• Nenhum resultado encontrado

6. CONSIDERAÇÕES FINAIS

6.2 Sugestões para trabalhos futuros

A partir das discussões desenvolvidas neste trabalho, são sugeridas as seguintes investigações para trabalhos futuros:

 Realizar os ensaios da terceira etapa do programa experimental com os mesmos ciclos de carregamento, porém realizando o ensaio de Velocidade de Pulso Ultrassônico durante o carregamento e o descarregamento do corpo de prova.

 Expandir o estudo da relação entre acustoelasticidade e composição do concreto para um número maior de traços.

 Simular numericamente a propagação das ondas mecânicas em prismas e cilindros sob tensão a fim de investigar melhor a influência da geometria no fenômeno.

 Investigar a influência da presença de armaduras nos resultados dos ensaios para avaliação da acustoelasticidade.

 Investigar a influência da danificação e da acustoelasticidade sobre a Velocidade de Pulso Ultrassônico em alvenaria.

REFERÊNCIAS

ABRAHAM, O. et al. Non-contact, automated surface wave measurements for the mechanical characterization of concrete. Construction and Building Materials, v.

37, p.904-915, 2012.

AGGELIS, D. G. et al. Acoustic emission and ultrasound for damage characterization of concrete elements. ACI Materials Journal, v. 106, p.509-514, 2009.

AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM C 597-09: Standard Test Method for Pulse Velocity through Concrete. West Conshohocken, 2009.

ANDREUCCI, R. Ensaio por ultrassom. São Paulo: Associação Brasileira de Ensaios Não Destrutivos – ABENDI, 2016.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 8802: Concreto

Endurecido - Determinação da velocidade de propagação de onda ultrassônica. Rio de Janeiro, 2013.

BLANCO, A. S. Acoustoelastic effects of surface waves in concrete subjected to compressive and bending stresses. 2015. 142p. Dissertação (Mestrado em Engenharia Civil) – University of Illinois, Urbana, 2015.

BUNGEY, J.H.; MILLARD, S.G.; GRANTHAM, M.G. Testing of concrete in structures. 4 ed. Nova York: Taylor & Francis, 2006.

CARMO, D. C. do et al.; Identificação por ultra-som das regiões de tensões trativas e compressivas numa barra fletida. Tecnologia em Metalurgia e Materiais, v.4, p.13-17, 2007.

CLEMEÑA, G.G. Short-pulse radar methods. In: MALHOTRA, V.M.; CARINO, N.J.

Handbook on nondestructive testing of concrete. 2 ed. Boca Raton: CRC Press, 2004.

CRAWFORD, G. I. Guide to nondestructive testing of concrete. Washington:

Federal Highway Administration, 1997.

DAPONTE, P; MACERI, F.; OLIVITO, R.S. Frequency-domain analysis of ultrasonic pulses for the measure of damage growth in structural materials. In: ULTRASONICS SYMPOSYUM PROCEEDINGS, 1990.

GOKHALE, S. Determination of applied stresses in rails using the

acoustoelastic effect of ultrasonic waves. 2007. 100p. Dissertação (Mestrado em Engenharia Civil) – Texas A&M University, College Station, 2007.

GRÊT, A.; SNIEDER, R.; SCALES, J. Time-lapse monitoring of rock properties with coda wave interferometry. Journal of Geophysical Research, v.3, 2006.

HAACH, V.G. CWI. São Carlos: [s.n.], 2016. Programa elaborado pelo professor Vladimir G. Haach.

HAACH, V. G.; JULIANI, L. M.; ROZ, M. R. Ultrasonic evaluation of mechanical properties of concretes produced with high early strength cement. Construction and Building Materials. v.96, p.1-10, 2015.

HUGHES, D.S.; KELLY, J.L. Second-order elastic deformation of solids. Physical Review. v.92, p.1145-1149, 1953.

INTERNATIONAL ATOMIC ENERGY AGENCY. Guidebook on nondestructive testing of concrete structures. Vienna, 2002.

JONES, R.; FACAOARU, I. Recommendations for testing concrete by the ultrasonic pulse method. Materials and Structures. v.2, p.275-284, 1969.

KLEITSA, D. et al. Assessment of metal strand wire pre-stress in anchor head by ultrasonics. NDT&E International. v.43, p. 547-554, 2010.

KRAUTKRÄMER, J.; KRATKRÄMER, H. Ultrasonic testing of materials. 4 ed.

Berlim: Springer-Verlag, 1990.

LAROSE, E.; HALL, S. Monitoring stress related velocity variation in concrete with a 2.10-5 relative resolution using diffuse ultrasound. Journal of the Acoustical Society of America, v. 125, p. 1853-1856, 2009.

LAUER, K.R. Magnetic/electrical methods. In: MALHOTRA, V.M.; CARINO, N.J.

Handbook on nondestructive testing of concrete. 2 ed. Boca Raton: CRC Press, 2004.

LILLAMAND, I. et al. Acoustoelastic effect in concrete material under uni-axial compressive loading. NDT&E International, v. 43, p.655-660, 2010.

LUNDQVIST, P.; RYDÉN, N. Acoustoelastic effects on the resonance frequencies of prestressed concrete beams – Short-term measurements. NDT&E International, v.50, p.36-41, 2012.

MALHOTRA, V.M. Surface hardness methods. In: MALHOTRA, V.M.; CARINO, N.J.

Handbook on nondestructive testing of concrete. 2 ed. Boca Raton: CRC Press, 2004.

MALHOTRA, V.M.; CARETTE, G.G. Penetration resistance methods. In:

MALHOTRA, V.M.; CARINO, N.J. Handbook on nondestructive testing of concrete. 2 ed. Boca Raton: CRC Press, 2004.

MALHOTRA, V.M.; SIVASUNDARAM, V. Resonant frequency methods. In:

MALHOTRA, V.M.; CARINO, N.J. Handbook on nondestructive testing of concrete. 2 ed. Boca Raton: CRC Press, 2004.

MEHTA, P.K.; MONTEIRO, P.J.M. Concreto: microestrutura, propriedades e materiais. 3.ed. São Paulo: IBRACON, 2008.

MINDESS, S. Acoustic emission methods. In: MALHOTRA, V.M.; CARINO, N.J.

Handbook on nondestructive testing of concrete. 2 ed. Boca Raton: CRC Press, 2004.

MIRMIRAN, A.; WEI, Y. Damage assessment of FRP-encased concrete using ultrasonic pulse velocity. Journal of Enginnering Mechanics, v.127, p.126-135, 2001.

MURNAGHAN, F. D. Finite deformations of an elastic solid. American Journal of Mathematics, v. 59, p. 235-260, 1937.

NAIK, T.R. The break-off test method. In: MALHOTRA, V.M.; CARINO, N.J.

Handbook on nondestructive testing of concrete. 2 ed. Boca Raton: CRC Press, 2004.

NAIK, T.R.; MALHOTRA, V.M.; POPOVICS, J.S. The ultrasonic pulse velocity method. In: MALHOTRA, V.M.; CARINO, N.J. Handbook on nondestructive testing of concrete. 2 ed. Boca Raton: CRC Press, 2004.

PAYAN, C. et al. Determination of nonlinear elastic constants and stress monitoring in concrete by coda wave analysis. In: NON-DESTRUCTIVE TESTING IN CIVIL ENGINEERING, 2009, Nantes.

PLANÈS, T.; LAROSE, E. A review of ultrasonic Coda Wave Interferometry in concrete. Cement and Concrete Research, v. 53, p.248-255, 2013.

POPOVICS, S.; POPOVICS, J.S. Effect of stresses on the ultrasonic pulse velocity in concrete. Materials and Structures, v. 24, p.15-23, 1991.

SAINT-PIERRE, F. et al. Concrete Quality Designation based on Ultrasonic Pulse Velocity. Construction and Building Materials, v.125, p.1022-1027, 2016.

SCHIAVON, K.F.B. Estudo da aplicação de ultrassom na medição de tensões em estruturas de concreto. 2015. 130p. Dissertação (Mestrado em Estruturas) – Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2015.

SCHNEIDER, E. Ultrasonic techniques. In: Structural and residual stress analysis by nondestructive methods. Amsterdam: Elsevier Science B. V., 1997.

SCHURR, D. P. et al. Damage detection in concrete using coda wave interferometry.

NDT&E International, v.44, p.728-735, 2011.

SHOKOUHI, P. et al. Surface wave velocity-stress relationship in uniaxially loaded concrete. ACI Materials Journal, v.109, p.141-148, 2012.

SHOKOUHI, P.; ZOËGA, A.; WIGGENHAUSER, H. Nondestructive investigation of stress-induced damage in concrete. Advances in Civil Engineering, p. 1-9, 2010.

SNIEDER, R. et al. Coda Wave Interferometry for estimating nonlinear behavior in seismic velocity. Science, v. 295, p. 2253-2255, 2002.

Documentos relacionados