguez-Ubinasa Edwin et al., “Applications of Phase Change Material in highly energy- efficient houses”, Energy and Buildings 50 (2012) 49-62.

[64] Rozanna D. et al., “A study on thermal characteristics of phase change material (PCM) in gypsum board for building application”, Journal of Oil Palm Research 17 (2005), 41–46. [65] Rubitherm Technologies GmbH, acedido em 13 de Agosto de 2013, em

www.rubitherm.com.

[66] Sakulich A.R., Bentz D.P., “Incorporation of phase change materials in cementitious systems via fine lightweight aggregate”, Construction and Building Materials 35 (2012) 483–490.

[67] Scalat S. et al., “Full Scale Thermal Testing of Latent Heat Storage in Wallboard”, Solar Energy Materials and Solar Cells, 44 (1996), 49-61.

97 [68] Schossig P. et al., “Micro-encapsulated Phase Change Materials Integrated Into

Construction Materials”, Solar Energy Materials & Solar Cells, 89 (2005), 297-306.

[69] Sharma A., Tyagi V.V., Chen C. R., Buddhi D., “Review on thermal energy storage with phase change materials and applications”, Renewable and Sustainable Energy Reviews, 13 (2009) 318-345.

[70] Shilei L., Neng Z., Guohui F., “Eutectic mixtures of capric acid and lauric acid applied in building wallboards for heat energy storage”, Energy and Buildings 38 (2006), 708–711. [71] Shilei Lv. et al., “Impact of Phase Change Wall Room on Indoor Thermal Environment in

winter”, Energy and Buildings, 38, (2006) 18-24.

[72] Silva Nelson, “Incorporação de Materiais de Mudança de Fase em Materiais de Construção”, Universidade do Minho, Escola de Engenharia, Abril 2009.

[73] Tyagi V.V. et al., “Development of phase change materials based microencapsulated technology for buildings: A review”, Renewable and Sustainable Energy Reviews, 15 (2011) 1373-1391.

[74] Tyagi V. V., Buddhi D., “PCM thermal storage in buildings: A state of art”, Renewable and Sustainable Energy Reviews 11 (2007) 1146-1166.

[75] Weinlader H., Beck A., Fricke J., “PCM–facade-panel for daylighting and room heating”, Solar Energy 78 (2005), 177–186.

[76] Wikipedia - a casa, acedido em 07 de Outubro 2013, em

https://pt.wikipedia.org/wiki/Casa#Hist.C3.B3ria_da_resid.C3.AAncia, 20/05/2013.

[77] Xiao M., Feng B., Gong K., “Preparation and performance of shape stabilized phase change thermal storage materials with high thermal conductivity”, Energy Conversion and Management 43(2002), 103–108.

[78] Xu X. et al., “Modeling and simulation on the thermal performance of shape-stabilized phase change material floor used in passive solar buildings”, Energy and Buildings 37 (2005), 1084–1091.

[79] Ye H., Ge X., “Preparation of polyethylene-paraffin compound as a form-stable solid– liquid phase change material”, Solar Energy Materials and Solar Cells 64 (2000), 37–44. [80] Zalba Belén et al., “Review on thermal energy storage with phase change: materials,

heat transfer analysis and applications”, Applied Thermal Engineering 23 (2003) 251–283. [81] Zhang Y. et al., “Application of Latent Heat Thermal Energy Storage in Buildings: State-

of-the-Art and Outlook”, Building and Environment, 42 (2007) 2197-2209.

[82] Zhou G. et al., “An assessment of mixed type PCM-gypsum and shape-stabilized PCM plates in a building for passive solar heating” Solar Energy 81 (2007) 1351–1360.

[83] Zhou G. et al., “Performance of a Hybrid Heating System with Thermal Storage Using Shape-Stabilized Phase-Change Material Plates”, Applied Energy, 84 (2007), 1068-1077.