• Nenhum resultado encontrado

O campo de estudo relativo ao método FDTD e sua aplicação em caracterização de canais de rádio é bastante vasto. Nessa seção, iremos destacar alguns itens que, de certa forma, promovem continuidade ao trabalho. Tais como:

Caracterização bidimensional de canais rádio em ambientes indoor;

• Utilização de métodos que, com pós-processamento, considerem reflexões no solo;

Caracterização tridimensional de canais rádio em ambientes indoor e

outdoor, utilizando a técnica tradicional FDTD;

Caracterização tridimensional de canais rádio em ambientes indoor e

outdoor, utilizando a técnica modificada RFDTD;

• Utilização de técnicas híbridas tais como FDTD conjuntamente com UTD na caracterização de canais rádio.

• Estudo de implementações que permitam diminuir a dispersão e estabilidade numérica tais como utilizar equações diferenciais espaciais de quarta ordem ou mesmo células hexagonais na grade.

R

REEFFEERRÊÊNNCCIIAASSBBIIBBLLIIOOGGRRÁÁFFIICCAASS

[1]. Theodore S. Rappaport, Wireless Communications: Principle and Practice, Prentice Hall PTR, New York, 1996.

[2]. David Parsons, The Mobile Radio Propagation Channel, John Wiley and Sons, Chichester, 1996.

[3]. William C. Y. Lee, Mobile Communications Engineering, second edition, McGraw-Hill, 1998.

[4]. Donald E. Kerr (editor), Propagation of Short Radio Waves, IEE Electromagnetic Waves Series 24, Peter Peregrinus Ltd., London, 1987.

[5]. M. Hata, Empirical formula for propagation loss in land mobile radio services, IEEE Transactions on Vehicular Technologies, vol. VT-29, no. 3, pp. 317—325, 1980.

[6]. Raymond J. Luebbers, Finite conductivity uniform GTD versus knife edge

diffraction in prediction of propagation path loss, IEEE Transactions on Antennas

and Propagation, vol. AP-32, no. 1, pp. 70—76, 1984.

[7]. Allen Taflove e Susan C. Hagness, Computational Electrodynamics: The Finite

Difference Time Domain Method, second edition, Artech House, Boston, 2000.

[8]. Fernando Lisboa Teixeira, Novel Concepts for Differential Equation Based

Electromagnetic Field Simulations, Ph.D. Thesis, University of Illinois at Urbana-

[9]. K. L. Shlager and J. B. Scheneider, A selective survey of the finite-difference time-

domain literature, IEEE Antennas and Propagation Magazine, vol. 37, no. 4, pp.

39—56, 1995.

[10]. K. S. Yee, Numerical solution of initial boundary value problems involving

Maxwell’s equations in isotropic media, IEEE Transactions on Antennas and Propagation, vol. AP-14, no. 3, pp. 302—307, 1966.

[11]. J. P. Berenger, A perfectly matched layer for the absorption of electromagnetic

waves, Journal of Computational Physics, vol. 114, pp. 185—200, 1994.

[12]. A. Lauer, A. Bahr, and I. Wolff, FDTD simulations of indoor propagation, 1994 IEEE 44th Vehicular Technology Conference, pp. 883—886, 1994.

[13]. A. Lauer, I. Wolff, A. Bahr, J. Pamp, and J. Kunisch, Multi-mode FDTD

simulations of indoor propagation including antenna properties, 1995 IEEE 45th

Vehicular Technology Conference, pp. 454—458, 1995.

[14]. J. Litva, C. Wu, and A. Ghaforian, Use of FDTD for simulating the angle of

arrival and time delay of signals propagating in indoor environments, Electronic

Letters, vol. 32, no. 10, pp. 930—932, 1996.

[15]. G. Dolmans, Applicability of higher-order FDTD schemes with Berenger’s ABC

for indoor fading channels, 1997 IEEE AP-S International Symposium, Montreal,

Canada, pp. 1900—1903, 1997.

[16]. J. W. Schuster and R. J. Luebbers, Comparison of GTD and FDTD predictions for

UHF radio wave propagation in a simple outdoor urban environment, 1997 IEEE

AP-S International Symposium, Montreal, Canada, pp. 2022—2025, 1997.

[17]. C. L. Holloway, M. G. Cotton, and P. McKenna, A simplified model for

calculating the decay rate of the impulse response for an indoor propagation channel, 1997 IEEE Wireless Communications Conference, pp. 210—214, 1997.

[18]. J. W. H. Lee and A. K. Y. Lai, FDTD analysis of indoor radio propagation, 1998 IEEE AP-S International Symposium, Atlanta, pp. 1664—1667, 1998.

[19]. Y. Wang, S. Safavi-Nacini, and S. K. Chaudhuri, A combined ray tracing and

FDTD method for modeling indoor radio wave propagation, 1998 IEEE AP-S

International Symposium, Atlanta, pp. 1668—1671, 1998.

[20]. J. W. Schuster and R. J. Luebbers, Using FDTD to evaluate ray-tracing models

for propagation prediction in urban microcells, 1998 IEEE AP-S International

Symposium, Atlanta, pp. 1676—1679, 1998.

[21]. Y. Miyazaki and P. Selormey, The electromagnetic compatibility characteristics

of buildings in mobile radio waves propagation channel, 14th Annual Review on

Propagation and Applied Computational Electromagnetic, Monterey, CA, pp. 911—918, 1998.

[22]. K. A. Remley, A. Weisshaar, and H. R. Anderson, A comparative study of ray

tracing and FDTD for indoor propagation modeling, 1998 IEEE 48th Vehicular

Technology Conference, pp. 865—869, 1998.

[23]. G. Lazzi, S. S. Pattnaik, C. M. Furse, and O. P. Gandhi, Comparison of FDTD

computed and measured radiation patterns of commercial mobile telephones in presence of the human head, IEEE Transactions on Antennas and Propagation, vol.

46, no. 6, pp. 943—944, 1998.

[24]. C. L. Holloway, M. G. Cotton, and P. McKenna, A model for predicting the power

delay profile characteristics inside a room, IEEE Transactions on Vehicular

Technology, vol. 48, no. 4, pp. 1110—1120, 1999.

[25]. G. Mur, Absorbing boundary conditions for the finite-difference approximation of

the time-domain electromagnetic-field equations, IEEE Transactions on

[26]. G. D. Kondylis, F. de Flaviis, G. J. Pottie, and Y. Rahmat-Samii, Indoor channel

characterization for wireless communications using reduced finite difference time domain (R-FDTD), 1999 (Fall) IEEE 50th Vehicular Technology Conference, pp.

1402—1406, 1999.

[27]. J. F. Rouviere, N. Douchin, and P. F. Combes, Diffraction by lossy dielectric

wedges using both heuristic UTD formulations and FDTD, IEEE Transactions on

Antennas and Propagation, vol. 47, no. 11, pp. 1702—1708, 1999.

[28]. F. Akleman and L. Sevgi, A novel finite-difference time-domain wave propagator, IEEE Transactions on Antennas and Propagation, vol. 48, no. 3, pp. 839—841, 2000.

[29]. Y. Wang, S. Safavi-Naeini, and S. K. Chaudhuri, A hybrid technique based on

combining ray tracing and FDTD methods for site-specific modeling of indoor radio wave propagation, IEEE Transactions on Antennas and Propagation, vol. 48,

no. 5, pp. 743—754, 2000.

[30]. S. A. Cummer, Modeling electromagnetic propagation in the earth–ionosphere

waveguide, IEEE Transactions on Antennas and Propagation, vol. 48, no. 9, pp.

1429—1429, 2000.

[31]. Y. Wang, S. K. Chaudhuri, and S. Safavi-Naeini, A novel FDTD/ray-tracing

analysis method for wave penetration through inhomogeneous walls, 2000 IEEE

AP-S International Symposium, Salt Lake City, 2000.

[32]. A. Taflove, Review of the formulation and applications of the finite-difference

time-domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures, Wave Motion, 10, 6, pp.547-582, 1988.

[33]. D. H. Choi, A comparison of the dispersion characteristics associated with the

TLM and FDTD methods, International Journal of Numerical Modelling, 2, pp.

[34]. I. S. Kim and W. J. R. Hoefer, Numerical dispersion characteristics and stability

factor for the FDTD method, Electronics Letters, 26, 7, pp. 485-487, 1990.

[35]. D. E. Merewether, Transient currents on a body of revolution by an

eletromagnetic pulse, IEEE Transactions on Electromagnetic Compatibility, EMC-

13, 2, pp. 41-44, 1971.

[36]. B. Engquist and A Majda, Absorbing boundary conditions for the numerical

simulation of waves, Math. Comp., 31, pp. 620-651, 1977.

[37]. E. L. Lindman, Free-space boundary conditions for the time dependent wave

equation, Journal of Computational Physics, 18, pp. 67-68, 1975.

[38]. R. L. Higdon, Absorbing boundary conditions for difference approximations to

the multi-dimensional wave, Math. Comput., 47, 176, pp. 437-459,1986.

[39]. R. L Higdon, Equations Numerical absorbing boundary conditions for the wave

equation, Math. Comput., 49, 179, pp. 65-90, 1987.

[40]. Z. P. Liao, H. L. Wong, B.-P. Yang, and Y.-F. Yuan, A transmitting boundary for

transient wave analysis, Sci. Sin., Ser. A, 27, 10, pp. 1063-1076, 1984.

[41]. R. G. Keys, Absorbing boundary conditions for acoustic media, Geophysics, 50, 6, pp. 892-902, 1985.

[42]. R. Holland and J. W. Williams, Total-field versus scattered-field finite-difference

codes: A comparative assessment, IEEE Transactions on Nucl. Science, NS-30, 6,

pp. 4583-4588, 1983.

[43]. C. Rappaport and L. Bahrmasel, An absorbing boundary condition based on

anechoic absorber of EM scattering computation, Journal of Electromagnetic

[44]. C. M. Rappaport and T. Gürel, Reducing the computational domain for FDTD scattering simulation using the sawtooth anechoic chamber ABC, IEEE Transactions on Magnetics, 31, 3, pp. 1546-1549, 1995.

[45]. W. C. Chew and W. H. Weedon, A 3D perfectly matched medium from modified

Maxwell’s equations with stretched coordinates, Microwave and Optical

Technology Letters, 7, 13, pp. 599-604, 1994.

[46]. D. S. Katz, E. T. Thiele, and A. Taflove, Validation and extension to three

dimensions of Berenger PML absorbing boundary condition for FDTD meshes,

IEEE Microwave and Guided Wave Letters, 4, 8, pp. 268-270, 1994.

[47]. C. E. Reuter, R. M. Joseph, E. T. Thiele, D. S, Katz, and A. Taflove,

Ultrawideband absorbing boundary condition for termination of waveguiding structures in FDTD simulations, IEEE Microwave Guided Wave Letters, 4, 10, pp.

344-346, 1994.

[48]. R. Mittra and U. Pekel, A new look at the perfectly matched layer (PML) concept

for the reflectionless absorption of electromagnetic waves, IEEE Microwave and

Guided Wave Letters, 5, 3, pp. 84-86, 1995.

[49]. E. A. Navarro, C. Wu, P. Y. Chung, and J. Litva, Application of PML

superabsorbing boundary condition to non-orthogonal FDTD method, Electronics

Letters, 30, 20, pp. 1654-1656, 1994.

[50]. C. Wu, E. A. Navarro, P. Y. Chung, and J. Litva, Modeling of waveguide

structures using the nonorthogonal FDTD method with a PML absorbing boundary, Microwave and Optical Technology Letters, 8, 4, pp. 226-228, 1995.

[51]. C. M. Rappaport, Perfectely matched absorbing boundary conditions based on

anisotropic lossy mapping of space, IEEE Microwave Guided Wave Letters, 5, 3,

Documentos relacionados