• Nenhum resultado encontrado

Apresentam-se algumas sugestões para desenvolvimentos futuros:

- Analisar de que forma se poderá introduzir os PCM nos diferentes elementos construtivos já existentes, de forma a modernizar e melhorar a eficiência energética de edifícios já existentes.

- Embora existam já diversos estudos sobre o tema, são poucos os projetos que implementaram este material de mudança de fase na sua constituição e, com pouca informação referenciada sobre os respetivos resultados energéticos, é consideravelmente complexo correlacionar os resultados obtidos com os apontados por diversos estudos. Assim, sugere-se acompanhar um projeto que implemente produtos PCM para se entender o método de aplicação do material, mas seria de maior relevo, a apresentação de resultados a nível de consumo energético para vários intervalos de tempo, detalhando a colocação do material, o clima do local, entre outros detalhes essenciais para efetuar uma avaliação correta.

- Avaliar financeira e economicamente o impacto da introdução de PCM em materiais de construção. Como na realização da dissertação não se atingiu o objetivo que pretendia estudar a redução de custos associada à utilização de materiais de mudança de fase, seria importante incidir neste tópico.

- Por último, mas não menos importante, desenvolver um sistema de armazenamento de energia térmica com recurso a PCM, retornando assim ao objetivo original desta dissertação.

Referências

1. Energy Information Administration. EIA projects 28% increase in world energy use by

2040. 2017 [cited 06/06/2020; Available from:

https://www.eia.gov/todayinenergy/detail.php?id=32912.

2. International Energy Agency. Data and statistics. [cited 06/06/2020; Available from: https://www.iea.org/.

3. Parlamento Europeu, Diretiva do Parlamento Europeu do conselho relativa à promoção da utilização de energia proveniente de fontes renovaveis (reformulação). Jornal Oficial da União Europeia, 2018.

4. Hill, J.S. Energy Landscape Now Sees More Diversified Energy Mix, Says World

Energy Council. 2016 [cited 06/06/2020; Available from:

https://cleantechnica.com/2016/10/12/energy-landscape-now-sees-diversified-energy- mix-world-energy-council/.

5. Alva, G., Y. Lin, and G. Fang, An overview of thermal energy storage systems. Energy, 2018. 144: p. 341-378.

6. Jensen, S.Ø., et al., IEA EBC Annex 67 Energy Flexible Buildings. Energy and Buildings, 2017. 155: p. 25-34.

7. European Commission, A Clean Planet for all. A European strategic long-term vision for a prosperous, modern, competitive and climate neutral economy. 2018.

8. Ferreira, P., Desenvolvimento de um sistema de armazenamento de energia térmica com recurso a materiais de mudança de fase. 2019, Tese de Mestrado, Faculdade de Engenharia da Universidade do Porto.

9. European Commission, An EU Strategy on Heating and Cooling. 2016.

10. Lizana, J., et al., Advanced low-carbon energy measures based on thermal energy storage in buildings: A review. Renewable and Sustainable Energy Reviews, 2018. 82: p. 3705-3749.

11. Parlamento Europeu and Conselho da União Europeia, Diretiva (UE) 2018/844 do Parlamento Europeu e do Conselho de 30 de maio de 2018. Jornal Oficial da União Europeia, 2018.

12. D'Agostino, D. and L. Mazzarella, What is a Nearly zero energy building? Overview, implementation and comparison of definitions. Journal of Building Engineering, 2019.

21: p. 200-212.

13. Costa, S., Armazenamento de Energia Térmica Através de Materiais de Mudança de Fase. 2014, Tese de Mestrado, Faculdade de Engenharia da Universidade do Porto. 14. PORDATA. Ambiente, Energia e Território. 2020 [cited 03/06/2020; Available from:

https://www.pordata.pt/Home.

15. Cotterman, T., Energy storage technologies: transforming America's intelligent eletrical. 2013.

16. Allouche, Y., PCM Energy Storage Modeling: Case Study for a Solar-Ejector Cooling Cycle. Tese de Doutoramento, Faculdade de Engenharia da Universidade do Porto. 17. Esteves, L., Testes a Dois Materiais de Mudança de Fase para Armazenamento de

Energia Térmica. 2016, Tese de Mestrado, Faculdade de Engenharia da Universidade do Porto.

18. Sharma, A., et al., Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 2009. 13(2): p. 318-345. 19. Dincer, I., On thermal energy storage systems and applications in buildings. 2002. 20. Charalambos N. Elias, V.N.S., A comprehensive review of recent advances in materials

aspects of phase change materials in thermal energy storage. 2020.

21. Silva, P., Estudo de um sistema de armazenamento térmico com transição de fase. 2015, Tese de Mestrado, Instituto Superior Técnico da Universidade de Lisboa.

22. Boer, R., Thermal Energy Storage in industrial processes: Contribution to energy efficiency, energy flexibility and increasing the share of renewable energy. 2016. 23. Heier, J., C. Bales, and V. Martin, Combining thermal energy storage with buildings –

a review. Renewable and Sustainable Energy Reviews, 2015. 42: p. 1305-1325.

24. Faraj, K., et al., Phase change material thermal energy storage systems for cooling applications in buildings: A review. Renewable and Sustainable Energy Reviews, 2020.

119.

25. Zhu, L., et al., Detailed energy saving performance analyses on thermal mass walls demonstrated in a zero energy house. Energy and Buildings, 2009. 41(3): p. 303-310. 26. Norén, A., et al., The effect of thermal inertia on energy requirement in a Swedish

building - Results obtained with three calculation models. International Journal of Low Energy and Sustainable Buildings, 1999. 1: p. 1-16.

27. Yahay, N.A. and H. Ahmad, Numerical Investigation of Indoor Air Temperature with the Application of PCM Gypsum Board as Ceiling Panels in Buildings. Procedia Engineering, 2011. 20: p. 238-248.

28. Castellón, C., et al., Use of Microencapsulated Phase Change Materials in Building Applications. 2007.

29. Baetens, R., B.P. Jelle, and A. Gustavsen, Phase change materials for building applications: A state-of-the-art review. Energy and Buildings, 2010. 42(9): p. 1361- 1368.

30. Cabeza, L.F., et al., Experimentation with a water tank including a PCM module. Solar Energy Materials and Solar Cells, 2006. 90(9): p. 1273-1282.

31. Medved, S. and C. Arkar, Correlation between the local climate and the free-cooling potential of latent heat storage. Energy and Buildings, 2008. 40(4): p. 429-437.

32. Arkar, C. and S. Medved, Free cooling of a building using PCM heat storage integrated into the ventilation system. Solar Energy, 2007. 81(9): p. 1078-1087.

33. Takeda, S., et al., Development of a ventilation system utilizing thermal energy storage for granules containing phase change material. Solar Energy, 2004. 77(3): p. 329-338. 34. International Energy Agency, IEA Solar Heating & Cooling Programme. 2007.

35. Gartler, G., et al., Development of a high energy density sorption storage system. 2004. 36. Wagner, W.J., D., C. Isaksson, and R. Hausner, Modestore: Final report on Austrian

field test period. AEE INTEC, 2005.

37. Bales, C., et al., Final report of Subtask B chemical and sorption storage ther overview - a report of IEA solar heating and cooling programme. 2008.

38. Henze, G.P., et al., Primary energy and comfort performance of ventilation assisted thermo-active building systems in continental climates. Energy and Buildings, 2008.

39. Mazo, J., et al., Modeling a radiant floor system with Phase Change Material (PCM) integrated into a building simulation tool: Analysis of a case study of a floor heating system coupled to a heat pump. Energy and Buildings, 2012. 47: p. 458-466.

40. Hasnain, S., Review on sustainable thermal energy storage technologies, Part I: Heat storage materials and techniques. 1998.

41. Paksoy, H., A. Snijders, and L. Stiles, State-of-the-Art review of aquifer thermal energy storage systems for heating and cooling buildings 2009.

42. Wang, H. and C. Qi, Performance study of underground thermal storage in a solar- ground coupled heat pump system for residential buildings. Energy and Buildings, 2008. 40(7): p. 1278-1286.

43. Wang, H., et al., A case study of underground thermal storage in a solar-ground coupled heat pump system for residential buildings. Renewable Energy, 2009. 34(1): p. 307- 314.

44. Skogsberg, K. and B. Nordell, The Sundsvall hospital snow storage. 2001.

45. Skogsberg, K., The Sundsvall Regional Hospital snow cooling plant—results from the first year of operation. 2002.

46. Bauer, D., et al., German central solar heating plants with seasonal heat storage. Solar Energy, 2010. 84(4): p. 612-623.

47. Carvalho, M., Análise do comportamento térmico de um edifício contendo Materiais de Mudança de Fase (PCM). 2019, Tese de Mestrado, Faculdade de Engenharia da Universidade do Porto.

48. Martins, B., Materiais de Mudança de Fase (PCM) para Melhoria do Desempenho Térmico de Edifícios 2017, Tese de Mestrado, Faculdade de Engenharia da Universidade do Porto.

49. Sá, A., Sustentabilidade na construção: comportamento térmico de edifícios em Portugal usando materiais de mudança de fase. 2012, Tese de Doutoramento, Faculdade de Engenharia da Universidade do Porto.

50. Martinho, J., Review on thermal energy storage with PCM: applications for building materials 2018, Tese de Mestrado, Faculdade de Engenharia da Universidade do Porto. 51. Zalba, B., et al., Review on thermal energy storage with phasechange materials, heat

transfer analysis and applications. 2003.

52. Zhang, H., et al., Thermal energy storage: Recent developments and practical aspects. Progress in Energy and Combustion Science, 2016. 53: p. 1-40.

53. n-PARAFFINS [cited 08/05/2020; Available from:

http://www.chemicalland21.com/petrochemical/n-PARAFFINS.htm.

54. Alva, G., et al., Thermal energy storage materials and systems for solar energy applications. Renewable and Sustainable Energy Reviews, 2017. 68: p. 693-706. 55. Fernandes, D., et al., Thermal energy storage: “How previous findings determine

current research priorities”. Energy, 2012. 39(1): p. 246-257.

56. Haocheng, Z., X. C., and M. B., Synchrotron Polarization in Blazars. The Astrophysical Journal, 2014.

57. Kuravi, S., et al., Thermal energy storage technologies and systems for concentrating solar power plants. Progress in Energy and Combustion Science, 2013. 39(4): p. 285- 319.

58. Agyenim, F., et al., A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renewable and Sustainable Energy Reviews, 2010. 14(2): p. 615-628.

59. Zhang, Y. and A. Faghri, Heat transfer enhancement in latent heat thermal energy storage system by using the internally finned tube. J Enhanc Heat Transfer, 1996. 60. Erek, A., Z. lken, and M.A. Acar, Experimental and numerical investigation of thermal

energy storage with a finned tube. International Journal of Energy Research, 2005.

29(4): p. 283-301.

61. Yu, S., X. Wang, and D. Wu, Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: Synthesis, microstructure, and performance evaluation. Applied Energy, 2014. 114: p. 632-643.

62. Mills, A., et al., Thermal conductivity enhancement of phase change materials using a graphite matrix. Applied Thermal Engineering, 2006. 26(14-15): p. 1652-1661.

63. Kibria, M.A., et al., A review on thermophysical properties of nanoparticle dispersed phase change materials. Energy Conversion and Management, 2015. 95: p. 69-89. 64. Wu, S., et al., Preparation and Melting/Freezing Characteristics of Cu/Paraffin

Nanofluid as Phase-Change Material (PCM). Energy & Fuels, 2010. 24(3): p. 1894- 1898.

65. Hunger, M., et al., The behavior of self-compacting concrete containing micro- encapsulated Phase Change Materials. Cement and Concrete Composites, 2009.

31(10): p. 731-743.

66. Zhang, Y.P., et al., Preparation, thermal performance and application of shape- stabilized PCM in energy efficient buildings. Energy and Buildings, 2006. 38(10): p. 1262-1269.

67. Zhou, G., et al., Thermal analysis of a direct-gain room with shape-stabilized PCM plates. Renewable Energy, 2008. 33(6): p. 1228-1236.

68. Inaba, H. and P. Tu, Evaluation of thermophysical characteristics on shape-stabilized paraffin as a solid-liquid phase change material. Heat and Mass Transfer, 1997. 32(4): p. 307-312.

69. Xiao, M., B. Feng, and K. Gong, Preparation and performance of shape stabilizes phase change thermal storage materials with high thermal conductivity. 2000: p. 103-108. 70. Sarı, A., Form-stable paraffin/high density polyethylene composites as solid–liquid

phase change material for thermal energy storage: preparation and thermal properties. Energy Conversion and Management, 2004. 45(13-14): p. 2033-2042.

71. Hong, Y. and G. Xin-shi, Preparation of polyethylene-paraffin compound as a form- stable solid–liquid phase change material. Solar Energy Materials and Solar Cells, 2000: p. 37–44.

72. Xiao, M., B. Feng, and K. Gong, Thermal performance of a high conductive shape- stabilized thermal storage material. Solar Energy Materials and Solar Cells, 2001: p. 293–296.

73. Castilho, A., Simulação numérica do efeito de PCM no conforto térmico de edifícios caso de estudo da FEUP. 2014, Tese de Mestrado, Faculdade de Engenharia da Universidade do Porto.

74. Gautam, A. and R.P. Saini, A review on technical, applications and economic aspect of packed bed solar thermal energy storage system. Journal of Energy Storage, 2020. 27. 75. Izquierdo-Barrientos, M.A., C. Sobrino, and J.A. Almendros-Ibáñez, Modeling and

experiments of energy storage in a packed bed with PCM. International Journal of Multiphase Flow, 2016. 86: p. 1-9.

76. Almendros-Ibáñez, J.A., et al., A review of solar thermal energy storage in beds of particles: Packed and fluidized beds. Solar Energy, 2019. 192: p. 193-237.

77. Karthikeyan, S., et al., Parametric studies on packed bed storage unit filled with PCM encapsulated spherical containers for low temperature solar air heating applications. Energy Conversion and Management, 2014. 78: p. 74-80.

78. Nallusamy, N. and R. Velraj, Numerical and Experimental Investigation on a Combined Sensible and Latent Heat Storage Unit Integrated With Solar Water Heating System. Journal of Solar Energy Engineering, 2009. 131(4).

79. Nallusamy, N., S. Sampath, and R. Velraj, Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat sources. Renewable Energy, 2007. 32(7): p. 1206-1227.

80. Manfrida, G., R. Secchi, and K. Stańczyk, Modelling and simulation of phase change material latent heat storages applied to a solar-powered Organic Rankine Cycle. Applied Energy, 2016. 179: p. 378-388.

81. Esence, T., et al., A review on experience feedback and numerical modeling of packed- bed thermal energy storage systems. Solar Energy, 2017. 153: p. 628-654.

82. Zanganeh, G., et al., Packed-bed thermal storage for concentrated solar power – Pilot- scale demonstration and industrial-scale design. Solar Energy, 2012. 86(10): p. 3084- 3098.

83. Cárdenas, B., et al., Effect of design parameters on the exergy efficiency of a utility- scale packed bed. Journal of Energy Storage, 2018. 18: p. 267-284.

84. Kuravi, S., et al., Investigation of a High-Temperature Packed-Bed Sensible Heat Thermal Energy Storage System With Large-Sized Elements. Journal of Solar Energy Engineering, 2013. 135(4).

85. Okello, D., O.J. Nydal, and E.J.K. Banda, Experimental investigation of thermal de- stratification in rock bed TES systems for high temperature applications. Energy Conversion and Management, 2014. 86: p. 125-131.

86. Hänchen, M., S. Brückner, and A. Steinfeld, High-temperature thermal storage using a packed bed of rocks – Heat transfer analysis and experimental validation. Applied Thermal Engineering, 2011. 31(10): p. 1798-1806.

87. Zanganeh, G., et al., Design of packed bed thermal energy storage systems for high- temperature industrial process heat. Applied Energy, 2015. 137: p. 812-822.

88. Yang, Z. and S.V. Garimella, Thermal analysis of solar thermal energy storage in a molten-salt thermocline. Solar Energy, 2010. 84(6): p. 974-985.

89. Nunes, V.M.B., et al., Molten salts as engineering fluids – A review. Applied Energy, 2016. 183: p. 603-611.

90. Pelay, U., et al., Thermal energy storage systems for concentrated solar power plants. Renewable and Sustainable Energy Reviews, 2017. 79: p. 82-100.

91. Singh, H., R.P. Saini, and J.S. Saini, Performance of a packed bed solar energy storage system having large sized elements with low void fraction. Solar Energy, 2013. 87: p. 22-34.

92. Xu, B., P. Li, and C. Chan, Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments. Applied Energy, 2015. 160: p. 286-307.

93. Flueckiger, S., Z. Yang, and S.V. Garimella, An integrated thermal and mechanical investigation of molten-salt thermocline energy storage. Applied Energy, 2011. 88(6): p. 2098-2105.

94. Felix Regin, A., S.C. Solanki, and J.S. Saini, An analysis of a packed bed latent heat thermal energy storage system using PCM capsules: Numerical investigation. Renewable Energy, 2009. 34(7): p. 1765-1773.

95. Bellan, S., et al., Numerical analysis of charging and discharging performance of a thermal energy storage system with encapsulated phase change material. Applied Thermal Engineering, 2014. 71(1): p. 481-500.

96. de Gracia, A. and L.F. Cabeza, Numerical simulation of a PCM packed bed system: A review. Renewable and Sustainable Energy Reviews, 2017. 69: p. 1055-1063.

97. K.A.R. Ismail, R.S.J., A parametric study on possible packed bed models for pcm and sensible heat storage. 1998.

98. Nagano, K., et al., Thermal characteristics of a direct heat exchange system between granules with phase change material and air. Applied Thermal Engineering, 2004.

24(14-15): p. 2131-2144.

99. T.M., S. and C. G.T., Performance and Efficient Design of Packed Bed Thermal Storage Systems. Part 1. Applied Energy, 1995.

100. Cheng, X., X. Zhai, and R. Wang, Thermal performance analysis of a packed bed cold storage unit using composite PCM capsules for high temperature solar cooling application. Applied Thermal Engineering, 2016. 100: p. 247-255.

101. Oró, E., et al., Comparative study of different numerical models of packed bed thermal energy storage systems. Applied Thermal Engineering, 2013. 50(1): p. 384-392. 102. KAR, I. and H. JR, Numerical and experimental study of spherical capsulespacked bed

latent heat storage system. Applied Thermal Engineering, 2002.

103. Wu, M., C. Xu, and Y.-L. He, Dynamic thermal performance analysis of a molten-salt packed-bed thermal energy storage system using PCM capsules. Applied Energy, 2014.

121: p. 184-195.

104. Aldoss, T.K. and M.M. Rahman, Comparison between the single-PCM and multi-PCM thermal energy storage design. Energy Conversion and Management, 2014. 83: p. 79- 87.

105. Karthikeyan, S. and R. Velraj, Numerical investigation of packed bed storage unit filled with PCM encapsulated spherical containers – A comparison between various mathematical models. International Journal of Thermal Sciences, 2012. 60: p. 153-160. 106. Santos, C.A.P.d. and L. Matias, Coeficientes de Transmissão Térmica de Elementos da Envolvente dos Edifícios. ICT Informações Cientificas e Técnicas, Edifícios - ITE 50. 2007.

107. Entrop, A.G., H.J.H. Brouwers, and A.H.M.E. Reinders, Experimental research on the use of micro-encapsulated Phase Change Materials to store solar energy in concrete floors and to save energy in Dutch houses. Solar Energy, 2011. 85(5): p. 1007-1020. 108. Cabeza, L.F., et al., Use of microencapsulated PCM in concrete walls for energy

savings. Energy and Buildings, 2007. 39(2): p. 113-119.

109. Zhang, C., et al., Thermal response of brick wall filled with phase change materials (PCM) under fluctuating outdoor temperatures. Energy and Buildings, 2011. 43(12): p. 3514-3520.

110. Castell, A., et al., Experimental study of using PCM in brick constructive solutions for passive cooling. Energy and Buildings, 2010. 42(4): p. 534-540.

111. Silva, T., et al., Experimental testing and numerical modelling of masonry wall solution with PCM incorporation: A passive construction solution. Energy and Buildings, 2012.

49: p. 235-245.

112. Cheng, R., et al., A new method to determine thermophysical properties of PCM- concrete brick. Applied Energy, 2013. 112: p. 988-998.

113. Kheradmand, M., et al., Experimental and numerical studies of hybrid PCM embedded in plastering mortar for enhanced thermal behaviour of buildings. Energy, 2016. 94: p. 250-261.

114. Ahmad, M., et al., Experimental investigation and computer simulation of thermal behaviour of wallboards containing a phase change material. Energy and Buildings, 2006. 38(4): p. 357-366.

115. Borreguero, A.M., et al., Thermal testing and numerical simulation of gypsum wallboards incorporated with different PCMs content. Applied Energy, 2011. 88(3): p. 930-937.

116. Chen, C., et al., A new kind of phase change material (PCM) for energy-storing wallboard. Energy and Buildings, 2008. 40(5): p. 882-890.

117. Feldman, D., D. Banu, and D.W. Hawes, <Development and application of organic phase change mixtures in thermal storage gypsum wallboard.pdf>. Solar Energy Materials and Solar Cells, 1995. 36.

118. Hasse, C., et al., Realization, test and modelling of honeycomb wallboards containing a Phase Change Material. Energy and Buildings, 2011. 43(1): p. 232-238.

119. Kuznik, F. and J. Virgone, Experimental investigation of wallboard containing phase change material: Data for validation of numerical modeling. Energy and Buildings, 2009. 41(5): p. 561-570.

120. Lai, C.-m., R.H. Chen, and C.-Y. Lin, Heat transfer and thermal storage behaviour of gypsum boards incorporating micro-encapsulated PCM. Energy and Buildings, 2010.

42(8): p. 1259-1266.

121. Shilei, L., Z. Neng, and F. Guohui, Impact of phase change wall room on indoor thermal environment in winter. Energy and Buildings, 2006. 38(1): p. 18-24.

122. Shilei, L., et al., Experimental study and evaluation of latent heat storage in phase change materials wallboards. Energy and Buildings, 2007. 39(10): p. 1088-1091. 123. Zhang, Y., et al., Thermal storage and nonlinear heat-transfer characteristics of PCM

wallboard. Energy and Buildings, 2008. 40(9): p. 1771-1779.

124. Zhou, D., C.Y. Zhao, and Y. Tian, Review on thermal energy storage with phase change materials (PCMs) in building applications. Applied Energy, 2012. 92: p. 593-605.

125. Scalat, S., et al., Full scale thermal testing of latent heat storage in wallboard. Solar Energy Materials and Solar Cells, 1996. 44.

126. Schossig, P., et al., Micro-encapsulated phase-change materials integrated into construction materials. Solar Energy Materials and Solar Cells, 2005. 89(2-3): p. 297- 306.

127. Darkwa, K. and P.W. O’Callaghan, Simulation of phase change drywalls in a passive solar building. Applied Thermal Engineering, 2006. 26(8-9): p. 853-858.

128. Kuznik, F., J. Virgone, and J.-J. Roux, Energetic efficiency of room wall containing PCM wallboard: A full-scale experimental investigation. Energy and Buildings, 2008.

40(2): p. 148-156.

129. Athienitis, A.K., et al., Investigation of the thermal performance of a passive solar test- room with wall latent heat storage. 1997.

130. Paris, J., M. Falardeau, and C. Villeneuve, Thermal Storage by Latent Heat: A Viable Option for Energy Conservation in Buildings. Energy Sources, 1993. 15(1): p. 85-93. 131. Rudd, A., Phase change material wallboard for distributed storage in buildings. 1993. 132. Silva, N., Simulação numérica da influência da interface no fenómeno da humidade ascensional - Wufi 2D. 2013, Tese de Mestrado, Faculdade de Engenharia da Universidade do Porto.

133. Banu, D., et al. Energy-Storing Wallboard: Flammability Tests. 1998.

134. Oliver, A., Thermal characterization of gypsum boards with PCM included: Thermal energy storage in buildings through latent heat. Energy and Buildings, 2012. 48: p. 1- 7.

135. Liu, H. and H.B. Awbi, Performance of phase change material boards under natural convection. Building and Environment, 2009. 44(9): p. 1788-1793.

136. Tyagi, V.V. and D. Buddhi, PCM thermal storage in buildings: A state of art. Renewable and Sustainable Energy Reviews, 2007. 11(6): p. 1146-1166.

137. Voelker, C., O. Kornadt, and M. Ostry, Temperature reduction due to the application of phase change materials. Energy and Buildings, 2008. 40(5): p. 937-944.

138. Hittle, D.C., Phase Change Materials in Floor Tiles for Thermal Energy Storage. 2002. 139. Cerón, I., J. Neila, and M. Khayet, Experimental tile with phase change materials

(PCM) for building use. Energy and Buildings, 2011. 43(8): p. 1869-1874.

140. Lin, K., et al., Study of an electrical heating system with ductless air supply and shape- stabilized PCM for thermal storage. Energy Conversion and Management, 2007. 48(7): p. 2016-2024.

141. Zhou, G. and M. Pang, Experimental investigations on the performance of a collector– storage wall system using phase change materials. Energy Conversion and Management, 2015. 105: p. 178-188.

142. Bourdeau, L., Utilisation d'un matériau à changement de phase dans un mur Trombe sans thermocirculation. Revue de Physique Appliquée, 1982. 17(9): p. 633-642. 143. Benson, D.K., et al., Materials research for passive solar systems solid state phase-

change materials. Solar Energy Research Institute, 1985.

144. Stritih, U. and P. Novak, Solar heat storage wall for building ventilation. 1996.

146. Koschenz, M. and B. Lehmann, Development of a thermally activated ceiling panel with PCM for application in lightweight and retrofitted buildings. Energy and Buildings, 2004. 36(6): p. 567-578.

147. Goia, F., M. Perino, and V. Serra, Improving thermal comfort conditions by means of PCM glazing systems. Energy and Buildings, 2013. 60: p. 442-452.

148. Goia, F., M. Perino, and V. Serra, Experimental analysis of the energy performance of a full-scale PCM glazing prototype. Solar Energy, 2014. 100: p. 217-233.

149. Alawadhi, E.M., Using phase change materials in window shutter to reduce the solar

Documentos relacionados