• Nenhum resultado encontrado

6. CONCLUSÕES

6.1 SUGESTÕES PARA TRABALHOS FUTUROS

Sugere-se inicialmente como trabalho futuro uma análise mais aprofundada do efeito da influência do pH na produção dos biocombustíveis. Usualmente utiliza-se um pH médio de 7±0,10, mas há relatos na literatura de que outras algas verdes unicelulares como a Chlorella e Spirulina requerem pH alcalinos, em torno de 10, para que haja o crescimento da biomassa (KOTHARI et al., 2012). Neste contexto, a identificação de uma faixa de pH pode ser investigada em relação a produção de H2. Além de fornecer outras informações com relação ao

comportamento metabólico das algas para a síntese de inúmeros produtos do metabolismo. A avaliação do efeito de nutrientes como fosfato e traços de metais para a produção de H2 é recomendada. Alguns poucos estudos mostraram que o fosfato influência positivamente

na produção de hidrogênio (SUALI e SARBATLY, 2012). Enquanto que os traços de metais (ver Tabela 3.3) podem influenciar diretamente na atividade da enzima responsável pela evolução do hidrogênio através do sistema fermentativo no qual algas verdes são utilizadas. Uma vez que é sabido que alguns destes metais, como o ferro, tem a função de cofator na ativação de enzimas ([FeFe]-hidrogenase).

Reavaliar o sistema híbrido e co-cultura utilizado meio de fermentação com concentrações de enxofre de 10 mg de SO42- e os melhores resultados do planejamento fatorial

23 com fontes de carbono.

Por fim, sugere-se ainda como atividade futura a avaliação da adição de outras fontes de carbono que possam potencializar a síntese isolada ou simultânea dos biocombustíveis avaliados neste estudo. Além da investigação de outras configurações de sistemas fermentativos como reatores de coluna de bolhas ou tanque agitado.

REFERÊNCIAS

7

REFERÊNCIAS

AKKERMAN, I.; JANSSEN, M.; ROCHA, J.; WIJFFELS, R. H. Photo biological hydrogen production: photochemical efficiency and bioreactor design. International Journal Hydrogen Energy, v. 27, p. 1195-1208, 2002.

AMIN, S. Review on biofuel and gas production process from microalgae. Energy Conversion an Mangement, Indonesia, p. 1834-1840, 2009.

AMORIN, E. L. Efeito na concentração de glicose e da alcalinidade na produção de hidrogênio em reator anaeróbico de leito fluidificado, Dissertação de Doutorado, São Carlos, 2009, 135 p. AMROUCHE, D. A., ABDI, N., LOUNICI, H.; MAMERI, N. Effect of physic-chemical parameters on biohydrogen production and growth characteristics by batch culture of Rhodobacter sphaeroides CIP 60.6. Applied Energy, v. 88, p. 2013-2135, 2011.

ANDERSEN, R. A., Algal culturing techniques (Ed), London Elsevier Academic Press, 2005, 578 p.

BALAT, M. Possible methods for hydrogen production. Energy Source, v. 21, p. 39-50, 2009. BARBOSA, M. J.; ROCHA, J. M.; TRAMPER, J.; WIJFFELS, R. H. Acetate as a Carbon Source for Hydrogen Production by Photosynthetic Bacteria. Journal of Biotechnology, v. 85, p. 25–33, 2001.

BATISTA, A. P.; MOURA, P.; MARQUES, P. A.; ORTIGUEIRA, J.; ALVES, L.; GOUVEIA, L. Scenedesmus obliquus as feedstock for biohydrogen production by Enterobacter aerogenes and Clostridium butyricum. Fuel, v. 117, p.537-543, 2014.

BENEMANN, J. R.; MIYAMOTO, K.; HALLENBECK, P. C. Bioengineering aspects of biophotolysis. Enzyme Microbial Technology, v. 2, p. 103–111, 1980.

BRUNSTEIN, I.; TOMIYA, E. H.; Modelo econômico de empresa sucroalcooleira, Scielo Brasil, v. 2, 1995.

ÇAKMAK, Z. E.; ÖLMEZ, T. T.; ÇAKMAK, T.; MENEMEM, Y.; TEKINAY, T. Induction of triacylglycerol production in Chlamydomonas renhardtii: Comparative analysis of different element regimes. Bioresoure Techonology, v. 155, p. 379-387, 2014.

CHEN, H.; MELIS, A. Marker-free genetic engineering of the chloroplast in the green microalga Chlamydomonas reinhardtii. Plant Biotechnology Journal, v. 11, p. 818-828, 2013. CHEN, H.; NEWTON, A.; MELIS, A. Role of SulP, a nuclear-encoded chloroplast sulfate permease, in sulfate transport and H evolution in Chlamydomonas reinhardtii. Photosynthese, v. 4, p. 289–296, 2005.

CHOCHOIS, V.; DAUVILLE, D.; BEYLY, A.; TOLLEER, D.; CUINE, S.; TIMPANO, H.; PELTRIER, G. Hydrogen production in Chlamydomonas: photosystem II-dependent and-

independent pathways differ in their requirement for starch metabolism. Plant Physiology, v. 151, p. 631-640, 2009.

CHOI, S. P.; NGUYEN, M. T.; SIM, S. J. Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresource Technology. v. 101, p. 5330-5336, 2010.

CLESCERI, L. S.; EATON, A. D.; GREENBERG, A. E. Standard Methods for the Examination of Water and Wastewater. ed. 20th. American Public Health Association, D.C, 1998, 1220 p.

DAS, D.; VEZIROGLU, N. T. Hydrogen production by biological processes: a survey of literature. International Journal Hydrogen Energy, v. 26, p. 13-28, 2001.

DASGUPTA, C. N.; GILBERT, J. J.; LIMDBLAD, P.; HEIDORN, T.; BORGVANG, S. A.; SKJANES, K.; DAS, D. Recent trends on the development of photo biological processes and photo bioreactors for the improvement of hydrogen production. Internacional Jornal of Hydrogen Energy, v. 35, p.10218-10238, 2010.

ETE, EMPRESA DE PESQUISA ENERGÉTICA, Balanço Energético Nacional 2013: Ano base 2012. Rio de Janeiro-RJ: EPE, 2013.

GHIRARDI, M.; ZHANG, L.; LEE, J. W.; FLYNN, T.; SEIBERT, M.; GREENBAUM, E. Microalgae: a green source of renewable hydrogen. Trends Biotechnology, v. 18, p. 506-511, 2000.

GODDE, D.; TREBST, A. NADH as electron donor for the photosynthetic membrane of Chlamydomonas reinhardtii. Arch Microbiology Journal, v. 127, p. 245-252, 1980.

HALLEMBECK, P. C.; GHOSH, D. Advances in fermentative biohydrogen production: the way forward? Trends Biotechnology Journal, v. 27, p. 287-297, 2009.

HALLENBECK, P.; BENEMANN, J. R. Biological hydrogen production, fundamentals and limiting processes. International Journal of Hydrogen Energy, v. 27, p. 1185-1193, 2002. HAPPE, T.; KAMINSKI, A. Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii. European Biochemical Journal, v. 269, p. 1022-1032, 2002.

JACOBS-LOPES, E. Sequestro de dióxido de carbono em fotobiorreatores. Campinas, 2007. KAWAGUCHI, H.; HASHIMOTO, K.; HIRATA, K.; MIYAMOTO, K. Hydrogen production from algal biomass by a mixed culture of Rhodobium marinum A-501 and Lactobacillus amylovorus. Journal Bioscience Bioengineering, v. 91, p. 277-282, 2001.

KIM, J. P.; KANG, C. D.; PARK, T. H.; KIM, M. S.;SIM, S. J.. Enhanced hydrogen production by controlling light intensity in the sulfur-deprived Chlamydomonas reinhardtii culture. International Journal of Hydrogen Energy, v. 31, p. 1585-1590, 2006 a.

KIM, M.S.; BAEK, J. S.; YUN, Y. S.; SIM, S. J.; PARK, S. KIM, S. C.. Hydrogen production from Chlamydomonas reinhardtii biomass using a two-step conversion process: Anaerobic conversion and photosynthetic fermentation. International Journal of Hydrogen Energy, v. 31, p. 812-816, 2006 b.

KOSOUROV, S.; PATRUSHEVA, E.; GHIRARDI, M. L.; SEIBERT, M.; TSYGANKOV, A. A comparison of hydrogen photo production by sulfur-deprived Chlamydomonas reinhardtii under different growth conditions. Journal of Biotechnology, v. 128, p. 776-787, 2007.

KOSOUROV, S.; SEIBERT, M. Hydrogen production by nutrient-deprived Chlamydomonas reinhardtii cells immobilized within thin alginate films under aerobic and anaerobic conditions. Biotechnology Bioengineering, v. 102, p. 50–58, 2008.

KOSOUROV, S.; SEIBET, M.; GHIRARDI, M. L. Effects of extra cellular pH on the metabolic pathways in the sulfur-deprived H2 producing Chlamydomonas reinhardtii cultures. Plants Cell

Physiology, v. 44, p. 146-155, 2003.

KOTHARI, R.; SINGH, D.; TYAGI, V. V.; TYAGI, S. K. Fermentative hydrogen production –An alternative clean energy source. Renewable and Sustainable Energy Reviews, v. 16, p. 2337-2346, 2012.

KOTYK, Anorst. Zrak získany z ras. 2008, Disponível em: <http://www.veda.cz/aeticle.do?articleId=26215>. Acesso em: 24 de Maio de 2014.

LAURINAVICHENE, T. V.; FEDOROV, A. S.; GHIRARDI, M. L.; SEIBERT, M.; TSYGANKOV, A. A. Demonstration of sustained hydrogen photo production by immobilized, sulfur –deprived Chlamydomonas reinhardtii cells. International Journal of Hydrogen Energy, v. 31, p. 659-667, 2006.

LEHR, F.; MORWEISER, M.; SASTRE, R. R.; KRUSE, O.; POSTEN, C. Process development for hydrogen production with Chlamydomonas renhardtii based on growth and product formation kinetics. Journal of Biotechnology, v. 162, p. 89-96, 2012.

LEVIN, D. B.; PITT, L.; LOVE, M. Bio hydrogen production: prospects and limitations to practical application. International Journal Energy, v. 29, p. 173-185, 2004.

LI, X.; HUANG, S.; YU, J.; WANG, Q.; WU, S. Improvement of hydrogen of Chlamydomonas reinhardtii by co-cultivation with isolated bacteria. International Journal of Hydrogen Energy. v. 38, p. 10779-10787, 2013.

LIBESSART, N; MADDELEIN, M. L.; KOORNHUYSE, N.; DECQ, A.; DELRUE, B.; MOUILLE, G.; D´HULST, C.; BALL. S. Storage, photosynthesis and growth: the conditional nature of mutations affecting starch synthesis and structure in Chlamydomonas reinhardtii. Plant Cell, v. 7, p. 1117-1127, 1995.

MADAMWAR, D.; GARG, N.; SHAH, V. Cyanobaterial hydrogen production. World Journal Microbial Biotechnology, v.16, p. 757-767, 2000.

MCKINLAY, J. B.; HARWOOD, C. S. Photo biological production of hydrogen gas as a biofuel. Current Opinion in Biotechnology, v. 21, p. 244-251, 2010.

MELIS, A. Green alga hydrogen production: progress, challenges and prospects. International Journal of Hydrogen Energy, v. 27, p. 1217-1228, 2002.

MELIS, A. Photosynthetic H2 metabolism in Chlamydomonas reinhardtii. Plant, v. 226, p.

1075–1086, 2007.

MELIS, A.; HAPPE, T. Hydrogen production. Green Algae as a source of energy. Plant Physiology, v. 127, p. 3740-3748, 2001.

MELIS, A.; XHANG, L. P.; FORESTIER, M.; GHIRARLDI, M. L.; SEIBERT, M. Sustained photo biological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas renhardtii. Plant physiology, v. 122, p. 127-135, 2000.

MERCHANT, S. S.; PROCHNIK, S. E.; VALLON, O. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science, v. 318, p. 245-250, 2007.

MERCHANT, S.; ALLEN, M. D.; KROPAT, J.; MOSELEY, J. L.; LONG, J. C.; TOTTEY, S.; TERAUCHI, A. M. Between a rock and a hard place: trace element nutrition in Chlamydomonas. Atca Biochemical et Biophysical, v. 1763, p. 578-594, 2006.

MIURA, Y. Hydrogen production by bio photolysis based on microalgae photosynthesis. Process Biochemistry, v. 30, p. 1-7, 1995.

MOLINA GRIMA, E.; ACIEN FERNANDEZ, F. G. C.; CHISTI, Y. Photo bioreactors: light regime, mass transfer, and scale up. Journal of biotechnology, v. 70, p. 231-247, 1999.

MUS, F.; DUBINI, A.; SEIBERT, M.; POSEWITZ, M. C.; GROSSMAN, A. R. Anaerobic Acclimation in Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase induction, and metabolic pathways. The Journal of Biological Chemistry, v. 282, p. 25475-25486, 2007. OHTA, S.; MIYAMOTO, K.; MUIRA, Y. Hydrogen evolution as a consumption mode of reducing equivalents in green algal fermentation. Plant Physiology. v. 83, p. 1022-1026. 1987. OLIVEIRA, T. V. Avaliação da produção de hidrogênio empregando bactérias fotossintetizantes. 2014. 92 f. Dissertação (Mestrado em Bioquímica), Universidade Federal de Uberlândia. Uberlândia, 2014.

PHILIPPS, G.; KRAWIETZ, D.; HEMSCHEMEIER, A.; HAPPE, T. A pyruvate formate lyase-deficient Chlamydomonas reinhardtii strain provides evidence for a link between fermentation and hydrogen production in green algae. The Plant Journal, v. 66, p. 330-340,

SMITH, G. D.; EWART, G. D.; TUCKER, W. Hydrogen production by cyanobacteria. International Journal Hydrogen Energy, v. 17, p. 695–708, 1992.

STUART, T.; GAFFRON, H. The mechanism of hydrogen photo production by several algae: II. The contribution of photosystem II. Plant, v. 106, p. 101-112, 1972.

SUALI, E.; SARBATLY, R. Conversion of microalgae to biofuel. Renewable and Sustainable Energy Reviews, v. 16, p. 4316-4342, 2012.

TAMBURIC, B.; ZEMICHAEL, F. W.; MAITLAND, G. C.; HELLGARDT, K. Parameters affecting the growth and hydrogen production of the green alga Chlamydomonas reinhardtii. Journal Hydrogen Energy, v. 36, p. 7872-7876, 2011.

TAYGANKOV, A. A.; BORODIN, V. B.; RAO, K. K.; HALL, D. H photo production by batch culture of Anabaena variables ATCC 28413 and its mutant PK84 in a photo bioreactor. Biotechnology Bioengineering, v. 64, p. 709-715, 1999.

TCHOBANOGLOUS, G.; BURTON, F. L.; METCALF, D. H.; EDDY, A. Wastewater Engineering: Treatment and reuse. McGraw Hill. 2003.

TEVATIA, R.; DEMIREL, Y.; BLUM, P. Kenitc modeling of photoautotrophic growth and neutral lipid accumulation in terms of ammonium concentration in Chlamydomonas renhardtii. Bioresource Technology, p. 419-424, 2012.

TSYGANKOV, A. A.; KOSOUROV, N. S.; TOLSTYGINA, I. V.; GHIRARDI, M. L.; SEIBERT, M.. Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions, v. 31, p. 1574 – 1584, 2006.

TSYGANKOV, A.; KOSOUROV, S.; SEIBERT, M.; GHIRARDI, M. L. Hydrogen photo production under continue illumination by sulfur-deprived, synchronous Chlamydomonas reinhardtii cultures. International Journal Hydrogen Energy, v. 27, p. 1239-1244, 2002. WEAVER, P. F.; WALL, J. D.; GEST, H. Characterization of Rhodopseudomonas capsulate. Archives of Microbiology, v. 105, p. 207-216, 1975.

WU, S.; LI, X.; YU, J.; WANG, Q. Increased hydrogen production in co-culture of Chlamydomonas reinhardtii and Bradyrhizobium japonicum. Bioresource Technology, v. 123, p.184-188, 2012.

WYKOFF, D.; DAVIES, J. P.; GROSSMAN, A. R. The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiology, v. 117, p. 129-139, 1998.

YANG, D.; ZHANG, Y.; BARUPAL, D. K.; FAN, X.; GUSTAFSON, R.; GUO, R.; FIEHN, O.. Metabolomics of photo biological hydrogen production induced by CCCP in Chlamydomonas reinhardtii. International Journal of hydrogen Energy, v. 39, p. 150-158, 2014.

Documentos relacionados