• Nenhum resultado encontrado

- Pesquisas e desenvolvimento de metodologias para a medição e obtenção dos valores referentes ao isolamento térmico da vestimenta. Esta variável é, na grande maioria dos casos, obtida pelas tabelas da ISO 9920 (2007). Estas tabelas são muito genéricas em relação à classificação das peças de roupa;

- Aplicação dos modelos Snovo1 e Snovo2 em outras populações que não sejam as

utilizadas nesta pesquisa. Isto permitirá a formação de banco de dados e comparação dos resultados encontrados;

- Utilização de outros métodos matemáticos para determinação da temperatura superficial externa da vestimenta;

- Aplicação dos modelos Snovo1 e Snovo2 em diferentes regiões geográficas de modo a

verificar o desempenho dos mesmos;

- Desenvolvimento de mais estudos sobre a taxa metabólica, visando a elaboração de uma tabela mais fidedigna de valores.

REFERÊNCIAS

AL-AJMI, F.F. Thermal comfort in air-conditioned mosques in the dry desert climate.

Building and Environment, v. 45, n.11, p. 2407-2413, nov. 2010.

ALAHMER, A.; MAYYAS, A.; MAYYAS, Abed A.; OMAR, M.A.; SHAN, D. Vehicular thermal comfort models: a comprehensive review. Applied Thermal Engineering, v. 31, n. 6-7, p. 995-1002, mai. 2011.

ALFANO, F. R. d’A.; PALELLA, B. I.; RICCIO, G. The role of measurement accuracy on the thermal environment assessment by means of PMV. Building and

Environment, v. 46, n. 7, p. 1361-1369, jul. 2011.

ALFANO, F. R. d’A.; DELL’ISOLA, M.; PALELLA, B. I.; RICCIO, G.; RUSSI, A. On the measurement of the mean radiant temperature and its influence on the indoor thermal environment assessment. Building and Environment, v. 63, p. 79-88, mai. 2013.

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR CONDITIONING ENGINEERS, INC. Thermal environmental conditions for human occupancy. ASHRAE STANDARD 55-1992. Atlanta, 2004.

ANDREASI, W.A., LAMBERTS, R., CÂNDIDO, C. Thermal acceptability assessment in buildings located in hot and humid regions in Brazil. Building and Environment, v. 45, n. 5, p. 1225-1232, mai. 2010.

BARTAL, I.; BÁNHADI, H.C.; GARBAI, L. Analysis of the static thermal comfort equation. Energy and Buildings, v. 49, p. 188-191, jun. 2012.

BECKER, S.; POTCHTER, O.; YAAKOV, Y. Calculated and observed human thermal sensation in an extremely hot and dry climate. Energy and Buildings, v. 35, n. 8, p. 747-756, set. 2003.

BERENSON, M.L.; STEPHAN, D.; LEVINE, D.M.; KREHBIEL, T.C. Estatística:

teoria e aplicações usando Microsoft Excel em português. 3.ed. Rio de Janeiro:

BOGERD, C.P.; BRÜHWILER, P.A.; ROSSI, R.M.Heat loss and moisture retention variations of boot membranes and sock fabrics: A foot manikin study. International

Journal of Industrial Ergonomics, v. 42, n. 2, p. 212-218, mar. 2012.

BRODAY, E.E. Análise comparativa entre os métodos de determinação da taxa

metabólica visando o equilíbrio entre o homem e o ambiente. 2013. 93 p.

Dissertação (Mestrado em Engenharia de Produção) - Universidade Tecnológica Federal do Paraná. Ponta Grossa, 2013.

BRODAY, E.E.; XAVIER, A.A.P.; de OLIVEIRA, R. Comparative analysis of methods for determining the metabolic rate in order to provide a balance between man and the environment. International Journal of Industrial Ergonomics, v. 44, n. 4, p. 570- 580, jul. 2014.

BRUNETTO, B. C.; GUEDES, D. P.; BRUNETTO, A. F. Taxa metabólica basal em

universitários: comparação entre valores medidos e preditos. Ver. Nutr. [online].

2010, vol.23, n.3, 139d. 369-377. ISSN 1415-5273.

BURATTI, C.; RICCIARDI, P. Adaptive analysis of thermal comfort in university classrooms: correlation between experimental data and mathematical models.

Building and Environment, v. 44, n. 4, p. 674-687, abr. 2009.

CÂNDIDO, C.; de DEAR, R.; LAMBERTS, R.; BITTENCOURT, L. Air movement acceptability limits and thermal comfort in Brazil’s hot humid climate zone. Building

and Environment, v. 45, n. 1, p. 222-229, jan. 2010.

CASTILLA, M.; ALVAREZ, J.D.; BERENGUEL, M.; RODRÍGUEZ, F.; GUZMÁN, J.L.; PÉREZ, M. A comparison of thermal comfort predictive control strategies. Energy

and Buildings, v. 43, n. 10, p. 2737-2746, out. 2011.

CHEN, L.; NG, E. Outdoor thermal comfort and outdoor activities: a review of research in the past decade. Cities, v. 29, n. 2, p. 118-125, abr. 2012.

CHENG, Y.; NIU, J.; GAO, N. Thermal comfort models: A review and numerical investigation. Building and Environment, v. 47, n. 1, p. 13-22, jan. 2012.

CHUNG, J. D.; HONG, H.; YOO, H. Analysis on the impact of mean radiant temperature for the thermal comfort of underfloor air distribution systems. Energy

COUTINHO, Antonio Souto. Conforto e Insalubridade Térmica em Ambientes de

Trabalho. 2.ed. João Pessoa: Universitária, 2005.

CUI, W.; CAO, G., PARK, J.H.; OUYANG, Q.; ZHU, Y. Influence of indoor air

temperature on human thermal comfort, motivation and performance. Building and

Environment, v. 68, p. 114-122, out. 2013.

DE DEAR, R. J., BRAGER, G. S. “Developing na adaptive model of thermal

comfort and preference” ASHRAE Transactions. Atlanta: v. 104, p. 145-167,

1998.

DJONGYANG, N.; TCHINDA, R.; NJOMO, D. Thermal comfort: a review paper.

Renewable and Sustainable Energy, v. 14, n. 9, p. 2626-2640, dez. 2010.

FAN, J.; CHEN, Y.S.; ZHANG, W. Clothing thermal insulation when sweating and when non-sweating. Elsevier Ergonomics Book Series, v.3, p. 437-443, 2005.

FANGER, O. P. Thermal comfort: analysis and applications in environmental

engineering. New York: McGraw-Hill Book Company, 1970.

FERIADI, H.; WONG, N. H. Thermal comfort for naturally ventilated houses in Indonesia. Energy and Buildings, v. 36, n. 7, p. 614-626, jul. 2014.

FIALA, D.; KEVIN, J.L.; STOHRER, M. A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. Journal of

Applied physiology, v.87, p. 1957-1972, 1999.

FOUTAIN, M.E.; ARENS, E.; de DEAR, R.; BAUMAN, F.; MIURA, K. Locally controlled air movement preferred in warm isothermal environments. ASHRAE

Transactions, v.100, p. 937-952, 1994.

FRONTCZAK, M.; WARGOCKI, P. Literature survey on how different factors

influence human comfort in indoor environments. Building and Environment, v. 46, n. 4, p. 922-937, abr. 2011.

GAGGE, A.P.; STOLWIJK, J.A.J.; NISHI, Y. An effective temperature scale based on a simple model of human physiological regulatory response. ASHRAE

Transactions,v.77, n.1, p.247-262, 1971.

GREEN, J. A. The heart rate method for estimating metabolic rate: review and recommendations. Comparative Biochemistry and Physiology – Part A:

Molecular & Integrative Physiology, v. 158, n. 3, p. 287-304, mar. 2011.

HAN, J.; YANG, W.; ZHOU, J.; ZHANG, J.; ZHANG, Q.; MOSCHANDREAS, D. J. A comparative analysis of urban and rural residential thermal comfort under natural ventilation environment. Energy and Buildings, v. 41, n. 2, p. 139-145, fev. 2009.

HAVENITH, G. Heat Balance When Wearing Protective Clothing. The Annals of

Occupational Hygiene, v. 43, n. 5, p. 289-296, jul. 1999.

HAVENITH, G.; HOLMÉR, I.; PARSONS, K. Personal factors in thermal comfort assessment: clothing properties and metabolic heat production. Energy and

Buildings, v. 34, n. 6, p. 581-591, jul. 2002.

HENDRICK, H.W. Macroergonomics: A conceptual model for integrating human

factors with organizational design. Amsterdam: North-Holland, 1986.

HENS, H.S.L.C. Thermal Comfort in office buildings: two case studies commented.

Building and Environment, v. 44, n. 7, p. 1399-1408, jul. 2009.

HOLMÉR, I. The Role of Performance Tests, Manikins and Test Houses in Defining Clothing Characteristics Relevant to Risk Assessment. The Annals of Occupational

Hygiene, v. 43, n. 5, p. 353-356, jul. 1999.

HUANG, L.; ARENS, E.; ZHANG, H.; ZHU, Y. Application of whole-body heat

balance models for evaluating thermal sensation under non-uniform air movement in warm environments. Building and Environment, v. 75, n. 4, p. 108-113, mai. 2014.

HUANG, J. Thermal parameters for assessing thermal properties of clothing. Journal

HUANG, J.; XU, W. A new practical for the assessment of the heat exchange of human body with the environment. Journal of Thermal Biology, v. 31, n. 4, p. 318- 322, mai. 2006.

HUMPHREYS, M.A; NICOL, J. F. Conflicting criteria for thermal sensation withinthe Fanger predicted mean Vote Equation. In: CIBSE/ASHRAE JOINT NATIONAL CONFERENCE. Proceeding, p. 153-158, 1996.

HUMPHREYS, M.A.; NICOL, J.F. The validity of ISO-PMV for predicting comfort votes in every-day thermal environments. Energy and Buildings, v. 34, n. 6, p. 667- 684, jul. 2002.

HUIZENGA, C.; ZHANG, H.; ARENS, E. A model of human physiology and comfort for assessing complex thermal environments. Building and Environment, v. 36, n. 6, p. 691-699, jul. 2001.

IIDA, I. Ergonomia: projeto e producão. 2. ed. São Paulo: Blucher, 2005.

INDRAGANTI, M. Thermal comfort in naturally ventilated apartments in summer: Findings from a field study in Hyderabad, India. Applied Energy, v. 87, n. 3, p. 866- 883, mar. 2010.

INDRAGANTI, M.; OOKA, R.; RIJAI, H.B. Thermal comfort in offices in summer: Findings from a field study under the “setsuden” conditions in Tokyo, Japan.

Building and Environment, v. 61, p. 114-132, mar. 2013.

INDRAGANTI, M.; RAO, K.D. Effect of age, gender, economic group and tenure on thermal comfort: a Field study in residential buildings in hot and dry climate with seasonal variations. Energy and Buildings, v. 42, n. 3, p. 273-281, mar. 2010.

IVANOV, K.P. The development of the concepts of homeothermy and

thermoregulation. Journal of Thermal Biology, v. 31, n. 1-2, p. 24-29, jan. 2006.

ISO – INTERNATIONAL ORGANIZATION FOR STANDARDIZATION.

ISO – INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. Ergonomics

of the thermal environment – Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. ISO 7730, Genebra, 2005.

ISO – INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. Ergonomics

of the thermal environment – Assessment of the influence of thermal

environment using subjective judgmente scales. ISO 10551, Genebra, 1995.

ISO – INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. Ergonomics

of the thermal environment – Instruments for measuring physical quantities.

ISO 7726, Genebra, 1998.

ISO – INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. Ergonomics

of the thermal environment – Estimation of thermal insulation and water vapour resistance of a clothing ensemble. ISO 9920, Genebra, 2007.

JANG, M.S.; KOH, C.D.; MOON, I.S. Review of thermal comfort design based on PMV/PPD in cabins of Korean maritime patrol vessels. Building and Environment, v. 42, n. 1, p. 55-61, jan. 2007.

JI, X.L.; LOU, W. Z.; DAI, Z. Z. WANG, B. G. LIU, S. Y. Capabilities and limitations of thermal models for use in thermal comfort standards. Building Research &

Information, v. 34, n. 5, p. 507-514, 2006.

JONES, B.W. Capabilities and limitations of thermal models for use in thermal comfort standards. Energy and Buildings, v. 34, n. 6, p. 653-659, jul. 2002.

JONES, B.W.; OGAWA, Y. Transient interaction between the human body and the thermal environment. ASHRAE Transactions, v.98, p. 189-195, 1992.

KATAVOUTAS, G; THEOHARATOS, G; FLOCAS, H.A et al. Measuring the effects of heat wave episodes on the human body’s thermal balance. Int J Biometeorol. v. 53, p.177–187, 2009.

KAYNAKLI, R.; KILIC, M.; Investigation of indoor thermal comfort under transient conditions. Building and Environment, v. 40, n. 2, p. 165-174, fev. 2005.

KILIC, M.; KAYNAKLI, R.; YAMANKAREDENIZ, R. Determination of required core temperature for thermal comfort with steady-state energy balance method.

International Communications in Heat and Mass Transfer, v. 33, n. 2, p. 199-210,

fev. 2006.

KIM, J. T.; LIM, J. H.; CHO, S. H. YUN, G. Y. Development of the adaptive PMV model for improving prediction performances. Energy and Buildings, v. 34, http://dx.doi.org/10.1016/j.enbuild.2014.08.051

KOSKELA, H.; HEIKKINEN, J.; NIEMELA, R.; HAUTALAMPI, T. Turbulence correction for thermal comfort calculation. Building and Environment, v. 36, n. 2, p. 247-255, fev. 2001.

KROEMER, K. H. E.; GRANDJEAN, E. Manual de Ergonomia: adaptando o

trabalho ao homem. 5.ed. Porto Alegre: Bookman, 2005.

KWOK, A.G.; CHUN, C. Thermal comfort in Japanese schools. Solar Energy, v. 74, n. 3, p. 245-252, mar. 2003.

LIBERATI, A.; ALTMAN, D. G.; TETZLAFF, J.; MULROW, C.; IOANNIDIS, J. P. A.; CLARKE, M.; MOHER, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions : Annals of

Internal Medicine, Academia and Clinic, 151 (4), 2009.

LOVE, J. A..; TIAN, Z. A field study of occupant thermal comfort and thermal

environments with radiant slab cooling. Building and Environment, v. 43, n. 10, p. 1658-1670, out. 2008.

MAITI, R. PMV model is insufficient to capture subjective thermal response from Indians. International Journal of Industrial Ergonomics, v. 44, n. 3, p. 349-361, mai. 2014.

MALCHAIRE, J. Travail à la chaleur. EMC – Toxicologie-Pathologie, v. 1, n. 3, p. 96-116, jul. 2004.

McCULLOUGH, E. A.; JONES, B.; HUCK, J. A comprehensive data base for estimating clothing insulation, ASHRAE Transactions, v.91, p. 29-47, 1985.

McCULLOUGH, E. A. The use of thermal manikins to evaluate clothing and

environmental factors, Elsevier Ergonomics Book Series, v.3, p. 403-407, 2005.

MOHAMED, S.; SRINAVIN, K. Forecasting labor productivity changes in construction using the PMV index. International Journal of Industrial Ergonomics, v. 35, n. 4, p. 345-351, abr. 2005.

MORS, S.; HEN, J. L. M.; LOOMANS, G. L. C.; BOERSTRA, A. C. Adaptive thermal comfort in primary school classrooms: creating and validating PMV-based comfort charts. Building and Environment, v. 46, n. 12, p. 2454-2461, dez. 2012.

NICOL, J.F .Thermal comfort – a handbook for field studies toward an adaptive

model. London: University of East London, 1993.

NILSSON, H.O. Thermal comfort evaluation with virtual manikin methods. Building

and Environment, v. 42, n. 12, p. 4000-4005, dez. 2007.

OGBONNA, A.C.; HARRIS, D.J. Thermal comfort in sub-Saharan Africa: field study report in Jos–Nigeria. Applied Energy, v.85, n.1, p. 1-11, jan. 2008.

OLESEN, B.W.; PARSONS, K.C. Introduction to thermal comfort standards and to the proposed new version of EN ISO 7730. Energy and Buildings, v. 34, n. 6, p. 537-548, jul. 2002

PANG, T.Y.; SUBIC, A.; TAKLA, M. Evaluation of thermal and evaporative resistances in cricket helmets using a sweating manikin. Applied Ergonomics, v.45, n.2, p. 300-307, mar. 2014.

PARSONS, K.C. Environmental ergonomics: a review of principles, methods and models. Applied Ergonomics, v. 31, n. 6, p. 581-594, dez. 2000.

PEETERS, L., de DEAR, R., HENSEN, J., D’HAESELEER, W. Thermal comfort in residential buildings: comfort values and scales for building energy simulation.

Applied Energy, v.86, n. 5, p. 772-780, mai. 2009.

PINTO, N.M. Analysis of the thermal comfort model in an environment of metal mechanical branch. Work, v.41, p. 1606-1611, 2012.

PLOS MEDICINE. The PRISMA Statement for Reporting Systematic Reviews and

Meta-Analyses of Studies that evaluate health care interventions: explanation and elaboration. Guidelines and Guidance, 2009.

POURSHAGHAGHY, A.; OMIDVARI, M. Examination of thermal comfort in a hospital using PMV-PPD model. Applied Ergonomics, v. 43, n. 6, p. 1089-1095, nov. 2012.

RAW, G.J.; OSELAND, N.A. Why another thermal comfort conference? In: Thermal comfort: past, present and future. The Building Research Establishment: Garston, p.1–10, 1994.

SHEN, C.; YU, N. Study of Thermal Comfort in Free-Running Buildings Based on Adaptive Predicted Mean Vote. ICEEE, International Conference on, p. 1-4, 2010.

SIMONE, A.; CROCIATA, S.D.; MARTELLOTTA, F. The influence of clothing distribution and local discomfort on the assessment of global thermal comfort.

Building and Environment, v. 59, p. 644-653, jan. 2013.

SRINAVIN, K.; MOHAMED, S. Thermal Environment and construction workers’ productivity: some evidence from Thailand. Building and Environment, v. 38, n. 2, p. 339-345, fev. 2003.

STOLWIJK, J.A.J. A mathematical model of physiological temperature regulation in man, NASA Contractor Report, NASA CR-1855. Washington, DC: National Aeronautics and Space Administration, 1971.

TALEGHANI, M.; TENPIERIK, M.; KURVERS, S.; VAN DEN DOBBELSTEEN, A. A review into thermal comfort in buildings. Renewable and Sustainable Energy

Reviews, v. 26, p. 201-215, out. 2013.

TAYLOR, P.; FULLER, R.J.; LUTHER, M.B. Energy and thermal comfort in arammed earth office building. Energy and Buildings, v. 40, n. 5, p. 793-800, 2008.

TELI, D.; JENTSCH, M.F.; JAMES, P. A. B. Naturally ventilated classrooms: an assessment of existing comfort models for predicting the thermal sensation and preference of primary school children. Energy and Buildings, v. 53, p. 166-182, out. 2012.

THORSSON, S.; HONJO, T.; LINDBERG, F.; ELIASSON, I.; LIM, E.M. Thermal comfort and outdoor activity in Japanese urban public places. Environ. Behav. v.39, p. 660–684, 2007.

TRIOLA, M.F. Introdução à Estatística. 10. ed. Rio de Janeiro: LTC, 2005. 696 p.

WANG, F.; KUKLANE, K.; GAO, C.. HOLMÉR, I. Development and validity of a universal empirical equation to predict skin surface temperature on thermal manikins.

Journal of Thermal Biology, v. 35, n. 4, p. 197-203, mai. 2010.

WISSLER, E.H. Mathematical simulation of human thermal behavior using

whole body models. In: Shitzer A, Eberhart RC, editors. Heat transfer in medicine

and biology, v.1, p. 325-373. New York: Plenum Press, 1985.

XAVIER, A. A. de P. Predição de Conforto Térmico em ambientes internos com

atividades sedentárias – teoria física aliada a estudos de campo. 2000. 251 f.

Tese (Doutorado em Engenharia de Produção e Sistemas) – Programa de Pós Graduação em Engenharia de Produção e Sistemas, Universidade Federal de Santa Catarina, Florianópolis, 2000.

YAO, R.; LI, B.; LIU, J. A theoretical adaptive model of thermal comfort – Adaptive Predicted Mean Vote (aPMV). Building and Environment, v. 44, n. 10, p. 2089- 2096, out. 2009.

YAU, Y. H.; CHEW, B. T. Thermal Comfort study of hospital workers in Malaysia.

Indoor Air, v. 19, p. 500-510, 2009.

YUN, H.; NAM, I.; KIM, J.; YANG, J.; LEE, K.; SOHN, J. A field study of thermal comfort for kindergarten children in Korea: An assessment of existing models and preferences of children. Building and Environment, v. 75, p. 182-189, mai. 2014.

ZHANG, G.; ZHENG, C.; YANG, W.; ZHANG, Q.; MOSCHANDREAS, D. J. Thermal Comfort Investigation of Naturally Ventilated Classrooms in a Subtropical Region.

Indoor and Built Environment, v. 16, n. 2, p. 148-158, jan. 2007.

ZHAO, Q.; ZHAO, Y.; WANG, F.; WANG, J.; JIANG, Y.; ZHANG, F. A data-driven method to describe the personalized dynamic thermal comfort in ordinary office environment: From model to application. Building and Environment, v. 72, p. 309- 318, fev. 2014.

ZOLFAGHARI, A.; MAEREFAT, M. A new predictive index for evaluating both thermal sensation and thermal response of the human body. Building and

Environment, v. 46, n. 4, p. 855-862, abr. 2011.

ZOLFAGHARI, A.; MAEREFAT, M. A new simplified thermoregulatory bioheat model for evaluating thermal response of the human body to transient environments.

Medição Temperatura do Ar (°C) Temperatura Radiante (°C) Velocidade do Ar (m/s) Umidade Relativa (%) Taxa metabólica (W/m²) Isolamento da roupa (clo) 1 22,29 23,09 0,06 91,41 143,75 0,61 2 22,44 23,07 0,05 91,58 170,53 0,63 3 22,58 23,07 0,04 91,09 163,54 0,6 4 22,72 23,06 0,04 91,05 150,16 0,56 5 22,88 23,08 0,04 91,29 158,89 0,56 6 23,01 23,16 0,04 91,69 162,38 0,61 7 23,14 23,26 0,04 91,45 164,71 0,57 8 23,05 23,20 0,05 90,24 162,38 0,51 9 22,79 23,62 0,10 89,52 155,39 0,51 10 23,03 23,67 0,12 87,46 147,25 0,51 11 23,67 24,16 0,13 75,86 152,48 0,51 12 23,26 23,93 0,10 86,99 131,53 0,51 13 22,92 24,31 0,18 87,70 146,66 0,51 14 23,24 23,91 0,07 87,64 141,43 0,59 15 23,36 23,95 0,07 87,90 146,08 0,71 16 23,39 24,11 0,11 86,64 161,8 0,61 17 23,60 24,04 0,11 86,41 158,3 0,74 18 24,68 25,63 0,09 86,70 151,32 0,65 19 24,75 25,67 0,08 85,94 164,12 0,74 20 24,99 25,63 0,09 85,76 112,33 0,55 21 25,08 25,75 0,09 84,59 122,22 0,56 22 25,25 25,42 0,45 79,23 114,65 0,56 23 25,15 25,64 0,40 78,86 90,79 0,61 24 25,19 25,55 0,43 78,98 100,69 0,57 25 25,27 25,43 0,37 78,58 173,44 0,58 26 25,20 25,48 0,39 78,67 94,87 0,53 27 25,20 25,49 0,42 78,61 139,68 0,53 28 25,17 25,52 0,39 78,80 147,25 0,61 29 25,20 25,49 0,41 78,77 157,14 0,61 30 25,33 25,45 0,39 78,02 147,25 0,61 31 25,27 25,62 0,40 77,70 176,35 0,61 MÉDIA 23,97 24,47 0,19 85,00 145,46 0,59 DESVIO 1,11 1,06 0,16 5,37 22,61 0,06 Fonte: Broday (2013)

APÊNDICE A – QUESTIONÁRIO DE PESQUISA UTILIZADO COM OS GRUPOS 2 E 3

Questionário – Conforto Térmico

Idade:_____ Altura:_____ Peso: _____ Sexo: _____

1) Marque as vestimentas que você está a utilizar (Adaptado ISO 9920/2007):

Roupas de baixo Calças T-shirts, Suéteres,

Camisolas e Casacos

Acessórios

Collant Calções Colete sem

mangas

Sapato de sola de couro

Camisola Interior Calça tecido fino Camisola Fina Sapato de sola de borracha

Soutien Calça de ganga Camisola Grossa Tênis

Cueca Calça de fazenda Casaco Botas sem cano (Botim)

Camisas, Blusas Vestidos e Saias Blusão Grosso Blusão Fino

Camisa de manga curta Saia curta Blazer Fino Meia soquete

Camisa de manga comprida tecido fino

Saia comprida Blazer Grosso Meia longa

Camisa de manga comprida normal

Vestido de mangas curtas

T-shirt Luvas

Camisa de flanela Vestido de manga comprida

Meia calça

Blusa leve fina, manga comprida

Vestido completo, fechado

Gravata / Laço

2) Em relação a sua sensação térmica, como você está se sentindo? (ISO 7730/2005) 1 2 3 4 +3 Muito calor

+2 Calor

+1 Levemente com calor

0 Neutro

-1 Levemente refrescado -2 Refrescado

-3 Frio

3) Em relação a sua preferência térmica, como você gostaria de estar se sentindo? (ISO 10551/1995) 1 2 3 4

+3 Bem Mais Aquecido +2 Um pouco mais aquecido +1 Mais aquecido

0 Assim mesmo

-1 Mais refrescado -2 Um pouco mais Refrescado -3 Bem mais Refrescado

Medição Temperatura do Ar (°C) Temperatura Radiante (°C) Velocidade do Ar (m/s) Umidade Relativa (%) Taxa metabólica (W/m²) Isolamento da roupa (clo) 1 20,68 20,81 0,01 57,43 70 0,95 2 21,10 20,96 0,01 57,71 70 0,95 3 20,94 21,22 0,01 55,44 70 0,95 4 21,24 21,10 0,004 54,84 70 0,95 5 20,85 20,76 0,01 57,08 70 0,75 6 21,49 21,31 0,004 57,97 70 0,75 7 21,55 21,44 0,001 55,27 70 0,95 8 21,68 21,51 0,002 56,79 70 0,9 9 21,42 21,14 0,003 55,64 70 0,89 10 22,05 21,78 0,010 56,54 70 0,89 11 21,73 21,60 0,005 55,25 70 0,89 12 21,98 21,88 0,010 55,82 70 0,89 13 21,7 20,92 0,03 41,99 70 0,98 14 21,34 21,29 0,04 41,44 70 0,96 15 21,87 21,3 0,01 40,03 70 0,88 16 22,39 22,01 0,01 39,31 70 0,99 17 20,76 20,14 0,004 40,22 70 1,04 18 21,85 21,4 0,004 38,46 70 1,1 19 22,12 21,63 0,01 40,12 70 1,05 20 22,65 22,32 0,003 41,97 70 0,95 21 21,74 21,04 0,01 40,06 70 0,97 22 22,53 21,77 0,01 39,85 70 0,97 23 22,14 21,69 0,02 44,04 70 0,97 24 22,43 21,91 0,03 45,4 70 1 25 20,91 20,25 0,04 40,41 70 0,96 26 21,77 20,65 0,02 38,95 70 0,96 27 21,78 21,06 0,03 41,8 70 0,89 28 21,88 21,21 0,04 42,82 70 0,89 29 21,71 20,73 0,02 50,82 70 0,87 30 22,27 21,29 0,03 51,96 70 0,87 31 22,6 21,65 0,02 51,52 70 0,87 32 23,07 21,89 0,03 50,74 70 0,87 33 21,87 21,13 0,03 49,28 70 0,92 34 22,56 21,61 0,03 47,58 70 0,93 35 22,75 21,89 0,03 45,09 70 0,9 36 22,56 21,87 0,09 45,12 70 0,9 37 19,46 18,79 0,003 43,89 70 1,05 38 19,99 19,88 0,003 43,64 70 1,05 39 21,34 21,03 0,01 40,69 70 1,08 40 21,26 20,78 0,01 41,42 70 1,05 41 21,22 20,37 0,01 37,08 70 0,99 42 22,31 21,32 0,02 37,35 70 1,04

Medição Temperatura do Ar (°C) Temperatura Radiante (°C) Velocidade do Ar (m/s) Umidade Relativa (%) Taxa metabólica (W/m²) Isolamento da roupa (clo) 43 22,29 21,67 0,03 38,16 70 0,99 44 22,59 21,88 0,02 39,13 70 0,99 45 21,31 20,2 0,01 36,13 70 0,97 46 22,08 21,5 0,02 37,09 70 0,97 47 22,63 21,91 0,02 37,73 70 0,97 48 22,55 21,9 0,03 38,34 70 0,97 MÉDIA 21,77 21,24 0,02 45,74 70,00 0,95 DESVIO 0,73 0,66 0,02 7,27 0,00 0,07

Medição Temperatura do Ar (°C) Temperatura Radiante (°C) Velocidade do Ar (m/s) Umidade Relativa (%) Taxa metabólica (W/m²) Isolamento da roupa (clo) 1 22,47 22,53 0,14 40,39 192,06 0,62 2 22,79 22,7 0,14 39,39 180,42 0,62 3 22,41 22,91 0,13 39,85 203,7 0,62 4 22,32 23,15 0,16 40,14 203,7 0,62 5 22,12 22,58 0,16 41,55 192,06 0,62 6 22,06 22,61 0,16 42,14 203,7 0,62 7 22,14 23,04 0,07 40,41 203,70 0,62 8 23,08 22,61 0,06 47,71 174,6 0,62 9 22,22 22,37 0,07 40,40 186,24 0,62 10 22,50 22,76 0,06 39,82 203,70 0,62 11 22,51 22,77 0,07 39,92 180,42 0,62 12 22,33 22,62 0,08 39,82 203,70 0,62 13 22,60 22,94 0,06 39,42 174,60 0,62 14 22,60 22,97 0,06 39,44 171,69 0,62 15 22,35 22,70 0,05 40,37 203,70 0,62 16 22,53 22,86 0,07 39,87 192,06 0,62 17 22,41 22,53 0,09 39,94 197,88 0,62 18 22,51 22,93 0,09 39,55 203,70 0,62 MÉDIA 22,44 22,75 0,10 40,56 192,87 0,62 DESVIO 0,25 0,21 0,04 1,92 11,97 0,00