• Nenhum resultado encontrado

FIGURA 18 – Sumário esquemático dos resultados representando o efeito do exercício físico no controle da biodisponibilidade do NO. As indicações assinaladas com setas contínuas ( )são observações provenientes do presente estudo e as indicações com setas tracejadas ( ) são resultados provenientes da literatura e são discutidos acima.

7 CONCLUSÃO

A partir dos resultados obtidos, pode-se concluir que o exercício físico aeróbico melhora a função vasomotora dependente do endotélio em aorta de ratos

NO

O2-

NAD(P)H oxidase

Exercício Físico:

shear stress

eNOS H

2

O

2 Estresse oxidativo SOD sinalização aguda resultados literatura Função Endotelial crônica

normais e que esse efeito é garantido por um aumento na biodisponibilidade do óxido nítrico vascular. Por sua vez, a maior biodisponibilidade de NO ocorre devido a sua síntese aumentada pela eNOS e é auxiliada pela maior ativação da SOD uma vez que a produção de superóxido também é aumentada em função da ativação da NADP(H) oxidase.

O exercício físico também aumenta a formação do peróxido de hidrogênio nos vasos e apesar da maior produção de espécies reativas de oxigênio, a realização do esforço moderado (55-60% capacidade máxima) não está associada a uma situação de estresse oxidativo vascular.

REFERÊNCIAS BIBLIOGRÁFICAS

ADAMS, V.; LINKE, A.; KRANKEL, N.; ERBS, S.; GIELEN, S.; MOBIUS-WINKLER, S.; GUMMERT, J.F; MOHR, FW.; SCHULER, G.; HAMBRECHT, R. Impact of regular physical activity on the NAD(P)H oxidase and angiotensin receptor system in patients with coronary artery disease. Circulation, v. 111, p. 555-62, 2005.

ANDREWS, K.L.; TRIGGLE, C.R.; ELLIS, A. NO and the vasculature: where does it come from and what does it do? Heart Failure Review, v. 7, n. 4, p. 423-45, 2002.

BEJMA, J.; JI, L.L. Aging and acute exercise enhance free radical generation in rat skeletal muscle. Journal of Applied Physiology, v. 87, p. 465-70, 1999.

BEJMA, J.; RAMIRES, P.; JI, L.L. Free radical generation and oxidative stress with ageing and exercise: differential effects in the myocardium and liver. Acta Physiology Scandinavia, v. 169, p. 343-51, 2000.

BONOW RO, SMAHA LA, SMITH SC JR, MENSAH GA, LENFANT C. World Heart Day 2002: the international burden of cardiovascular disease: responding to the emerging global epidemic. Circulation. v. 106, p. 1602-5, 2002.

BOO, Y.C.; JO, H. Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases. Am J Physiol Cell Physiol., v. 285: p. C499-508, 2003.

BOO, Y.C.; SORESCU, G.; BOYD, N.; SHIOJIMA, I.; WALSH, K.; DU, J.; JO, H. Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at Ser1179 by Akt-independent mechanisms: role of protein kinase A. Journal of Biological Chemistry, v.277, p.3388-96, 2002.

BRADFORD, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye biding. Analytical Biochemistry. v. 72, p. 248-54, 1976.

BRANDÃO RONDON, M.U.; ALVES, M.J.; BRAGA, A.M.; TEIXEIRA, O.T; BARRETTO, A.C., KRIEGER; E.M.; NEGRÃO, C.E. Postexercise blood pressure reduction in elderly hypertensive patients. Journal of American College Cardiololy, v. 39, n. 4, p. 676-682, 2002.

CAI, H.; DAVIS, M.E.; DRUMMOND, G.R.; HARRISON, D.G. Induction of endothelial NO synthase by hydrogen peroxide via a Ca(2+)/calmodulin-dependent protein kinase II/janus kinase 2-dependent pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, v. 21, p. 1571-6, 2001.

CAI, H.; GRIENDLING, K.K.; HARRISON, D.G. The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends Pharmacology Science, v. 24, p. 471-8, 2003.

CAI, H.; HARRISON, D.G. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circulation Research, v.87, p.840-44, 2000.

CHENG, L.; YANG, C.; HSU, L.; LIN, M.T.; JEN, C.J.; CHEN, H. Acute exercise enhances receptor-mediated endothelium-dependent vasodilation by receptor upregulation. Journal of Biomedical Science, v. 6, p. 22-7, 1999.

CHENG, C.P.; HERFKENS, R.J.; TAYLOR, C.A. Abdominal aortic hemodynamic conditions in healthy subjects aged 50-70 at rest and during lower limb exercise: in vivo quantification using MRI. Atherosclerosis, v.168, p.323-31, 2003.

CHEVION, S.; MORAN, D.S.; HELED, Y.; SHANI, Y.; REGEV, G.; ABBOU, B.; BERENSHTEIN, E.; STADTMAN, E.R.; EPSTEIN, Y. Plasma antioxidant status and cell injury after severe physical exercise. Proceedings of the National Academy of Sciences, v. 100, p. 5119-23, 2003.

CLARKSON, P.; MONTGOMERY, H.E.; MULLEN, M.J.; DONALD, A.E.; POWE A.J.; BULL, T.; JUBB, M.; WORLD, M.; DEANFIELD, J.E. Exercise training enhances endothelial function in young men. Journal of American College Cardiololy, v. 33, p. 1379-85, 1999.

BRADFORD, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye biding. Analytical Biochemistry, v.72, p.248-54, 1976.

COOKE, J.P. Flow, NO, and atherogenesis. Proc Natl Acad Sci U S A, v. 100, n. 3, p. 768-770, 2003.

DAVIS, M.E.; CAI, H.; DRUMMOND, G.R.; HARRISON, D.G. Shear stress regulates endothelial nitric oxide synthase expression through c-Src by divergent signaling pathways. Circulation Research, v. 89, p. 1073-80, 2001.

DAVIS, M.E.; CAI, H.; MCCANN, L.; FUKAI, T.; HARRISON, D.G. Role of c-Src in regulation of endothelial nitric oxide synthase expression during exercise training. American Journal of Physiology Heart Circulatory Physiology, v. 284, p. H1449-53, 2003.

dysfunction: testing and clinical relevance. Circulation, v. 115, n. 10, p. 1285-95, 2007.

DELP, M.D.; LAUGHLIN, M.H. Time course of enhanced endothelium-mediated dilation in aorta of trained rats. Medicine & Science in Sports & Exercise, v.29. p.1454-61, 1997.

DRUMMOND, G.R.; CAI, H.; DAVIS, M.E.; RAMASAMY, S.; HARRISON, D.G. Transcriptional and posttranscriptional regulation of endothelial nitric oxide synthase expression by hydrogen peroxide. Circulation Research, v. 86, p. 347-54, 2000.

DUERRSCHMIDT, N.; STIELOW, C.; MULLER, G.; PAGANO, P.J.; MORAWIETZ, H. NO-mediated regulation of NAD(P)H oxidase by laminar shear stress in human endothelial cells. Journal of Physiology, v. 576, p. 557-67, 2006.

FISHER, A.B.; CHIEN, S.; BARAKAT, A.I.; NEREM, R.M. Endothelial cellular response to altered shear stress. American Jounal of Physiology Lung Cellular Molecular Physiology, v. 281, p. L529-533, 2001.

FLEMING, I.; SCHULZ, C.; FICHTLSCHERER, B.; KEMP, B.E.; FISSLTHALER, B.; BUSSE, R. AMP-activated protein kinase (AMPK) regulates the insulin-induced activation of the nitric oxide synthase in human platelets. Journal of Thrombosis and Haemostasis, v. 90, n. 5, p. 863-871, 2003.

FUKAI, T.; SIEGFRIED, M.R.; FUKAI, U.M.; CHENG, Y.; KOJDA, G.; HARRISON, D.G. Regulation of the vascular extracellular superoxide dismutase by nitric oxide and exercise training. Journal of Clinical Investigation, v.105, p.1631-39, 2000.

FURCHGOTT, R.F.; CHERRY, P.D.; ZAWADZKI, J.V.; JOTHIANANDAN, D. Endothelial cells as mediators of vasodilation of arteries. Journal of Cardiovascular Pharmacology, v. 6, p. S336-43, 1984.

FURCHGOTT, R.F.; ZAWADSKI , J.V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, v.288, p.373-6, 1980.

GALLEY, H.F.; WEBSTER, N.R. Physiology of the endothelium. British journal of anaesthesia, v.93, p.105-13, 2004.

GEWALTIG, M.T.; KOJDA, G. Vasoprotection by nitric oxide: mechanisms and therapeutic potential. Cardiovascular Research, v.55, p.250-60, 2002.

GIANNOTTI, G.; LANDMESSER, U. Endothelial dysfunction as an early sign of atherosclerosis. Herz, v. 32, n. 7, p. 568-572, 2007.

GONZALES, R.J.; CARTER, R.W.; KANAGY, N.L. Laboratory demonstration of vascular smooth muscle function using rat aortic ring segments. Advanced in Physiology Education, v. 24, n. 1, p. 13-21, 2000.

GRAHAM, D.A.; RUSH, J.W. Exercise training improves aortic endothelium-dependent vasorelaxation and determinants of nitric oxide bioavailability in spontaneously hypertensive rats. Journal of Applied Physiology, v. 96, p. 2088-96, 2004.

GRATTON, JP.; BERNATCHEZ, P.; SESSA, W.C. Caveolae and caveolins in the cardiovascular system. Circulation Research, v. 94, n. 11, p. 1408-17, 2004.

HAMBRECHT, R.; ADAMS, V.; ERBS, S.; LINKE, A.; KRANKEL, N.; SHU, Y.; BAITHER, Y. GIELEN, S.; THIELE, H.; GUMMERT, J.F.; MOHR, F.W.; SCHULER, G. Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation Research. v.107, p.3152-58, 2003.

HARAM, P.M.; ADAMS, V.; KEMI, O.J.; BRUBAKK, A.O.; HAMBRECHT, R. ELLINGSEN, O.; WISLOFF, U. Time-course of endothelial adaptation following acute and regular exercise. European Journal of Cardiovascular Prevention and Rehabilitation, v. 13, n. 4, p. 585-591, 2006.

HARRISON, D.G. Cellular and molecular mechanisms of endothelial cell dysfunction. The Journal of Clinical Investigation, v.100, p.2153-7, 1997.

HOWARD, M.G.; DICARLO, S.E. Reduced vascular responsiveness after a single bout of dynamic exercise in the conscious rabbit. Journal of Applied Physiology, v. 73, p. 2662-7, 1992.

HU, Q.; CORDA, S.; ZWEIER, J.L.; CAPOGROSSI, M.C.; ZIEGELSTEIN, R.C. Hydrogen peroxide induces intracellular calcium oscillations in human aortic endothelial cells. Circulation, v. 97, p. 268-75, 1998.

HUMPHRIES, K.M.; PENNYPACKER, J.K.; TAYLOR, S.S. Redox regulation of cAMP-dependent protein kinase signaling: kinase versus phosphatase inactivation. Jounal of Biological Chemichal, v. 282, n. 30, p. 22072-9, 2007.

INOUE, N.; RAMASAMY, S.; FUKAI, T.; NEREM, R.M.; HARRISON, D.G. Shear stress modulates expression of Cu/Zn superoxide dismutase in human aortic endothelial cells. Circulation Research, v.79, p.32-37, 1996.

IZAWA, T.; MORIKAWA, M.; INOUE, M.; MIZUTA, T.; YAMASHITA, H.; OHNO, H.; KOMABAYASHI, T. Acute or chronic exercise alters angiotensin II-induced contraction of rat aorta. The Japanese Journal of Physiology, v.45, p.1093-100, 1995.

JANISZEWSKI, M.; SOUZA, H.P.; LIU, X.; PEDRO, M.A.; ZWEIER, J.L.; LAURINDO, F.R. Overestimation of NADH-driven vascular oxidase activity due to lucigenin artifacts. Free Radicals in Biology and Medicine, v.32, p.446-453, 2002.

JEN, C.J.; CHAN, H.P.; CHEN, H.I. Acute exercise enhances vasorelaxation by modulating endothelial calcium signaling in rat aortas. American Journal of Physiology. Heart and Circulatory Physiology, v.282, p.H977-82, 2002.

JOHNSON, L..R.; RUSH, J.W.; TURK, J.R.; PRICE, E.M.; LAUGHLIN, M.H. Short-term exercise training increases ACh-induced relaxation and eNOS protein in porcine pulmonary arteries. Journal of Applied Physiology, v.90, p.1102-10, 2001.

JUNG, O.; MARKLUND, S.L.; GEIGER, H.; PEDRAZZINI, T.; BUSSE, R. BRANDES, R.P. Extracellular superoxide dismutase is a major determinant of nitric oxide bioavailability: in vivo and ex vivo evidence from ecSOD-deficient mice. Circulation Research, v. 93, p. 622-629, 2003.

KASIKCIOGLU, E.; OFLAZ, H.; KASIKCIOGLU, H.A.; KAYSERILIOGLU, A.; UMMAN, S.; MERIC, M. Endothelial flow-mediated dilatation and exercise capacity in highly trained endurance athletes. Tohoku Journal of Experimental Medicine, v.205, n.1, p.45-51, 2005.

KOBAYASHI, N.; TSURUYA, Y.; IWASAWA, T.; IKEDA, N.; HASHIMOTO, S.; YASU, T.; UEBA, H.; KUBO, N.; FUJII, M.; KAWAKAMI, M.; SAITO, M. Exercise training in patients with chronic heart failure improves endothelial function predominantly in the trained extremities. Circulation Journal, v.67, p.505-10, 2003.

KOJDA, G.; HAMBRECHT, R. Molecular mechanisms of vascular adaptations to exercise. Physical activity as an effective antioxidant therapy? Cardiovascular Research, v. 67, n. 2, p.187-197, 2005.

KOJDA, G.; HARRISON, D. Interactions between NO and reactive oxygen species: pathophysiological importance in atherosclerosis, hypertension, diabetes and heart failure. Cardiovascular Research, v.43, n.3, p.562-71, 1999.

determinant in atherosclerosis? Circulation, v. 109, n. 21, p. II27-33, 2003.

LAUER, N.; SUVORAVA, T.; RUTHER, U.; JACOB, R.; MEYER, W.; HARRISON, D.G.; KOJDA, G. Critical involvement of hydrogen peroxide in exercise-induced up-regulation of endothelial NO synthase. Cardiovascular Research, v. 65, p. 254-62, 2005.

LAUGHLIN, M.H. Joseph B. Wolfe memorial lecture. Physical activity in prevention and treatment of coronary disease: the battle line is in exercise vascular cell biology. Medicine & Science in Sports & Exercise, v.36, p.352-62, 2004.

LAURINDO, F.R.M.; de SOUZA, H.P.; da LUZ, P.L. Estresse oxidativo: um denominador comum de condições vasculares patológicas. Revista da Sociedade de Cardiologia do Estado de São Paulo, v. 2, p. 344-355, 1998.

LEITE, P.F.; DANILOVIC, A.; MORIEL P.; DANTAS K.; MARKLUND, S.; DANTAS, A.P.V.; LAURINDO, R.M. Sustained decrease in superoxide dismutase activity underlies constrictive remodeling after balloon injury in rabbits. Arteriosclerosis and Thrombosis in Vascular Biology, v.23, p.2197-2202, 2003.

LIU, J.; YEO, H.C.; OVERVIK-DOUKI, E.; HAGEN, T.; DONIGER, S.J.; CHYU, D.W.; BROOKS, G.A.; AMES, B.N. Chronically and acutely exercised rats: biomarkers of oxidative stress and endogenous antioxidants. Jounal of Applied Physiology, v. 89, p. 21-28, 2000.

LUNDBERG JO, WEITZBERG E, GLADWIN MT.The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nature Reviews Drug Discovery, v. 7, n. 2, p. 156-167, 2008.

MARLETTA, M.A.; SPIERING, M.M. Trace elements and nitric oxide function. Journal of Nutrition, v. 133, n. 5, p. 1431S-3S, 2003.

MARTENS, D.; KOJDA, G.Impaired vasodilator response to organic nitrates in isolated basilar arteries. Britsh Jounal of Pharmacology, v. 132, n. 1, p. 30-36, 2001.

MCCABE, T.J.; FULTON, D.; ROMAN, L.J.; SESSA, W.C. Enhanced electron flux and reduced calmodulin dissociation may explain "calcium-independent" eNOS activation by phosphorylation. Journal of Biological Chemical, v. 275, p. 6123-8, 2000.

McALLISTER, R.M.; JASPERSE, J.L.; LAUGHLIN, M.H. Nonuniform effects of endurance exercise training on vasodilation in rat skeletal muscle. Journal of Applied Physiology, v.98, p.753-61, 2005.

MCCORD, J.M. The evolution of free radicals and oxidative stress. American Journal of Medicine, v. 108, p. 652-9, 2000.

MICHEL, T.; FERON, O. Nitric oxide synthases: which, where, how, and why? Journal of Clinical Investigation, v. 100, n. 9, p. 2146-52, 1997.

MILLER, F.J.; GUTTERMAN, D.D.; RIOS, C.D.; HEISTAD, D.D.; DAVIDSON, B.L. Superoxide production in vascular smooth muscle contributes to oxidative stress and impaired relaxation in atherosclerosis. Circulation Research, v.82, p.1298-305, 1998.

MINAMI, A.; ISHIMURA, N.; HARADA, N.; SAKAMOTO, S.; NIWA, Y.; NAKAYA, Y. Exercise training improves acetylcholine-induced endothelium-dependent hyperpolarization in type 2 diabetic rats, Otsuka Long-Evans Tokushima fatty rats. Atherosclerosis, v.162, p.85-92, 2002.

MOMBOULI, J.V.; VANHOUTTE, P.M. Endothelial dysfunction: from physiology to therapy. Jounal of Molecular Cellular Cardiology, v. 31, n.1, p. 61-74, 1999.

MONCADA, S.; HIGGS, E.A. The discovery of nitric oxide and its role in vascular biology. Britsh Journal of Pharmacology, v. 147, n.1, p. S193-201, 2006.

MYERS, J.; PRAKASH, M.; FROELICHER, V.; DO, D.; PARTINGTON, S.; ATWOOD, J.E. Exercise capacity and mortality among men referred for exercise testing. New England Journal Medicine, v. 346, n.11, p.793-801, 2002.

MYERS, J. Exercise and cardiovascular health. Circulation, v.107, p.e2-e5, 2003.

NASCIMENTO, C.A.; PATRIARCA, G.; HEIMANN, J.C. Estrutura orgânica do endotélio vascular. In: Endotélio e doenças cardiovasculares. Da LUZ, P.L.; LAURINDO, F.R.M.; CHAGAS, A.C.P. São Paulo: Atheneu, 2003.

NIEBAUER, J.; COOKE, J.P. Cardiovascular effects of exercise: role of endothelial shear stress. Journal of the American College of Cardiology, v. 28: p. 1652-60, 1996.

NOUROOZ-ZADEH, J.; TAJADDINI-SARMADI, J.; WOLFF, S.P. Measurement of plasma hydroperoxide concentrations by the ferrous oxidation-xylenol orange assay in conjunction with triphenylphosphine. Analytical Biochemical., v. 220: p. 403-9, 1994.

PALMER, R.M.; FERRIGE, A.G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature, v. 327, p. 524-6, 1987

POLYTARCHOU, C.; PAPADIMITRIOU, E. Antioxidants inhibit human endothelial cell functions through down-regulation of endothelial nitric oxide synthase activity. European Journal of Pharmacology, v.510, p.31-8, 2005.

POOLE-WILSON, P.A. Cardiovascular health in Europe: a global problem. Journal of the American College of Cardiology, v. 49, n. 1, p. 117-119, 2007.

PRAKASH, M.; MYERS, J.; FROELICHER, VF.; MARCUS, R.; DO, D.; KALISETTI, D.; FRONING, J.; ATWOOD, J.E. Diagnostic exercise tests on 4000 consecutive

men. American Heart Jounal, v. 142, n .1, p.127-35, 2001.

REN, J. Influence of gender on oxidative stress, lipid peroxidation, protein damage and apoptosis in hearts and brains from spontaneously hypertensive rats. Clinical and Experimental Pharmacology Physiology, v. 34, n. 5-6, p. 432-438, 2007.

ROUSSEAU, D.L.; LI, D.; COUTURE, M.; YEH, S.R. Ligand-protein interactions in nitric oxide synthase. Journal of Inorganical Biochemistry., v. 99, n.1, p. 306-23, 2005.

RUSH, J.W.; TURK, J.R.; LAUGHLIN, M.H. Exercise training regulates SOD-1 and oxidative stress in porcine aortic endothelium. American Journal of Physiology, v.284, p.H1378-87, 2003.

SCHRAGE, W.G.; EISENACH J.H.; JOYNER, M.J. Ageing reduces nitric-oxide- and prostaglandin-mediated vasodilatation in exercising humans. The Journal of Physiology, v.579, p.227-36. 2007.

SHEPHARD, R.J.; BALADY, G.J. Exercise as cardiovascular therapy. Circulation, v. 99, n.7, p. 963-72, 1999.

SILVA, G.J.; BRUM, P.C.; NEGRÃO, C.E.; KRIEGER, E.M. Acute and chronic effects of exercise on baroreflexes in spontaneously hypertensive rats. Hypertension, v. 30, n. 3, p. 714-719, 1997.

SPIER S.A.; LAUGHLIN M.H.; DELP M.D. Effects of acute and chronic exercise on vasoconstrictor responsiveness of rat abdominal aorta. Journal of Applied Physiology. v.87, p.1752-7, 1999.

SUVORAVA, T.; LAUER, N.; KOJDA, G. Physical inactivity causes endothelial dysfunction in healthy young mice. Journal of the American College of Cardiology, v.44, p.1320-7, 2004.

TANIYAMA, Y.; GRIENDLING, K.K. Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension, v. 42, p. 1075-81, 2003.

TARPEY, M.M.; FRIDOVICH, I. Methods of detection of vascular reactive species: nitric oxide, superoxide, hydrogen peroxide, and peroxynitrite. Circulation Research, v. 89, p. 224-36, 2001.

TERADA, L.S. Specificity in reactive oxidant signaling: think globally, act locally. Journal of Cellular Biology, v. 174, n. 5, p. 615-623, 2006.

THOMAS, SR.; CHEN, K.; KEANEY, J.F. Jr. Hydrogen peroxide activates endothelial nitric-oxide synthase through coordinated phosphorylation and dephosphorylation via a phosphoinositide 3-kinase-dependent signaling pathway. Journal of Biological Chemical, v. 277, p. 6017-24, 2002.

THOMPSON, P.D.; BUCHNER, D.; PINA, I.L.; BALADY, G.J.; WILLIAMS, M.A.; MARCUS, B.H.; BERRA, K.; BLAIR, S.N.; COSTA, F.; FRANKLIN, B.; FLETCHER, G.F.; GORDON, N.F.; PATE, R.R.; RODRIGUEZ, B.L.; YANCEY, A.K.; WENGER, N.K. AHA scientific statement. Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease: a statemen from the council on clinical cardiology (subcommittee on exercise, reabilitation, and prevention) and the council on nutrition, physical activity, and metabolism (subcommittee on physical activity). Circulation Research, v.107, p.3109-16, 2003.

TRIGGLE, C.R.; HOLLENBERG, M.; ANDERSON, T.J.; DING, H.; JIANG, Y.; CERONI, L. WIEHLER, W.B.; NG, E.S.; ELLIS, A.; ANDREWS, K.; MCGUIRE, J.J.; PANNIRSELVAM, M. The endothelium in health and disease: a target for therapeutic intervention. Journal of Smooth Muscle Research, v.39, p.249-67, 2003.

TUTEJA, N.; CHANDRA, M.; TUTEJA, R.; MISRA, M.K. Nitric Oxide as a Unique Bioactive Signaling Messenger in Physiology and Pathophysiology. Journal of Biomedical and Biotechnology, v. 2004, n. 4, p. 227-237, 2004.

URSO, M.L.; CLARKSON, P.M. Oxidative stress, exercise, and antioxidant supplementation. Toxicology, v. 189, p. 41-54, 2003.

WALSH, M.P.; KARGACIN, G.J.; KENDRICK-JONES, J.; LINCOLN, T.M. Intracellular mechanisms involved in the regulation of vascular smooth muscle tone. Canadian Journal Physiol Pharmacol, v. 73, n.5, p. 565-73, 1995.

YOUNG, C.G.; KNIGHT, C.A.; VICKERS, K.C.; WESTBROOK, D.; MADAMANCHI, N.R.; RUNGE, M.S.; ISCHIROPOULOS, H.; BALLINGER, S.W. Differential effects of exercise on aortic mitochondria. American Journal of Physiology. Heart and Circulatory Physiology, v.288, p.H1683-9, 2005.

ZANCHI, N.E.; BECHARA, L.R.G.; TANAKA, L.Y.; DEBBAS, V. BARTHOLOMEU, T.; RAMIRES, P.R. Efeito do treinamento físico aeróbico sobre a bioatividade do óxido nítrico e a vasodilatação aórtica. Revista Brasileira de Educação Física e Esporte, v. 20, n.4, p. 239-247, 2006.

Documentos relacionados