• Nenhum resultado encontrado

SANEAMENTO AMBIENTAL

No documento TratamentodeEfluentes (páginas 40-66)

Assegurar os direitos humanos fundamentais de acesso à água potável e à vida em ambiente salubre nas cidades e no campo, mediante a universalização do abastecimento de água e dos serviços de esgotamento sanitário, coleta e tratamento dos resíduos sólidos, drenagem urbana e controle de vetores e reservatórios de doenças transmissíveis.

Cenário

Aproximadamente 60 milhões de brasileiros, moradores em 9,6 milhões de domicílios urbanos, não dispõem de coleta de esgoto. Essa deficiência está exposta especialmente nos bolsões de pobreza das grandes cidades, assim como nas cidades de até 20.000 habitantes e nas regiões Norte e Nordeste do Brasil.



É acentuada também a deficiência de tratamento ao esgoto coletado. Quase 75% de todo o esgoto sanitário coletado nas cidades é despejado "in natura", o que contribui decisivamente para a poluição dos cursos d'água urbanos e das praias. Há mais carências importantes em matéria de saneamento ambiental: dos 60 milhões de brasileiros que não contam com coleta de esgoto, cerca de 15 milhões (3,4 milhões de domicílios) não tem acesso à água encanada. E uma parcela da população que têm ligação domiciliar não conta com abastecimento diário e nem

de água potável com qualidade.

Além disso, 16 milhões de brasileiros não são atendidos pelo serviço de coleta de lixo. E, nos municípios de grande e médio porte onde o sistema convencional de coleta poderia atingir toda a produção diária de resíduos sólidos, esse serviço não atende adequadamente os moradores das favelas, das ocupações e dos bairros populares, por conta da precariedade da infra-estrutura

Outros dramas: em 64% dos municípios o lixo coletado é depositado em lixões "a céu aberto". E em muitos municípios pequenos sequer há serviço de limpeza pública minimamente organizado.

A tudo isso se soma à falta de drenagem, percebida especialmente a cada chuva mais intensa, quando provoca alagamentos e enchentes nas áreas de estrangulamento dos cursos d'água.

Cuidar da Natureza é cuidar da Vida! Efluentes Hídricos de uma refinaria

Principais contaminantes encontrados nos efluentes hídricos de uma refinaria A seguir os principais contaminantes de efluentes hídricos de refinaria:

• Óleos e Graxas • Fenóis • Mercaptanas • Sulfetos • Cianetos • Chumbo • Mercúrio • Cromo • Zinco • Amônia • Fosfatos • Nitrito e Nitrato

Segregação de efluentes hídricos

Nas refinarias, os efluentes hídricos gerados devem ser segregados em sistemas distintos, já que sua mistura tende a dificultar os tratamentos. Esta segregação visa à minimização de investimentos, devido à facilidade que pode propiciar ao tratamento final.

Normalmente, existem cinco sistemas de coleta, conforme descrito a seguir:

• Sistema de Efluentes de Processo – recebe os efluentes hídricos que tiveram contato com produtos (por exemplo: lavagem de trocadores de calor, drenagem de bombas, drenos de torres);

• Sistema de Efluentes Contaminados – recebe efluentes hídricos que podem ou não estar contaminados por produtos

• (por exemplo: água de chuva nos parques de armazenamento, tubo vias, drenagem de tanques);

• Sistema de Esgoto Sanitário – recebe águas de banheiro, cozinhas, etc; • Sistema de Soda Gasta – recebe efluentes hídricos oriundos do tratamento

cáustico de produtos, bem como águas de lavagem do mesmo processo; • Sistema de Águas Ácidas – coleta condensados de topo de torres de

fracionamento.

De forma geral, pode-se dizer que todas as correntes originadas dentro dos limites de uma indústria devem sofrer tratamento. Entretanto, o tratamento depende não só do volume da corrente, mas também de sua qualidade.

Após separar as correntes em conjuntos semelhantes, deve-se estudá-las de forma a identificar os produtos nelas contidos e estabelecer os tipos de tratamento a serem empregados.

Existe para determinadas correntes, a necessidade de tratamentos especiais dados a cada uma no próprio lugar onde ela aparece.

Estes tratamentos são chamados de tratamentos “in loco” ou “in situ” e são empregados para águas contendo produtos demasiadamente tóxicos ou em concentrações elevadas.

Os sistemas de coleta são direcionados para a Estação de Tratamento de Efluentes Hídricos – ETEH. Nesta estação, estão incluídas as fases de tratamento primário, secundário e terciário.

É bom observar que nem todas as indústrias necessitam dos mesmos tratamentos.

Assim, as ETEH diferem nos seus componentes, não só pelos fatos alinhados acima (vazão e qualidade), mas também pela profundidade a que se terá que levar o

tratamento. Outro ponto que cabe salientar é o fato de que, na maioria das vezes, a legislação local acaba por determinar a profundidade do tratamento, já que este será função dos níveis de poluentes possíveis de serem lançados nos corpos receptores.

Os tratamentos primários têm como finalidade retirar os compostos em suspensão, tais como sólidos, óleos e graxas.

Os tratamentos secundários removem, principalmente, compostos dissolvidos. Existem diversas formas de tratamento secundário, os métodos biológicos aeróbicos são os mais econômicos atualmente.

Os processos terciários, também chamados de polimento, são especialmente dedicados a remover poluentes específicos.

Os despejos industriais de refinarias possuem compostos instáveis, isto é, que, ao serem expostos ao ambiente, participam de reações químicas e transforma- se em produtos estáveis. Como exemplo, podem ser citados os compostos orgânicos, que ao serem oxidados, formam, ao final do processo, CO2 e H2O.

No tratamento biológico, a oxidação é feita por microrganismos que consomem os poluentes como nutrientes obtendo de sua metabolização a energia necessária para sobreviver e reproduzir.

Alguns produtos são de difícil metabolização, como o óleo. A maioria dos microrganismos não faz sua assimilação, conseguindo, algumas vezes, uma transformação parcial, que converte o óleo para compostos orgânicos oxigenados e possibilita, assim, sua total degradação por outros organismos.

Um outro ponto de importância refere-se à qualidade nutritiva dos efluentes hídricos. Para o desenvolvimento de qualquer organismo vivo, são necessários três nutrientes básicos – nitrogênio, fósforo e potássio – ao lado de nutrientes secundários e micro-nutrientes. Nos efluentes hídricos de uma refinaria, já existe, normalmente, o nitrogênio e até o potássio, então é necessária apenas a adição de fósforo.

Tratamentos Localizados

Os tratamentos “in loco”, aplicáveis a uma refinaria de petróleo, serão descritos a seguir.

Unidade de Tratamento de Soda Gasta

A etapa de oxidação tem por finalidade oxidar NaSH (sulfeto ácido de sódio) e Na2S (sulfeto de sódio). Esta oxidação é feita através da adição de ar.

A torre de oxidação é composta de quatro seções, cada qual provida de distribuidores, destinados a promover a mistura de solução de soda gasta com ar. O gás residual é incinerado e a soda tratada é enviada para a etapa de neutralização. Nesta etapa, a soda gasta é misturada com um ácido forte. O ácido normalmente usado é o ácido sulfúrico (H2SO4). O pH é ajustado para valores próximos de 7,0. Após a neutralização, a corrente é encaminhada para a ETEH.

Unidade de Tratamento de Águas Ácidas

A finalidade da unidade de Tratamento de Águas Ácidas é remover o sulfeto de hidrogênio (H2S), amônia (NH3) e o ácido cianídrico (HCN).

Água ácida (sour water) é um nome genérico, não muito adequado, devido ao pH, normalmente acima de 7,0. O pH freqüentemente alcalino deve-se à presença de amônia.

O processo utilizado para reduzir o teor de contaminantes dos condensados de vapor d'água das torres fracionadoras, a fim de permitir sua reutilização nas unidades de refino, ou seu descarte na rede de coleta, consiste em submeter a carga de águas ácidas a um sistema de aquecimento e de retificação ou esgotamento, com vapor d'água. A injeção de vapor d'água na torre retificadora tem duplo efeito, o de fornecer o calor necessário à vaporização dos contaminantes e o de reduzir a pressão parcial dos mesmos.

O gás residual formado é queimado nos fornos e a água retificada é utilizada no processo de dessalgação, para lavagem do petróleo e daí descartada para a ETEH. O arraste de hidrocarbonetos representa o maior problema para operação desta unidade, pois irá aumentar a pressão na retificadora, e reduzir, conseqüentemente, a eficiência de esgotamento. Temperatura e a pressão são variáveis importantes no processo de retificação. A redução na pressão ou a elevação na temperatura aumentará a eficiência de remoção dos contaminantes da carga.

Estação de Tratamento de Efluentes Hídricos – ETEH

Todas as correntes poluídas, depois de coletadas em sistemas característicos e separadas, são enviadas à Estação de Tratamento de Efluentes Hídricos, onde são submetidas aos tratamentos finais necessários à remoção dos poluentes, de modo a enquadrá-las nos padrões de qualidade definidos e pré-estabelecidos.

Os tratamentos são divididos em primários, secundários e terciários ou de polimento. A equalização dos efluentes tem como objetivo minimizar ou controlar as variações de vazão e as concentrações dos poluentes, de modo que se atinjam as condições ótimas para os processos de tratamento subseqüentes e haja melhoras na eficiência dos tratamentos primários, secundários e terciários. A equalização é geralmente obtida através do armazenamento das águas residuais num tanque de grandes dimensões, a partir do qual o efluente é bombeado para a linha de tratamento.

Tratamentos Primários

Sua finalidade é remover, por meios puramente mecânicos, todas as substâncias que possam dificultar os tratamentos secundários e terciários. As substâncias mais importantes aqui removidas são os óleos, graxas e os sólidos. A primeira etapa neste tratamento é a remoção de sólidos grosseiros, através de gradeamento. Depois do gradeamento, a água é enviada ao separador de água e óleo. Os separadores de água e óleo removem o óleo livre e os sólidos em suspensão. Não removem o óleo emulsionado. Essa remoção evita mais emulsionamento, uma vez que a água deverá sofrer agitação durante seu processamento nos tratamentos secundários.

Separadores de Água e Óleo

Os principais tipos são o API e o de Placas Paralelas. Os modelos mais antigos eram do tipo API. Atualmente, é empregado o tipo placas, já que ele pode ser adaptado facilmente a caixas de tipo API já existentes, através de pequenas transformações, que permitem o aumento de sua capacidade.

Seu princípio de funcionamento reside na separação natural do óleo por diferença de densidades, ao se utilizar uma caixa com fluxo perfeitamente laminar.

O óleo, por ser mais leve do que a água vai para a superfície, enquanto que os sólidos vão para o fundo por serem mais densos. O processo é contínuo e lembra o empregado no clarificador convencional.

O separador de água e óleo é, na verdade, um separador de água, óleo e sólidos. Os sólidos retirados são mais finos do que os removidos no gradeamento. Um raspador é montado sobre uma ponte rolante que passeia entre os extremos do separador. Em um sentido, a ponte raspa o óleo da superfície e, no outro, raspa os sólidos do fundo. O óleo é coletado num poço e mandado para tratamento, já que é econômico seu aproveitamento. Os sólidos são coletados numa caixa própria nos extremos do separador e dispostos, geralmente, em Landfarming. Na entrada do separador, existe um cilindro rotativo para retirada do óleo que já está sobrenadante. Há uma faca, sempre em contato com o cilindro, que raspa o óleo deste para o poço de óleo. O cilindro é feito de material que possui a propriedade de reter facilmente, porém retém pouquíssima água (20% água, 80% de óleo, aproximadamente).

O separador do tipo API é mais barato, menos eficiente, necessita de área de instalação muito grande, apresenta necessidade de vários células para facilitar manutenção, sem prejudicar o funcionamento de toda a unidade.

Separador de Placas Paralelas

O funcionamento é diferente do tipo API.

Seu principal constituinte é um recheio de placas planas ou corrugadas, colocadas e fixadas em um canal formado por um septo existente num tanque, onde a água também escoa em regime laminar. O óleo, por possuir menor densidade do que a água, cola nas superfícies dos canalículos e forma uma camada cada vez mais grossa. Devido ao empuxo, sobe até a superfície livre do líquido em forma de grandes gotas. Com os sólidos, ocorre justamente o contrário, isto é, formam grandes camadas nas superfícies inferiores dos canalículos, escorregam para baixo e depositam sobre o fundo do tanque. A coleta do óleo também é feita por tubo flauta. O equipamento em si é muito mais simples que o API moderno, por não possuir partes móveis. É muito compacto e possui grande capacidade se comparado

A seguir, são citadas algumas vantagens: Este separador é mais eficiente, muito embora tenha alto custo inicial, apresenta fácil manutenção de suas placas. Esta pode ser feita externamente ao separador, o que afeta pouquíssimo seu funcionamento normal por parar uma pequena parte do separador. O tipo API, funcionando bem, proporciona 40 ppm ou menos de óleo na saída e mal operado resulta em 150 ppm. No tipo placas, admitem-se 20 ppm ou menos quando funcionando bem. Normalmente, precisa-se maior segurança quanto ao teor de óleo presente no despejo. Essa segurança é proporcionada pelo uso de flotadores na cadeia de tratamento, após os separadores de água e óleo.

Flotadores

O princípio de funcionamento do flotador reside na formação de bolhas de ar em torno das partículas de óleo, o que as torna muito mais leves, pois o ar, por ser muito mais leve do que óleo ocupa um volume apreciável e favorece a flutuação da gota de óleo. Desta forma, é possível sua fácil separação. Os flotadores são do tipo ar dissolvido ou do tipo ar disperso. O flotador a ar disperso difere do de ar dissolvido apenas na maneira de se injetar ar, já que este é injetado através de borbulhadores de fundo que permitem bolhas de ar bastante pequenas. No flotador de ar dissolvido, há um dispositivo que injeta ar comprimido na água pressurizada entre 2 a 4 kg/cm2. Na massa de água, como a pressão é elevada, a solubilidade do ar aumenta. Em seguida, a mistura água e ar são bruscamente expandidos numa válvula redutora de pressão, onde ocorre, então, o fenômeno inverso, ou seja, ao abaixar a pressão, reduz também a solubilidade do ar na água. Logo, o excesso de ar é liberado em forma de pequenas bolhas. As bolhas são muito pequenas e envolvem as menores gotículas de óleo, melhorando sua flutuabilidade. O óleo sobe à superfície, onde é separado da água pelo coletor de óleo. Com os sólidos presentes na água, acontece fenômeno idêntico ao descrito para o óleo, porém a separação dos sólidos é mais deficiente porque estes têm tendência forte de descer para o fundo. Antes da corrente a ser tratada entrar no flotador, é feita a adição de coagulantes, como sulfato de alumínio, sulfato ferroso ou orgânicos.

A coagulação (floculação de água) possibilita o aumento das gotas de óleo por aglutinação. Tal procedimento melhora muito a eficiência do processo. O óleo e os

sólidos flotados são encaminhados para uma centrífuga para redução de volume e dispostos, então, em Landfarming.

Tratamento do Óleo Recuperado nos separadores de água e óleo

Os tratamentos de óleo recuperado nos separadores de água e óleo são do tipo convencional e constam, basicamente, de: aquecimento; injeção de diluentes; repouso e drenagem. O aquecimento reduz a viscosidade da fase oleosa, enfraquece o filme interfacial e, em decorrência disso, ocorre a separação das fases óleo e água. A temperatura do tanque deve ser controlada em 80ºC, para evitar a formação de espuma.

Os diluentes usados são produtos leves de baixa viscosidade (o querosene é o mais usado), cuja finalidade é reduzir a viscosidade e a densidade da fase oleosa e, conseqüentemente, aumentar a absorção dos agentes emulsificantes pelo óleo, de modo a facilitar a separação das fases óleo/água.

A agitação proporciona uma homogeneização da mistura emulsão/diluente, isto é, favorece um bom contato destes produtos e, conseqüentemente, uma boa eficiência no tratamento.

O repouso permite a separação final das fases água/óleo, a fim de possibilitar a drenagem da água.

O óleo recuperado é reprocessado nas Unidades de Destilação. Tratamentos Secundários e Terciários

A fase do tratamento secundário e/ou terciário é aquela em que os poluentes dissolvidos e/ou específicos devem ser eliminados ou reduzidos.

Tratamentos Biológicos

O sistema baseia-se em dois princípios biológicos fundamentais: respiração e fotossíntese. O primeiro constitui o processo pelo qual os organismos liberam, dos alimentos ingeridos ou acumulados, as energias necessárias às suas atividades vitais. A fotossíntese é o processo pelo qual, determinados organismos conseguem sintetizar matéria orgânica, portanto acumular energia potencial, utilizando a luz solar (ou artificial) como fonte de energia.

A maior parte dos seres fotossintetizantes desprende oxigênio, no meio, como subproduto de sua atividade.

Estabelece-se, assim, na natureza, na atmosfera, no interior de uma lagoa, uma espécie de círculo vicioso, em que os organismos fotossintetizantes sintetizam matéria orgânica, liberando oxigênio no meio. Organismos heterótrofos alimentam-se da matéria orgânica, utilizam oxigênio para sua oxidação, obtendo a energia necessária e liberando, como subproduto desta atividade, gás carbônico necessário à fotossíntese.

A respiração aeróbica, isto é, a que é realizada em presença do oxigênio, compreende a seguinte reação geral:

C6 H2 O6 + CO2 ® 6 CO2 + 6 H2 O + 673 kcal

Implica, pois, na transformação prévia da matéria orgânica em glicose, que será, por sua vez, “queimada”, com produção de calor útil.

A retirada de hidrogênio é o principal fenômeno a ocorrer em qualquer oxidação biológica e, dentro desta concepção, a função do oxigênio é a de “aceptor de hidrogênio”. Reações semelhantes podem ser realizadas, biologicamente, utilizando outras substâncias como aceptores de hidrogênio. Neste caso, trata-se, então, de respiração anaeróbica, verificada somente em ambiente destituído de oxigênio. Nitratos podem constituir aceptores de hidrogênio, sofrendo reações de redução a nitritos; sulfatos são reduzidos a sulfetos (com a conseqüente produção de odores de H2S); e CO2 pode ser reduzido a metano. Em presença de oxigênio, entretanto, esses processos de respiração (também denominados fermentação), característicos de certos tipos de bactérias, não se verificam, pois o oxigênio é extremamente tóxico aos chamados anaeróbios obrigatórios.

Já os anaeróbios facultativos dão preferência ao oxigênio como aceptor, por ser o tipo de oxidação mais completo, em que toda a matéria orgânica é transformada em CO2, com máximo aproveitamento de energia, isto é, máximo rendimento térmico. A respiração é um processo universal, pois todos os seres vivos, vegetais ou animais, despendem energia. A obtenção de matéria orgânica realiza-se através da nutrição. Organismos heterótrofos – animais e também vegetais, como fungos e grande parte das bactérias ingerem a matéria orgânica encontrada no meio, seja por predatismo, destruindo outros seres vivos, seja por saprofitismo, alimentando-se de produtos de decomposição de organismos mortos.

Os seres autótrofos, vegetais verdes e também muitas bactérias, pelo contrário, sintetizam as matérias orgânicas, aproveitando-se de energias dispersas, que passam a acumular na forma de moléculas de elevado conteúdo de energia potencial.

A reação geral da síntese orgânica pode ser expressa de maneira exatamente oposta à da respiração:

6 CO2 + 6 H2 O + 673 kcal ® C6 H12 O6 + 6 O2

A fonte de energia pode ser a luz, nos vegetais clorofilados, em que, ocorre a fotossíntese, ou pode ser uma reação de oxidação realizada paralelamente ao processo de síntese, neste caso se denominado de quimiossíntese.

O fenômeno básico de todo processo de depuração biológica é a respiração. No caso de tratamento anaeróbio, trata-se de respiração anaeróbia, com conseqüente produção de gases combustíveis orgânicos, como subprodutos.

No tratamento aeróbio, os subprodutos são água e gás carbônico.

A matéria orgânica do despejo industrial serve de alimento a bactérias aeróbicas e anaeróbicas.

Se a carga lançada a um corpo manter uma lagoa, por exemplo, não for muito elevada, o grande número de bactérias que será formada, por rápida produção, terá suficiente oxigênio dissolvido para suportar sua respiração e, nesta situação lagoa encontra-se aerada.

Quando, entretanto a carga introduzida é muito grande em relação ao volume de oxigênio dissolvido, as necessidades respiratórias, que são proporcionais ao consumo de matéria orgânica levam à extinção total do oxigênio do meio, e disto resulta o aparecimento de condições anaeróbicas.

A quantidade de oxigênio em uma lagoa não é fixa e nem está sujeita apenas a ser reduzida.

Há uma compensação por difusão a partir da atmosfera, através da superfície líquida.

Mas esta é extremamente lenta, de modo que, embora a película superficial, diretamente em contato com o ar atmosférico, esteja sempre saturada de oxigênio, as camadas subjacentes permanecerão pobres, a não ser que uma grande

mais profundas. Em lagoas, a turbulência é desprezível, no entanto pode ser aumentada pelo emprego de aeradores.

A classificação mais usada, para as lagoas de estabilização, é a que reconhece três tipos fundamentais: aeróbias, anaeróbias e facultativas.

Estas últimas são lagoas em que se desenvolvem processos anaeróbicos junto ao fundo e aeróbios nas regiões mais superficiais.

Processos Biológicos Anaeróbicos

No documento TratamentodeEfluentes (páginas 40-66)

Documentos relacionados