• Nenhum resultado encontrado

CAPÍTULO 5 – CONCLUSÕES E SUGESTÕES

5.2 SUGESTÕES

A reação de hidrogenação catalítica do 5-hidroximetilfurfural para a obtenção de 2,5- dimetilfurano com o uso de catalisadores suportados em óxidos mistos tem sido pouco explorada e exige uma expressiva atenção quanto aos parâmetros reacionais adotados. Consequentemente, sugere-se realizar: novas pesquisas avaliando a acidez e o efeito de outras fases ativas utilizando novos metais; análises de espectroscopia de fotoelétrons por raios X, com o intuito de obter informações sobre o estado de oxidação dos elementos na superfície do catalisador; determinação do parâmetro de Weisz Prater para comprovar a ausência de fenômenos difusionais; e a avaliação da reação nas condições de 0,5g de catalisador, concentração de HMF igual a 0,2 M, temperatura de 423K e 20 bar de pressão de H2. Também

é sugerido a proposição de algum modelo cinético para contribuir como melhor entendimento do processo de hidrogenação do HMF.

REFERÊNCIAS BIBLIOGRÁFICAS

BERINGER, T.; LUCHT, W.; SCHAPHOFF, S. Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. GCB Bioenergy, 3, 299-312, 2011.

BOZEL, J. J.; PETERSEN, G. R. Technology development for the production of biobased products from biorefinery carbohydrates – the US Department of Energy’s “Top 10” revisited. Green Chemistry, 12, 539-554, 2010.

BOZELL, J. Feedstocks for the future – Biorefinery production of chemicals from renewable carbon. Clean, 36 (8), 641-647, 2008.

BROWNLEE, H. J.; MINER, C. S. Industrial development of furfural. Industrial and Engineering Chemistry, 40, 201-204, 1948.

BURCHMAN, L. J.; DATKA, J.; WACHS, I. E. In situ vibrational spectroscopy studies of supported niobium oxide catalysts. The Journal of Physical Chemistry B, 103, 6015-6024, 1999.

BUSCA, G. The surface of transitional aluminas: A critical review. Catalysis Today, 226, 2-13, 2014.

BYKOVA, M. V.; ERMAKOV, D. Yu.; KAICHEV, V.V.; BULAVCHENKO, O.A.; SARAEV, A. A.; LEBEDEV, M. Yu.; YAKOVLEV, V. A. Ni-based sol-gel catalysts as promising systems for crude bio-oil upgrading: Guaiacol hydrodeoxygenation study. Applied Catalysis B: Environmental, 113-114; 296-307, 2012.

CENTI, G.; LANZAFAME, P.; PERATHONER, S. Analysis of the alternative routes in the catalytic transformation of lignocellulosic materials. Catalysis Today, 167, 14-30, 2011. CHIARI, L.; ZECCA, A. Constraints of fóssil fuels depletion on global warming projections. Energy Policy, 39,5026-5034, 2011.

CLIMENT, M.; CORMA, A.; IBORRA, S. Conversion of biomass platform molecules into fuels additives and liquid hydrocarbon. Green Chemistry, 16, 516-547, 2014.

DE, S.; SAHA, B.; LUQUE, R. Hydrodeoxygenation processes: Advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels. Bioresource Technology, 178, 108-118, 2015.

DJEBALI, K.; MEKHALIF, Z.; BOUMAZA, A.; DJELLOUL, A. XPS, FTIR, EDX, and XRD Analysis of Al2O3 Scales Grown on PM2000 Alloy. Journal of Spectroscopy, 2015.

DUTTA, S.; DE, S.; SAHA, B.; ALAM, I. Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels. Catal. Sci. Technol., 2, 2025-2036, 2012.

EL-SHARKAWY, M. A. Global warming: causes and impacts on agroecosystems productivity and food security with emphasis on cassava comparative advantage in the tropics/subtropics. Photosynthethica, 52, 161-178, 2014.

EMINOV, S.; FILIPPOUSI, P.; BRANDT, A.; WILTON-ELY, J.; HALLET, J. Direct catalytic conversion of cellulose to 5-hydroxymethylfurfural using ionic liquids. Inorganics, 4, 32, 2016.

FALK, G. S.; BORLAF, M.; OLIVEIRA, A. P. N.; NETO, J. B.; MORENO, R.; HOTZA, D. Síntese e caracterização de Nb2O5 por rota coloidal. 21° Congresso Brasileiro de Engenharia

e Ciência dos Materiais, 2014.

GALLEZOT, P. Conversion of biomass to selected chemical products. Chemical Society Reviews, 41, 1538-1558, 2012.

GARCÍA-SANCHO, C.; CECILIA, J.A.; MORENO-RUIZ, A.; MERIDA-ROBLES, J. M.; SANTAMARÍA-GONZÁLEZ, J.; MORENO-TOST, R.; MAIRELES-TORRES, P. Influence of the niobium supported species on the catalytic dehydration of glycerol to acrolein. Applied Catalysis B: Environmental, 179, 139-149, 2015.

GOYAL, H. B.; SEAL, Diptendu; SAXENA, R. C. Bio-fuels from thermochemical conversion of renewable resources: A review. Renewable and Sustainable Energy Reviews, 12, 504-517, 2008.

GUO, J.; ZHU, S.; CEN, Y.; QIN, Z.; Wang, J.; FAN, W. Ordered mesoporous Nb-W oxides for the conversion of glucose to fructose, mannose and 5-hydroxymethylfurfural. Applied Catalysis B: Environmental, 200, 611-619, 2017.

GUO, W.; LIU, H.; ZHANG, S.; HAN, H.; LIU, H.; JIANG, T.; HAN, B.; WU, T. Efficient hydrogenolysis of 5-hidroxymethylfurfural to 2,5-dimethylfuran over a colbalt and cooper bimetallic catalyst on N-graphene-modified Al2O3. Green Chem., 18, 6222-6228,

HAN, J.; SEN, S. M.; ALONSO, D. M.; DUMESIC, J.; MARAVELIAS, C. A strategy for the simultaneous catalytic conversion of hemicellulose and cellulose from lignocellulosic biomass to liquid transportation fuels. Green Chem., 16, 653-661, 2014.

HANSEN, T.; BARTA, K.; ANASTAS, P. T.; FORD, P.; RIISAGER, A. One-pot reduction of 5-hydroximethylfurfural via hydrogen transfer from supercritical methanol. Green Chem., 14, 2457-2461, 2012.

HOOK, M.; TANG, X. Depletion of fossil fuels and anthropogenic climate change – A review. Energy Policy, 52, 797-809, 2013.

HU, L.; LU, L.; LIU, S. Chemoselective hydrogenation of biomass-derived 5- hydroxymethylfurfural into the liquid biofuel 2,5-dimethylfuran. American Chemical Society, Industrial and Engineering Chemistry Research,53, 9969-9978, 2014a.

HU, L.; TANG, X.; XU, J.; WU, Z.; LIN, L. LIU, S.. Selective transformation of 5- hydroxymethylfurfural into the liquid fuel 2,5-dimethylfuran over carbon-supported Ruthenium. American Chemical Society, Industrial and Engineering Chemistry Research,53, 3056-3064, 2014b.

HUBER, G. W.; IBORRA, A.; CORMA, A. Synthesis of transportation fuels from biomass: Chemistry, catalysts and engineering. Chemical Reviews, 106, 4044-4098, 2006.

IPCC – Intergovernmental Panel on Climate Change. Climate Change 2014: Synthesis Report. Geneva, Switzerland,151p, 2014.

IEA – International Energy Agency. Key world energy statistics. 2017

JAHIRUL, M.; RASUL, M.; CHOWDHURY, A.; ASHWATH, N. Biofuels production through biomass pyrolysis – A technological review. Energies, 5, 4952-5001, 2012.

JASIK, A.; WOJCIESZAK, R.; MONTEVERDI, S.; ZIOLEK, M.; BETTAHAR, M.M. Study of nickel catalysts supported on Al2O3, SiO2 or Nb2O5 oxides. Journal of molecular Catalysis

A: Chemical, 242, 81-90, 2005.

KLASS, D. K.; Biomass for renewable energy and fuels. Encyclopedia of Energy, 1, 193- 212, 2004

KO, E. I.; WEISSMAN, J. G. Structures of niobium pentoxide and their implications on chemical behavior. Catalysis Today, 8, 27-36, 1990.

KONG, X.; ZHENG, R.; ZHU, Y.; DING, G.; ZHU, Y.; WANG-LI, Y. Rational design of Ni- based catalysts derived from hidrotalcite for selective hydrogenation of 5- hydroxymethylfurfural. Green Chem., 17, 2504-2514, 2015.

LEVIN, I.; BRANDON, D. Metastable alumina polymorths: Crystal structures and transition sequences. Journal of the American Ceramic Society, 81, 1995-2012, 1998.

LIMAYEM, A.; RICKE, S. Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science, 38, 449-467, 2012.

LIU, H.; HUANG, Z.; KANG, H.; XIA, C.; CHEN, J. Selective hydrogenolysis of biomass- derived furfuryl alcohol into 1,2- and 1,5-pentanediol over highly dispersed Cu-Al2O3

catalysts. Chinese Journal of Catalysis, 37, 700-710, 2016.

LOPES, M.; DUSSAN, K.; LEAHY, J. J.; SILVA, V. T. Conversion of D-glucose to 5- hydroxymethylfurfural using Al2O3-promoted sulphated tin oxide as catalyst. Catalysis

Today, 279, 233-243, 2017.

LYMAYEM, A.; RICKE, S. Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science, 38, 449-467, 2012.

LYND, L.; WYMAN, C. E.; GERNGROSS, T. U. Biocommodity Engineering. Biotechnology Progress, 15, 777-793, 1999.

MARTÍN, C.; SOLANA, G.; MALET, P.; RIVES, V.; Nb2O5-supported WO3: a

comparative study with WO3/Al2O3. Catalysis Today, 78, 365-376, 2003.

MCKENDRY, P. Energy production from biomass (part 1): overview of biomass. Bioresource Tecnology, 83, 37-46, 2002.

MITRA, J.; ZHOU, X.; RAUCHFUSS, T. Pd/C-catalyzed reactions of HMF: decarbonylation,hydrogenation and hydrogenolysis. Green Chemistry, 17, 307-313, 2015. MOZER, T.; PASSOS, F. Selective CO oxidation on Cu promoted Pt/Al2O3 and Pt/Nb2O5

catalysts. International Journal of hydrogen energy, 36, 13369-13378, 2011.

NAIR, G. S.; ADRIJANTO, E.; ALSALME, A.; KOZHEVNIKOV, I. V.; COOKE, D. J.; BROWN, D. R.; SHIJU, N. R. Glycerol utilization: solvent-free acetalization over nióbia catalysts. Catalysis Science & Tecnology, 2, 1173-1179, 2012.

NAKAGAWA, Y.; TAMURA, M.; TOMISHIGE, K. Catalytic Reduction of Biomass- Derived Furanic Compounds with Hydrogen. American Chemical Society, 3, 2655-2668, 2013.

NISHIMURA, S.; IKEDA, N.; EBITANI, K. Selective hydrogenation of biomass-derived 5- hydroxymethylfurural (HMF) to 2,5-dimethylfuran (DMF) under atmospheric hydrogen pressure over carbon supported PdAu bimetallic catalyst. Catalysis Today, 232, 89-98, 2014.

NOLLER, H.; LIN, W. M. Activity and selectivity of Ni-Cu/Al2O3 catalysts for

hydrogenation of crotonaldehyde and mechanism of hydrogenation. Journal of Catalysis, 85, 25-30, 1984.

PETER, A.; JONES, L. Princípios de química: questionando a vida moderna e o meio ambiente. 2.ed. Porto Alegre: Bookman, 2001.

PITTMAN, R. M.; BELL, A. T. Raman studies of the structure of Nb2O5/TiO2. The Journal

of Physical Chemistry B, 97, 12178-12185, 1993.

PUTTEN, R.; WAAL, J.C.; JONG, E.; RASRENDRAT, C.; HEERES, H.; VRIES, J.G. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chemical Reviews, 113, 1499-1597, 2013.

RASMUSSEN, H.; SORENSEN, H.; MEYER, A. Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms. Carbohydrate Research, 385, 45-57, 2014.

RODRIGUES, R.; ISODA, N.; GONÇALVES, M.; FIGUEIREDO, F. C. A.; MANDELLI, D.; CARVALHO, W. A. Effect of nióbia and alumina as support for Pt catalysts in the hydrogenolysisof glycerol. Chemical Engineering Journal, 198-199, 457-467, 2012.

ROMÁN-LESHKOV, Y.; BARRET, C.; LIU, Z.; DUMESIC, J.. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature Publishing Group, 447, 982-986, 2007.

ROY, P.; DIAS, G. Prospects for pyrolysis technologies in the bioenergy sector: A review. Renewable and Sustainable Energy Reviews, 77, 59-69, 2017.

SAHA, B.; ABU-OMAR, M. Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents. Green Chem., 16, 24-38, 2014.

SCHMAL, M.; ARANDA, D. A. G.; SOARES, R. R.; NORONHA, F. B.; FRYDMAN, A. A study of the promoting effect of noble metal addition on nióbia and nióbia alumina catalysts. Catalysis Today, 57, 169-176, 2000.

SEARLE, S.; MALINS, C. A reassessment of global bioenergy potential in 2050. Global Change Biology Bioenergy, 7, 328-336, 2015.

SERRANO-RUIZ, J. C.; DUMESIC, J. Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energy Environ. Sci., 4, 83, 2011.

SHISHIDO, T.; KITANO, T.; KENTARO, T.; TANAKA, T. Generation of Bronsted Acid Over Alumina-Supported Niobia Calcined at High Temperatures. Topics in Catalysis, 53, 672-677, 2010.

TAO, F.; ZHANG, S.; NGUYEN, L.; ZHANG, X. Action of bimetallic nanocatalysts under reaction conditions and during catalysis: evolution of chemistry from high vacuum conditions to reaction conditions. Chemical Society Reviews,41, 7980-7993, 2012.

THANANATTHANACHON, T.; RAUCHFUSS, T. Efficient production of the liquid fuel 2,5-dimethylfuran from fructose using formic acid as a reagent. Angewandte Chemie International Edition, 49, 6616-6618, 2010.

TOWLER, G. P.; OROSKAR, A. R.; SMITH, S. E. Development of sustainable liquid fuels infrastructure based on biomass. Environmental Progress, 23, 334-341, 2004.

VISWANADHAM, B.; PAVANKUMAR, V.; CHARY, K. V. R. Vapor phase deydration of glycerol to acreolin over phosphotungstic acid catalyst supported on nióbia. Catalysis Letters, 144, 744-755, 2014.

WANG, G.; HILGERT, J.; RICHTER, F. H.; WANG, F.; BONGARD, H.; SPLIETHOFF, B.; WEIDENTHALER, C.; SCHUTH, F. Platinum-cobalt bimetallic nanoparticles in hollow carbon nanospheres for hydrogenolysis of 5-hydroxymethylfurfural. Nature Materials, 13, 293-300, 2014.

WANG, R.; XIE, X.; LIU, Y.; LIU, Z.; Xie, G.; JI, N.; MA, L.; TANG, M. Facile and low- cost preparation of Nb/Al oxide catalyst with high performance for the conversion of kiwifruit waste residue to levulinic acid. Catalysts, 5, 1636-1648, 2015.

YANG, P.; XIA, Q.; LIU, X.; WANG, Y. High-yield production of 2,5-dimethylfuran from 5-hydroxymethylfurfural over carbon supported Ni-Co bimetallic catalyst. Journal of Energy Chemistry, 25, 1015-1020, 2016.

ZAKI, M. I.; MEKHEMER, G. A. H.; FOUAD, N. E.; RABEE, A. I. M. Structure-acidity correlation of supported tungsten (VI)-oxo-species: FT-IR and TPD studies of adsorbed pyridine and catalytic decomposition of 2-propanol. Applied Surface Science, 308, 380-387, 2014.

ZHANG, F.; LIU, Y.; YUAN, F.; NIU, X.; ZHU, Y. Efficient production of the liquid fuel 2,5-dimethylfuran from 5-hydroxymethylfurfural in the absence of acid additive over bimetallic PdAu supported on graphitized carbon. Energy & Fuels, 31, 6364-6373, 2017. ZHONG, S.; DANIEL, R.; XU, H.; ZHANG, J.; TURNER, D.; WYSZYNSKI, M. L.; RICHARDS, P. Combustion and emissions of 2,5-dimethylfuran in a direct-injection spark-ingnition engine. Energy Fuels, 24, 2891-2899, 2010.

ZU, Y.; YANG, P.; WANG, J.; LIU, X.; REN, J.; LU, G.; WANG, Y. Efficient production of the liquid fuel 2,5-dimethylfuran from 5-hydroxymethylfurfural over Ru/Co3O4 catalyst.

Documentos relacionados