• Nenhum resultado encontrado

As seguintes recomendações são apresentadas como sugestões para trabalhos futuros sobre o processo de destilação da mistura propeno-propano:

• Estudo de outras técnicas de intensificação dos processos, de maneira a verificar a possibilidade de aumentar ainda mais o ganho em ecoeficiência;

• Ampliar o número de indicadores de ecoeficiência na análise, abordando outros as- pectos ambientais e econômicos e, possivelmente, incluindo métricas sociais como segurança, dentre outras;

• Ampliar a análise econômica, estudando aspectos como fluxo de caixa e retorno de investimento para verificar a viabilidade e atratividade dos processos estudados; • Utilizar métodos de análise de ecoeficiência que permitem a implementação de pesos

nos indicadores para adaptar o estudo comparativo de acordo com as necessidades e diretrizes de diferentes setores industriais;

REFERÊNCIAS BIBLIOGRÁFICAS

ALCÁNTARA-AVILA, J. R.; GÓMEZ-CASTRO, F. I.; SEGOVIA-HERNÁNDEZ, J. G.; SO- TOWA, K.-I.; HORIKAWA, T. “Optimal design of cryogenic distillation columns with side heat pumps for the propylene/propane separation”. Chemical Engineering and Processing: Process Intensification, Elsevier, v. 82, p. 112–122, 2014.

ANA, A. N. d. g. “Política Nacional de Recursos Hídricos”. 2020. Disponível em: <https://www.ana.gov.br/gestao-da-agua/sistema-de-gerenciamento-de-recursos-hidricos>. Acesso em: 03 abr. 2020.

ANA, A. N. d. g. “Situação da Água no Mundo”. 2020. Disponível em: <https://www.ana.gov. br/panorama-das-aguas/agua-no-mundo#>. Acesso em: 03 abr. 2020.

BADAWY, M.; EL-AZIZ, A. A.; IDRESS, A. M.; HEFNY, H.; HOSSAM, S. “A survey on exploring key performance indicators”. Future Computing and Informatics Journal, Elsevier, v. 1, n. 1-2, p. 47–52, 2016.

BECHT, S.; FRANKE, R.; GEISSELMANN, A.; HAHN, H. “An industrial view of process intensification”. Chemical Engineering and Processing: Process Intensification, Elsevier, v. 48, n. 1, p. 329–332, 2009.

BOYD, B. “Guidelines for Estimating Unmetered Industrial Water Use”. Washington, DC, 2013. 33 p. Disponível em: <https://www.energy.gov/sites/prod/files/2013/10/f3/est_ unmetered_industrial_wtr.pdf>.

BRACHT, C. “G20 climate change and energy accountability: the g20’summit’s compliance record, 2008 to 2011”. G20 Research Group, December, 2011.

BRASIL. “LEI No9.433, DE 8 DE JANEIRO DE 1997: Institui a política nacional de recursos hídricos, cria o sistema nacional de gerenciamento de recursos hídricos”. 1997. Disponível em: <http://www.planalto.gov.br/ccivil_03/leis/l9433.htm>. Acesso em: 03 abr. 2020.

CAXIANO, I. N.; JUNQUEIRA, P. G.; MANGILI, P. V.; PRATA, D. M. “Eco-efficiency analysis and intensification of the acetic acid purification process”. Chemical Engineering and Processing-Process Intensification, Elsevier, v. 147, 2020. 107784.

CAXIANO, I. N.; PRATA, D. M. “INTENSIFICAÇÃO E AVALIAÇÃO DA ECOEFICIÊNCIA DO PROCESSO DE PURIFICAÇÃO DE ÁCIDO ACÉTICO”. 1–106 p. Dissertação (Mestrado) — Universidade Federal Fluminense, 2020.

CEBDS, C. E. B. para o D. S. “Quem Somos”. 2020. Disponível em: <https://cebds.org/ quem-somos/>. Acesso em: 15 jul. 2020.

Practice”. 1. ed. Michigan: Ann Arbor Science Publishers Ann Arbor, 1981.

CHRISTOPHER, C. C. E.; DUTTA, A.; FAROOQ, S.; KARIMI, I. A. “Process synthesis and optimization of propylene/propane separation using vapor recompression and self-heat recu- peration”. Industrial & Engineering Chemistry Research, ACS Publications, v. 56, n. 49, p. 14557–14564, 2017.

COUPER, J. R.; PENNEY, W. R.; FAIR, J. R.; WALAS, S. M. “Chemical Process Equipment: Selection and Design”. 3. ed. [S.l.]: Elsevier, 2012.

DIMIAN, A. C.; BILDEA, C. S.; KISS, A. A. “Integrated design and simulation of chemical processes”. 2. ed. Amsterdam: Elsevier, 2014.

EERE, E. E. . R. E. . “Steam System Modeler Tool(SSMT): Deaerator Calculator.” 2015. Disponível em: <https://www4.eere.energy.gov/manufacturing/tech_deployment/amo_steam_ tool/equipDeaerator>. Acesso em: 13 abr. 2020.

FRANCO, T.; DRUCK, G. “Padrões de industrialização, riscos e meio ambiente”. Ciência & Saúde Coletiva, SciELO Public Health, v. 3, p. 61–72, 1998.

GREENSFELDER, B.; VOGE, H.; GOOD, G. “Catalytic and thermal cracking of pure hy- drocarbons: Mechanisms of reaction”. Industrial & Engineering Chemistry, ACS Publications, v. 41, n. 11, p. 2573–2584, 1949.

HEWITT, G.; QUARINI, J.; MORELL, M. “More efficient distillation”. The Chemical Engi- neer, v. 21, p. 16–19, 1999.

HO, T.-J.; HUANG, C.-T.; LIN, J.-M.; LEE, L.-S. “Dynamic simulation for internally heat- integrated distillation columns (hidic) for propylene–propane system”. Computers & Chemical Engineering, Elsevier, v. 33, n. 6, p. 1187–1201, 2009.

HONEYWELL. “UniSim R

Design, Reference Guide”. [S.l.]: Honeywell, 2005.

HONEYWELL. “UNISIM DESIGN SUITE”. 2020. Disponível em: <https://www. honeywellprocess.com/en-US/online_campaigns/unisim-design/Pages/index.html>. Acesso em: 03 abr. 2020.

IEA, I. E. A. . “Emissions Statistics: An essential tool for analysts and policy makers”. 2019. Disponível em: <https://www.iea.org/statistics/co2emissions/>. Acesso em: 04 abr. 2020. IPCC. “Chapter 2: Stationary combustion”. 2006 IPCC guidelines for national greenhouse gas inventories, v. 2, 2006.

IPCC; TEAM, C. W. “Climate change 2014: Synthesis report”. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change, IPCC Geneva, Switzerland, v. 27, p. 408, 2014.

JARVELIN, H.; FAIR, J. R. “Adsorptive separation of propylene-propane mixtures”. Industrial & engineering chemistry research, ACS Publications, v. 32, n. 10, p. 2201–2207, 1993.

JENKINS, S. “2019 Chemical Engineering Plant Cost Index An-

nual Average”. 2020. Disponível em: <https://www.chemengonline.com/ 2019-chemical-engineering-plant-cost-index-annual-average/>. Acesso em: 30 jun. 2020. JESUS, N. J. C. d. et al. “Modelagem e controle de uma superfracionadora industrial de pro-

94 peno”. Dissertação (Mestrado) — UNIVERSIDADE ESTADUAL DE CAMPINAS, 11 2000. JUNQUEIRA, P. G.; MANGILI, P. V.; SANTOS, R. O.; SANTOS, L. S.; PRATA, D. M. “Eco- nomic and environmental analysis of the cumene production process using computational si- mulation”. Chemical Engineering and Processing-Process Intensification, Elsevier, v. 130, p. 309–325, 2018.

KAZEMI, A.; HOSSEINI, M.; MEHRABANI-ZEINABAD, A.; FAIZI, V. “Evaluation of dif- ferent vapor recompression distillation configurations based on energy requirements and asso- ciated costs”. Applied Thermal Engineering, Elsevier, v. 94, p. 305–313, 2016.

KIM, J.-K.; SMITH, R. “Cooling water system design”. Chemical Engineering Science, Else- vier, v. 56, n. 12, p. 3641–3658, 2001.

LEAL, G. C. G.; FARIAS, M. S. S. de; ARAUJO, A. F. “O processo de industrialização e seus impactos no meio ambiente urbano”. Qualitas revista eletrônica, v. 7, n. 1, 2008.

LIAO, B.; LEI, Z.; XU, Z.; ZHOU, R.; DUAN, Z. “New process for separating propylene and propane by extractive distillation with aqueous acetonitrile”. Chemical Engineering Journal, Elsevier, v. 84, n. 3, p. 581–586, 2001.

LOPES, P. G. J.; MANGILI, P. V.; PRATA, D. M. “AVALIAÇÃO ECONÔMICA DA INTENSI- FICAÇÃO DO PROCESSO DE PRODUÇÃO DE ETILBENZENO”. 1–85 p. — Universidade Federal Fluminense, 2018.

MADDEN, K.; YOUNG, R.; BRADY, K.; HALL, J. “Eco-efficiency: Learning module”. World Business Council for Sustainable Development, File Winds International, 2005.

MANGILI, P. V.; JUNQUEIRA, P. G.; SANTOS, L. S.; PRATA, D. M. “Eco-efficiency and techno-economic analysis for maleic anhydride manufacturing processes”. Clean Technologies and Environmental Policy, Springer, v. 21, n. 5, p. 1073–1090, 2019.

MANGILI, P. V.; PRATA, D. M. “NOVA METODOLOGIA PARA COMPARAÇÃO DA SUS- TENTABILIDADE DE PROCESSOS INDUSTRIAIS COM BASE EM INDICADORES DE DE- SEMPENHO PONDERADOS”. 1–130 p. Dissertação (Mestrado) — Universidade Federal Flu- minense, 2019a.

MANGILI, P. V.; PRATA, D. M. “Improvement of the butyl acetate process through heat in- tegration: A sustainability-based assessment”. Chemical Engineering and Processing-Process Intensification, Elsevier, v. 135, p. 93–107, 2019b.

MANGILI, P. V.; SANTOS, L. S.; PRATA, D. M. “A systematic methodology for comparing the sustainability of process systems based on weighted performance indicators”. Computers & Chemical Engineering, Elsevier, v. 130, p. 106558, 2019c.

MANGILI, P. V.; SOUZA, Y. P.; MENEZES, D. Q. de; SANTOS, L. S.; PRATA, D. M. “Eco-efficiency evaluation of acetone-methanol separation processes using computational si- mulation”. Chemical Engineering and Processing-Process Intensification, Elsevier, v. 123, p. 100–110, 2018.

MANN, A. N.; PARDEE, W. A.; SMYTH, R. W. “Vapor-liquid equilibrium data for propylene- propane system.” Journal of Chemical and Engineering Data, ACS Publications, v. 8, n. 4, p. 499–502, 1963.

MAUHAR, S. M.; BARJAKTAROVIC, B.; SOVILJ, M. “Optimization of propylene–propane distillation process”. Chem. Pap, v. 58, n. 6, p. 386–390, 2004.

MCTIC, M. D. C. T. I. E. C. “Fator médio – Inventários corporativos.” 2020. Disponí- vel em: <https://www.mctic.gov.br/mctic/opencms/ciencia/SEPED/clima/textogeral/emissao_ corporativos.html>. Acesso em: 15 abr. 2020.

ONU, O. das N. U. “A ONU e o meio ambiente”. 2020. Disponível em: <https://nacoesunidas. org/acao/meio-ambiente/>. Acesso em: 14 jul. 2020.

PEREIRA, C. P.; PRATA, D. M.; SANTOS, L. d. S.; MONTEIRO, L. P. “Development of eco-efficiency comparison index through eco-indicators for industrial applications”. Brazilian Journal of Chemical Engineering, SciELO Brasil, v. 35, n. 1, p. 69–90, 2018.

PERRY, R. H.; GREEN, D. W.; MALONEY, J. “Perry’s chemical engineers’ handbook”. 8. ed. New York: Mc Graw-Hills New York, 2008. 2735 p.

PETERS, M. S.; TIMMERHAUS, K. D.; WEST, R. E.; TIMMERHAUS, K.; WEST, R. “Plant design and economics for chemical engineers”. 5. ed. New York: McGraw-Hill New York, 2003.

RAMSHAW, C. “The incentive for process intensification”. In: MECHANICAL ENGINEE- RING PUBLICATIONS LIMITED. BHR Group Conference Series Publication. [S.l.], 1995. v. 18, p. 1–4.

RUIZ-MERCADO, G. J.; SMITH, R. L.; GONZALEZ, M. A. “Sustainability indicators for chemical processes: I. taxonomy”. Industrial & Engineering Chemistry Research, ACS Publi- cations, v. 51, n. 5, p. 2309–2328, 2012.

SALING, P.; KICHERER, A.; DITTRICH-KRÄMER, B.; WITTLINGER, R.; ZOMBIK, W.; SCHMIDT, I.; SCHROTT, W.; SCHMIDT, S. “Eco-efficiency analysis by basf: the method”. The International Journal of Life Cycle Assessment, Springer, v. 7, n. 4, p. 203–218, 2002. SEADER, J. D.; HENLEY, E. J.; ROPER, D. K. “SEPARATION PROCESS PRINCIPLES: Chemical and biochemical operations”. 3. ed. Hoboken: John Wiley & Sons, 2011.

SEIDER, W. D.; SEADER, J. D.; LEWIN, D. R. “PRODUCT AND PROCESS DESIGN PRIN- CIPLES: Synthesis, analysis, and evaluation”. 3. ed. Hoboken: John Wiley & Sons, 2009. SENEVIRATNE, M. “A practical approach to water conservation for commercial and indus- trial facilities”. 1. ed. [S.l.]: Elsevier, 2007.

SHAHRUDDIN, M. Z.; RAHIMI, A. N.; ZUBIR, M. A.; ZAHRAN, M. F. I.; IBRAHIM, K. A.; HAMID, M. K. A. “Energy integrated distillation column sequence by driving force method and pinch analysis”. Energy Procedia, Elsevier, v. 142, p. 3895–3901, 2017.

SINNOTT, R. “Chemical engineering design”. 4. ed. [S.l.]: Elsevier, 2014. v. 6.

SMITH, R. “Chemical process: design and integration”. 1. ed. Hoboken: John Wiley & Sons, 2005.

SOAVE, G. “Equilibrium constants from a modified redlich-kwong equation of state”. Chemical engineering science, Pergamon, v. 27, n. 6, p. 1197–1203, 1972.

96 PROCESSOS DE PRODUÇÃO DO 2-METÓXI-2-METILHEPTANO”. 1–89 p. — Universidade Federal Fluminense, 2019.

STANKIEWICZ, A. I.; MOULIJN, J. A. et al. “Process intensification: transforming chemical engineering”. Chemical engineering progress, AICHE AMERICAN INSTITUTE OF CHEMI- CAL, v. 96, n. 1, p. 22–34, 2000.

TOWLER, G.; SINNOTT, R. “Chemical engineering design: principles, practice and econo- mics of plant and process design”. 2. ed. Oxford: Elsevier, 2012.

TURTON, R.; BAILIE, R. C.; WHITING, W. B.; SHAEIWITZ, J. A. “Analysis, synthesis and design of chemical processes”. 2. ed. Michigan: Pearson Education, 2012.

USA, D. O. T. A. H. “Central boiler plants”. 1989. Disponível em: <https://www.wbdg.org/ FFC/ARMYCOE/COETM/tm_5_650.pdf>. Acesso em: 13 abr. 2020.

VERFAILLIE, H. A. “Measuring eco-efficiency: a guide to reporting company performance”. World Business Council for Sustainable Development, 2000, 2000.

WALAS, S. M. “Chemical Process Equipment: Selection and Design”. 2. ed. Massachusetts: Butterworth-Heinemann, 1990.

Documentos relacionados