• Nenhum resultado encontrado

5 CONCLUSÕES E SUGESTÕES

5.2 Sugestões para trabalhos futuros

Como sugestão para estudos futuros e um melhor entendimento da temática apresentada nessa dissertação, indico os seguintes pontos:

 Obtenção das curvas de breakthrough completa e da capacidade adsorvida no equilíbrio para a modelagem, simulação e otimização do processo.

 Testar outras técnicas de regeneração para avaliar melhor a regenerabilidade dos

 Caracterizar os materiais após a adsorção de H2S em relação a suas características

físico-químicas para observar as possíveis alterações nos adsorventes e evidências da ocorrência de quimissorção.

 Realizar estudos de simulação molecular para ajudar na compreensão e

REFERÊNCIAS

ADIB, F.; BAGREEV, A.; BANDOSZ, T. J. Analysis of the relationship between H2S removal capacity and surface properties of unimpregnated activated carbons. Environmental Science & Technology, v. 34, n. 4, p. 686–692, 2000.

AGUILERA, P. G.; GUTIÉRREZ ORTIZ, F. J. High performance regenerative adsorption of hydrogen sulfide from biogas on thermally-treated sewage-sludge. Fuel Processing Technology, v. 145, p. 148–156, 2016.

ALONSO-VICARIO, A. et al. Purification and upgrading of biogas by pressure swing adsorption on synthetic and natural zeolites. Microporous and Mesoporous Materials, v. 134, n. 1-3, p. 100–107, 2010.

ARESPACOCHAGA, N. DE et al. Biogas deep clean-up based on adsorption technologies for solid oxide fuel cell applications. Chemical Engineering Journal, v. 255, p. 593–603, 2014.

ARIAS, J. A. V. Remoción del sulfuro de hidrógeno (H2S (g))/ácido sulfhídrico (H2S (aq)) en el biogás. ECAG, n. 506, p. 16–21, 2010.

ATSDR - Agency for Toxic Substances and Disease Registry - Hydrogen Sulfide. EUA. Disponível em: <http://www.atsdr.cdc.gov/toxfaqs/tf.asp?id=388&tid>. Acesso em: 5 fev. 2016.

BAGREEV, A. et al. Desulfurization of digester gas: prediction of activated carbon bed performance at low concentrations of hydrogen sulfide. Catalysis Today, v. 99, n. 3-4, p. 329–337, 2005.

BAGREEV, A.; ADIB, F.; BANDOSZ, T. J. pH of activated carbon surface as an indication of its suitability for H2S removal from moist air streams. Carbon, v. 39, n. 12, p. 1897–1905, out. 2001.

BAGREEV, A.; BANDOSZ, T. J. A role of sodium hydroxide in the process of hydrogen sulfide adsorption/oxidation on caustic-impregnated activated carbons. Industrial & Engineering Chemistry Research, v. 41, n. 4, p. 672–679, 2002.

BAGREEV, A.; BANDOSZ, T. J. On the mechanism of hydrogen sulfide removal from moist air on catalytic carbonaceous adsorbents. Industrial & Engineering Chemistry Research, v. 44, n. 3, p. 530–538, 2005.

BALSAMO, M. et al. ZnO-CuO supported on activated carbon for H2S removal at room temperature. Chemical Engineering Journal, v. 304, p. 399–407, 2016.

BANDOSZ, T. J. Effect of pore structure and surface chemistry of virgin activated carbons on removal of hydrogen sulfide. Carbon, v. 37, n. 3, p. 483–491, 1999.

BANDOSZ, T. J. On the adsorption/oxidation of hydrogen sulfide on activated carbons at ambient temperatures. Journal of colloid and interface science, v. 246, n. 1, p. 1–20, 2002.

BRETSCHNEIDER, B.; KURFURST, J. Air pollution control technology. Amsterdam: Elseiver, 1987.

CAL, M. et al. High temperature hydrogen sulfide adsorption on activated carbon: II effects of gas temperature, gas pressure and sorbent regeneration. Carbon, v. 38, p. 1767–1774, 2000.

CAL, M. P.; STRICKLER, B. W.; LIZZIO, A. A. High temperature hydrogen sulfide adsorption on activated carbon: I effects of gas composition and metal addition. Carbon, v. 38, n. 13, p. 1757–1765, 2000.

CASSINI, S. T.; COELHO, S. T.; GARCILASSO, V. P. Biogás – Biocombustíveis ANP. In: PERLINGEIRO, C. A. G. (Ed.). Biocombustíveis no Brasil: fundamentos, aplicações e perspectivas. 1a. ed. Rio de Janeiro: Synergia, 2014. p. 136–167.

CASTRILLON, M. C. et al. CO2 and H2S removal from CH4-rich streams by adsorption on activated carbons modified with K2CO3, NaOH or Fe2O3. Energy & Fuels, p. acs.energyfuels.6b01667, 2016.

CAVALCANTE JR, C. L. Separação de misturas por adsorção: dos fundamentos ao processamento em escala comercial. 1998. 188 f. Tese submetida ao concurso público para Professor Titular do Departamento de Engenharia Química da UFC – Universidade Federal do Ceará, Fortaleza, 1998.

CCE – Centro para conservação de energia. In: Guia Técnico de Biogás. Amadora – Portugal. p. 117.

CETÉS. Química Orgânica, 2008. Disponível em:

<https://pt.scribd.com/doc/131802485/2974917-Quimica-CETES-Organica-a-Compostos- Organicos>. Acesso em: 20 de set. de 2016.

CHEN, Q. et al. Alkaline carbon nanotubes as effective catalysts for H2S oxidation. Carbon, v. 49, n. 12, p. 3773–3780, 2011.

CHIANG, H. L. et al. Adsorption characteristics of alkaline activated carbon exemplified by water vapor, H2S, and CH3SH gas. Separation Science and Technology, v. 35, n. 6, p. 903– 918, 2000.

CHOO, H. S. et al. Hydrogen sulfide adsorption by alkaline impregnated coconut shell activated carbon. Journal of Engineering Science and Technology, v. 8, n. 6, p. 741–753, 2013.

CRESPO, D. et al. Superior sorbent for natural gas desulfurization. Industrial and Engineering Chemistry Research, v. 47, n. 4, p. 1238–1244, 2008.

DANTAS, T. L. P. Separação de dióxido de carbono por adsorção a partir de misturas sintéticas do tipo gás de exaustão. 2009. 172 f. Tese (Doutorado em Engenharia Química) - Centro Tecnológico, Universidade Federal de Santa Catarina, Florianópolis, 2009.

Solvent Recovery. Disponível em: <http://www.donau- carbon.com/Downloads/desorex_supersorbon.aspx>. Acesso em: 15 mar. 2016.

DEUBLEIN, D.; STEINHAUSER, A. Biogas from Waste and Renewable Resources. 2. ed. Weinheim: Wiley-VCH Verlag GmbH e Co KGaA, 2011.

DONAU CARBON. Disponível em: <http://www.donau-carbon-us.com/Products- Solutions/Aktivkohle.aspx>. Acesso em: 24 mar. 2016.

DUAN, J. et al. High CO2/N2/O2 /CO separation in a chemically robust porous coordination polymer with low binding energy. Chem. Sci., v. 5, n. 2, p. 660–666, 2014.

ELSAYED, Y. et al. Desulfurization of air at high and low H2S concentrations. Chemical Engineering Journal, v. 155, n. 3, p. 594–602, 2009.

ENADE - Curva de breakthroug. Disponível em: <http://enadepucrs.uni5.net/enade/prova- quimica/>. Acesso em: 23 abr. 2016.

FACHAGENTUR NACHWACHSENDE ROHSTOFFE E. V. Guia Prático do Biogás: geração e utilização. 5a. ed. Gülzow: Fachagentur Nachwachsende Rohstoffe e.V. (FNR), 2010.

FAUTEUX-LEFEBVRE, C. et al. Carbon nanofilaments functionalized with iron oxide nanoparticles for in-depth hydrogen sulfide adsorption. Industrial and Engineering Chemistry Research, v. 54, n. 37, p. 9230–9237, 2015.

FENG, W. et al. Adsorption of hydrogen sulfide onto activated carbon fibers: effect of pore structure and surface chemistry. Environmental Science and Technology, v. 39, n. 24, p. 9744–9749, 2005.

GENTIL, V. Corrosão. 4a. ed. Rio de Janeiro: Livros Técnicos e Científicos, 2003.

Greenpro, Bioenergia: manual sobre tecnologias, projecto e instalação, IST, DGS, Ecofys, Altener, 242 p., 2004.

GODOI, A. F. L.; MONTONE, R. C.; SANTIAGO-SILVA, M. Determination of butyltin compounds in surface sediments from the Sao Paulo state coast (Brazil) by gas chromatography–pulsed flame photometric detection. Journal of Chromatography A, v. 985, n. 1-2, p. 205–210, 2003.

GOMIDE, R. Operações Unitárias: separações mecânicas. São Paulo: Edição do autor, 1980.

GOR, G. Y. et al. Quenched solid density functional theory method for characterization of mesoporous carbons by nitrogen adsorption. Carbon, v. 50, n. 4, p. 1583–1590, 2012.

GUIDOTTI, T. L. Hydrogen sulphide. Occupational medicine (Oxford, England), v. 46, n. 5, p. 367–371, 1996.

GUPTA, V. K.; SUHAS. Application of low-cost adsorbents for dye removal - a review. Journal of Environmental Management, v. 90, n. 8, p. 2313–2342, 2009.

H2S-Removal-E - Donau Carbon Corporation. Disponível em: <http://www.donau- carbon-us.com/Downloads/H2S-Removal-E.aspx>. Acesso em: 30 mar. 2016.

HEYMANS, N.; VAESEN, S.; WEIRELD, G. DE. A complete procedure for acidic gas separation by adsorption on MIL-53 (Al). Microporous and Mesoporous Materials, v. 154, p. 93–99, 2012.

KO, T. H.; CHU, H.; CHAUNG, L. K. The sorption of hydrogen sulfide from hot syngas by metal oxides over supports. Chemosphere, v. 58, n. 4, p. 467–474, 2005.

LAU, L. C. et al. Hydrogen sulfide removal using CeO2/NaOH/PSAC: effect of process conditions and regeneration study. Journal of Environmental Chemical Engineering, v. 4, n. 3, p. 3479–3483, 2016.

LI, J.-R.; KUPPLER, R. J.; ZHOU, H.-C. Selective gas adsorption and separation in metal– organic frameworks. Chem. Soc. Rev., v. 38, n. 5, p. 1477, 2009.

LIU, X.; WANG, R. Effective removal of H2S using polyethylene polyamine loading attapulgite. Petroleum & Coal, v. 56, n. 5, p. 503–508, 2014.

LOZANO-CASTELLÓ, D.; CAZORLA-AMORÓS, D.; LINARES-SOLANO, A. Usefulness of CO2 adsorption at 273 K for the characterization of porous carbons. Carbon, v. 42, n. 7, p. 1231–1236, 2004.

LUCENA, S. M. P. et al. The effect of heterogeneity in the randomly etched graphite model for carbon pore size characterization. Carbon, v. 48, n. 9, p. 2554–2565, 2010.

MAINIER, F. B.; ROCHA, A. DE A. H2S: novas rotas de remoção química e recuperação de enxofre. In: Congresso Brasileiro de P&D em Petróleo & Gás, 2., 2003, Rio de Janeiro. Anais...Rio de Janeiro: UFRJ, 2003.

MAINIER, F. B.; SANDRES, G. C.; TAVARES, S. S. M. Corrosão por sulfeto de hidrogênio (H2S) e suas implicações no meio ambiente e na segurança industrial. In: Congresso Iberoamericano de Engenharia Mecânica, 8., 2007, Cusco. Anais...Cusco, Peru: Pont. Universidad Católica del Peru, 2007.

MAINIER, F. B.; VIOLA, E. D. M. O sulfeto de hidrogênio (H2S) e o meio ambiente. II Simpósio de Excelência em Gestão e Tecnologia, p. 612–618, 2005.

MARTÍN-MARTÍNEZ, J. M. Adsorcíon física de gases y vapores por carbones. Alicante: Universidad de Alicante, 1990.

MENG, X. et al. In bed and downstream hot gas desulphurization during solid fuel gasification: A review. Fuel Processing Technology, v. 91, n. 8, p. 964–981, 2010.

MONTELEONE, G. et al. Deep H2S removal from biogas for molten carbonate fuel cell (MCFC) systems. Chemical Engineering Journal, v. 173, n. 2, p. 407–414, 2011.

NAGL, G. J. Removing H2S from Gas Streams. Chem. Eng., v. 108, n. 7, p. 97–100, 2001.

OLIVIER, J. P. Modeling physical adsorption on porous and nonporous solids using density functional theory. Journal of Porous Materials, v. 2, n. 1, p. 9–17, 1995.

OSHA. Hydrogen Sulfide (H2S). Disponível em:

<https://www.osha.gov/OshDoc/data_Hurricane_Facts/hydrogen_sulfide_fact.pdf>.

RICHARDS, J. Control of Gaseous Emissions: student manual. United State: ICES Ltd, 2000.

RIOS, R. B. et al. Evaluation of carbon dioxide–nitrogen separation through fixed bed measurements and simulations. Adsorption, v. 20, n. 8, p. 945–957, 2014.

RODRIGUES, A. E.; DIAS, M. M. Processos de adsorção em leito fixo: fundamentos. In: CYTED (Ed.). . Adsorbentes en la solución de algunos problemas ambientales. Madrid. p. 79–94.

ROUQUEROL, F. et al. Adsorption by powders and porous solids. 2a. ed. London: Academic Pres, 2014.

ROUQUEROL, F.; ROUQUEROL, J.; SING, K. Adsorption by powders and porous solids: principles, methodology, and applications. San Diego: Academic Pres, 1999.

ROVERE, E. L. LA et al. Sustainable expansion of electricity sector: sustainability indicators as an instrument to support decision making. Renewable and Sustainable Energy Reviews, v. 14, n. 1, p. 422–429, 2010.

RUTHVEN, D. M. Fundamentals of adsorption equilibrium and kinetics in microporous solids. In: Molecular Sieves: science and technology, adsorption and diffusion. Springer Berlin Heidelberg, 2008. v. 7p. 1–43.

SALOMON, K. R. Avaliação técnico-econômica e ambiental da utilização do biogás proveniente da biodigestão da vinhaça em tecnologias para geração de eletricidade. 2007. 219 f. Tese (Doutorado em Engenharia Mecânica) - Instituto de Engenharia Mecânica, Universidade Federal De Itajubá, Itajubá, 2007.

SANDRES, G. C.; MAINIER, F. B. Sistema de gestão integrado interno contra vazamentos acidentais de sulfeto de hidrogênio (H2S) em refinarias de petróleo. Niterói, RJ: 2009.

SEATON, N. A.; WALTON, J. P. R. B.; QUIRKE, N. A new analysis method for the determination of the pore size distribution of porous carbons from nitrogen adsorption measurements. Carbon, v. 27, n. 6, p. 853–861, 1989.

SILVA, M. B. DA. Influência do tipo de meio suporte no desempenho de biofiltros aplicados à remoção de H2S do ar atmosférico em sistemas de esgoto sanitário. 2008. 156 f. Dissertação (Mestrado em Egenharia Ambiental) - Centro Tecnológico, Universidade Federal do Espírito Santo, 2008.

SITTHIKHANKAEW, R. et al. Temperature program adsorption of hydrogen sulfide by NaOH-impregnated activated carbons for hot fuel gas purification. IEEE First Conference on Clean Energy and Technology CET performance, p. 384–388, 2011.

SITTHIKHANKAEW, R. et al. Performance of sodium-impregnated activated carbons toward low and high temperature H2S adsorption. Chemical Engineering Communications, v. 201, n. 2, p. 257–271, 2013.

SITTHIKHANKAEW, R. et al. Effect of KI and KOH impregnations over activated carbon on H2S adsorption performance at low and high temperatures. Separation Science and Technology, v. 6395, n. January 2016, p. 354–366, 2014a.

SITTHIKHANKAEW, R. et al. Effects of humidity, O2, and CO2 on H2S adsorption onto upgraded and KOH impregnated activated carbons. Fuel Processing Technology, v. 124, p. 249–257, ago. 2014b.

SOUZA, J. R. DE. Dessulfurização de gás natural usando peneiras moleculares. 2002. 103 f. Dissertação (Mestrado em Engenharia Química) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2002.

THOMMES, M. et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, v. 87, n. 9-10, p. 1051–1069, 2015.

TSAI, J.; JENG, F.-T.; CHIANG, H.-L. Removal of H2S from exhaust gas by use of alkaline activated carbon. Adsorption, v. 7, p. 357–366, 2001.

TSUKADA, M. et al. Dry gas cleaning in coal gasification systems for fuel cells using composite sorbents. Powder Technology, v. 180, n. 1-2, p. 232–238, 2008.

XIAO, Y. et al. Experimental and simulation study of hydrogen sulfide adsorption on impregnated activated carbon under anaerobic conditions. Journal of Hazardous Materials, v. 153, n. 3, p. 1193–1200, 2008.

YAN, R. et al. Kinetics and mechanisms of H2S adsorption by alkaline activated carbon. Environmental Science and Technology, v. 36, n. 20, p. 4460–4466, 2002.

YAN, R. et al. Influence of surface properties on the mechanism of H2S removal by alkaline activated carbons. Environmental Science & Technology, v. 38, n. 1, p. 316–323, 2004.

YIN, F. et al. Sulfidation of a novel iron sorbent supported on lignite chars during hot coal gas desulfurization. Physics Procedia, v. 24, p. 290–296, 2012.

ZICARI, S. M. Removal of hydrogen sulfide from biogas using cow-manure compost. 2003. 132 f. Thesis (Degree of Master of Science) - Faculty of the Graduate School of Cornell University, Ithaca, 2003.

Documentos relacionados