• Nenhum resultado encontrado

Pesquisar sobre a utilização de outros catalisadores e outras condições experimentais para os testes catalíticos, adotando-se o sistema de fluxo de ar, através da otimização e aplicação do reator de leito de lama, dada a sua eficiência e viabilidade econômica.

Adotar outros métodos de síntese que proporcionem um maior controle sobre o tamanho das partículas dos óxidos metálicos sobre o suporte, visto que, quanto menor o tamanho destas, maior o número de sítios ativos, menor o impedimento estérico e maior a capacidade de adsorção.

Estudar as reações de ODS utilizando como fases ativas os óxidos de níquel, paládio e titânio suportados em SBA-15 ou MCM-48, comparando assim a reatividade e seletividade destes em relação aos óxidos suportados em MCM-41.

Estudar a incorporação de outras fases ativas sobre materiais mesoporosos do tipo MCM-41, MCM-48 e SBA-15.

Estudar outros parâmetros reacionais variando condições experimentais como temperatura, pressão e concentração das fases ativas sobre materiais mesoporosos do tipo MCM-41, MCM-48 e SBA-15.

Avaliar a eficiência do ODS na remoção de compostos sulfurados presentes em amostras reais, tais como, gasolina e óleo diesel.

Referências

98

REFERÊNCIAS

ALFREDSSON, V., ANDERSON, M. W., 1996, “Structure of MCM-48 Revealed by Transmission Electron Microscopy”, Chem. Mater., v. 8, pp. 1141-1146.

ALFREDSSON, V., ANDERSON, M. W., OHSUNA, T., et al., 1997, “Cubosome Description of the Inorganic Mesoporous Structure MCM-48”, Chem. Mater., v. 9, pp. 2066-2070.

ALI, M. F., AL-MALKI, A., EL-ALI, B., et al., 2006, “Deep desulphurization of gasoline and diesel fuels using on-hydrogen consuming techniques”, Fuel, v. 85, pp. 1354-1363.

ALTIN, O., OZBELGE, O. H, DOGU, T., 1999, “Effect of pH in an Aqueous Medium on the Surface Area, Pore Size Distribution, Density, and Porosity of

Montmorillonit”, Journal of Colloid and Interface Science, v. 217, pp. 19-27.

ALVES, A. K., 2008, Obtenção de micro e nanofibras de TiO2 por Eletroctrospinning: Caracterização de propriedades e atividade fotocatalítica. Tese de D.Sc, UFRS,

Rio Grande do Sul, RS, Brasil.

AMARAL, L., 1995, Química. São Paulo: Ed. Loyola, pp. 23-24.

AN, S., LEE, J., 2010, “Comparison of catalyst support between monolith and pellet in hydrogen peroxide thrusters”, Journal of Propulsion and Power, v. 26, pp. 439- 445.

ANISIMOV, A.V., FEDOROVA, E.V., LESNUGIN, A.Z., et al., 2003, “Vanadium peroxocomplexes as oxidation catalysts of sulfur organic compounds by hydrogen peroxide in bi-phase systems”, Catalysis Today, v.78, pp. 319.

ARAUJO, A. S., JARONIEC, M., 2000, “Thermogravimetric monitoring of the MCM- 41 synthesis”, Thermochim. Acta, v. 175, pp. 363.

Referências

99

ARMSTRONG, G., ARMSTRONG, A.R., CANALES, J., 2005, “Nanotubes with the TiO2 struture”, Chemical Communications, v. 70, pp. 2454-2456.

ASHCROFT, N. W., MERMIN, N. D., 1976, Solid State Physics. Saunders College, Florida, USA.

ASTM, 1996, Standard terminology relating to petroleum petroleum products, and lubricants, Annual Book of ASTM, D 4175-96.

BAKAR, W. A., ALI, R., KADIR, A. A. A., et al., 2012, “Effect of transition metal oxides catalysts on oxidative desulfurization of model diesel”, Fuel Processing

Technology, v.101, pp.78-84.

BARRETT, E. P.P.; JOIYNER, L. G.; HALENDA, P.P., 1953, “The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms”, J. Am. Chem. Soc., v. 73, pp. 373.

BATAILLE, F., LEMBERTON, J.L., MICHAUD, P. P., 2000, “Alkyldibenzothiophene Hydrodesulfurization-Promoter Effect, Reactivity, and Reaction Mechanism”,

Journal Catalysis, v. 191, pp. 409-422.

BECK, J.S., VARTULI, J.C., ROTH, W.J., 1992, “A New Family of Mesoporous Molecular-Sieves Prepared With Liquid-Crystal Templates”, Journal Am. Chem.

Soc., v. 114, pp.10843.

BEJ, S. K., MAITY, S. K., TURAGA, U. T., 2004, “Search for an Efficient 4,6- DMDBT Hydrodesulfurization Catalyst: A Review of Recent Studies”, Energ.

Fuels, v. 18, pp. 1227-1237.

BHATIA, S., AHMAD, A.L., MOHAMED, A.R., 2006, “Characterization and activity of zinc acetate complex supported over functionalized silica as a catalyst for the production of isopropyl palmitate”, Applied Catalysis A: General, v. 297, pp. 8-17.

BOND, G. C., 1987, Heterogeneous catalysis: principles and applications, 2ed., Oxford Science Publications, New York.

Referências

100

BRAUN, S.; APPEL, L. G.; CAMORIN, V. L.; et al., 2000, “Thermal spreading of MoO3 onto silica supports”, Journal of Physical Chemistry B, v. 104, pp. 6584- 6590.

BRUNAUER, S., EMMETT, P.P.H., TELLER, E., 1938, “Adsorption of gases in multimolecular layers”, J. Am. Chem. Soc., v. 60, pp. 309.

CAERO, L. C., HERNÁNDEZ, E., PEDRAZA, F., et al., 2005, “Oxidative desulfurization of synthetic diesel using supported catalysts Part I. Study of the operation conditions wit a vanadium oxide based catalyst”, Catalysis Today, v.107, pp. 564-569.

CAERO, L. C., NAVARRO, J. F.A., GUTIÉRREZ, A., 2006, “Oxidative desulfurization of synthetic diesel using supported catalysts Part II. Effect of oxidant and nitrogen-compounds on extraction-oxidation process”, Catalysis

Today, v. 116, pp. 562-568.

CALLISTER JR., W. D., 2002, Materials Science and Engineering: an introduction. 4 ed. New York: J. Wiley & Sons.

CAMPANATI, M., FORNASARI, G., VACCARI, A., 2003, “Fundamentals in the preparation of heterogeneous catalysts”, Catalysis Today, v. 77, pp. 299-314. CAPEL-SANCHEZ, M.C., PEREZ-PRESAS, P., CAMPOS-MARTIN, J.M., 2010,

“Highly efficient deep desulfurization of fuels by chemical oxidation”, Catalysis

Today, v. 157, pp. 390-396.

CHE, M., CLAUSE, O, MARCILLY, C., 1999, Supported catalysis. In: ERL, G.;

KNÖZINGER, H.; WEITKAMP, J., Preparation of solid catalyst, 1ed. Weinhein:

Wiley-VCH, 650p.

CHEN, S. F., ZHAO, M.Y., ZHANG, X. R., 2000, “Preparation and character of TiO2. SiO2/beads”, Sensitization Science and Photochemical, v.18, pp. 297-301.

Referências

101

CHICA, A., CORMA, A., DÓMINe, M.E., 2006, “Catalytic oxidative desulfurization (ODS) of diesel fuel on a continuous fixed-bed reactor”, Journal of Catalysis, pp. 299-308.

DEBECKER, D. P., STOYANOVA, M., RODEMERCK, U., et al., 2010, “Thermal spreading as an alternative for the impregnation method: advantageand downsides in the preparation of MoO3/SiO2-Al2O3 metathesis catalysts”, Journal of Physical

Chemistry, v. 114, pp. 18664-18673.

DEUGD, K., MOULIJN, T., 2003, “Fischer-Tropsch Reactor Technology – Opportunities for Structured Reactors”, Topics in Catalysis, v. 26, pp. 1-4.

DI SERIO, M., TESSER, R., PENGMEI, L. et al., 2008, “Heterogeneous catalysts for biodiesel production”, Energy and Fuels, v. 22, pp. 207-217.

DUPONT, J. , 2002, “A catálise no Brasil nos últimos 25 anos: uma história de sucesso”, Quimica Nova, v. 25, pp. 12-13.

EVERETT, D. H., 1988, Characterization of Porous Solids, Elsevier, Amsterdam.

FOGLER, H.S., 1999, Elements of Chemical Reaction Engineering, 3ed, Pearson Education, New Jersey, U.S.A.

GAYDHANKAR, T. R., SAMUEL, V., JHA, R. K., et al., 2007, “Room temperature synthesis of Si-MCM-41 using polymeric version of ethyl silicate as a source of silica”, Material Research Bulletim., v. 42, pp. 1473-1484.

GOSLING, C.D., GEMBICKI, V.A., GATAN, R.M., 2004, Annual Meeting National

Petrochemical & Refiners Association, pp. 21-23.

GUISNET, M., GNEP, N. S., 1996, “Mechanism of short-chain alkane transformation over protonic zeolites: Alkylation, disproportionation and aromatization”, Applied

Referências

102

GUO, W., WANG, C., LIN, P., et al., 2011, “Oxidative desulfurization of diesel with TBHP/isobutyl aldehyde/air oxidation system”, Applied Energy, v. 88, pp.175-179.

GUTIÉRREZ, G. J. L., FUENTES, G. A., HERNÁNDEZ, T. M. E., et al., 2006, “Ultra- deep oxidative desulfurization of diesel fuel with H2O2 catalyzed under mild conditions by polymolybdates supported on Al2O3”, Applied Catalysis A, v. 305, pp.15-20.

HERNÁNDEZ-MALDONADO, A. J., YANG, F. H., QI, G., et al., 2005, “Desulfurization of transportation fuels by p-complexation sorbents: Cu(I), Ni(II), and Zn(II)-zeolites”, Applied Catalysis B: Environmental, v. 56, pp. 111-126.

HUI, K. S., CHAO, C.Y. H., 2006, “Synthesis of MCM-41 from coal fly ash by a green approach: Influence of synthesis pH”, Journal of Hazardous Materials, v. 137, pp. 1135.

HUO, Q., MARGOLESE, D. I., STUCKY, G. D., 1996, “Surfactant control of phases in the synthesis of mesoporous silica-based materials”, Chem. Mater., v. 8, pp.1147- 1160.

IRVINE, R.L., 1998, US Patent 5,730,860.

JARONIEC, M., KRUK, M., SAYARI, A., 1997, “Application of Large Pore MCM-41 Molecular Sieves to Improve Pore Size Analysis Using Nitrogen Adsorption Measurements”, Langmuir, v. 13, pp. 6267-6273.

JARONIEC, M.; KRUK, M., SAYARI, A., 1999, “Relations between Pore Structure Parameters and Their Implications for Characterization of MCM-41 Using Gas Adsorption and X-ray Diffraction”, Chemical Materials Journal, v. 11, pp. 492- 500.

JENKINS, R., GOULD; R.W., GEDCKE, D., 1995, Quantitative X-ray Spectrometry. 2ed. New York: Marcel Dekker.

Referências

103

JIANG Z., LÜ H., ZHANG Y., et al., 2011, „Oxidative Desulfurization of Fuel Oils”,

Chin. J. Catal., v. 32, pp. 707-715.

JIN, S.; CUI, K.; GUAN, H., et al., 2012, “Preparation of mesoporous MCM-41 from natural sepiolite and its catalytic activity of cracking waste polystyrene plastics”,

Applied Clay Science, v. 56, pp. 1.

JONG, K. P., 2009, Basic principles and tools. In: JONG, K. P., Synthesis of solid catalyst, 1ed. Weinhein: Wiley-VCH, 423p.

KIM, W. J; YOO, J. C.; HAYHURST, D. T., 2000, “Synthesis of hydrothermally stable MCM-41 with initial adjustment of pH and direct addition of NaF”, Microporous

Mesoporous Mater., v. 39, pp. 177.

KNÖZINGER, H., TAGLAUER, E., 1999, Spreading and wetting. In: ERL, G.,

KNÖZINGER, H., WEITKAMP, J., Preparation of solid catalyst, 1ed. Weinhein:

Wiley-VCH, 650p.

KOCAL, J. A., CHEN W., 2001, “Process for the desulfurization of a hydrocarbonaceoous oil”, Catalysis Today, v. 6, pp. 271.

KONOV, A. A., SMINOV, V., KONOVALOV, V., et al., 2002, “Alkali-Free Demercaptalização catalyst for hydrocarbon Compositions”, Applied Surface

Science, v.79, pp. 373.

KORANYI, T, I., DOBROVOLSZKY, M., KOLTAI, T., 1999, “Preparation and characterization of candidate catalysts for deep hydrodesulfurization of gasoils. Sulfidation and acidity characteristics of supported NirW and NirMo catalysts”.

Fuel Processing Technology, v. 61, pp. 55-71.

KOTZ, J.C., TREICHEL Jr, P.M., 2010, Química Geral e Reações Químicas. v. 1 e 2, São Paulo: Ed. Cengage Learning.

Referências

104

KRESGE, C. T., LEONOWICZ, M. E., ROTH, W. J.; et al., 1992, “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism”,

Nature, v. 359, pp. 710-712.

KUZNETSOVA, L. I., DETUSHEVA, L. G., KUZNETSOV, N. I., et al., 2008, “Likholobov, Liquid-Phase Oxidation of Benzothiophene and Dibenzothiophene by Cumyl Hydroperoxide in the Presence of Catalysts Based on Supported Metal Oxides”, Kinetics and Catalysis, v. 49, pp. 644-652.

LANJU, C.; SHAOHUI, G.; DISHUN, Z., 2007, “Oxidative desulfurization of simulated gasoline over metal oxide-loaded molecular sieve”, Chinese Journal

Chemical Engineering, v. 15, pp. 520-523.

LENSVELD, D. J.; MESU, J. G.; VAN DILLEN, J.; JONG, P.,2001, “Synthesis and characterization of MCM-41 supported nickel oxide catalysts”, Microporous and

Mesoporous Materials, v. 44-45, pp.401-407.

LIN, H.P., MOU, C. Y., 2002, “Structural and Morphological Control of Cationic Surfactante-Templated Mesoporous Silica”, Acc. Chem. Res., v. 35, pp. 927-935.

LIU, W. LEI, Z., WANG, J., 2001, “Kinetics and Mechanism of Plasma Oxidative Desulfurization in Liquid Phase”, Energy & Fuels, v. 15, pp. 38-43.

LIU, X.; SUN, H.; YANG, Y., 2008, “Rapid synthesis of highly ordered Si-MCM-41”,

Journal of Colloid and Interface Science, v. 319, pp. 377.

LOK, M., 2009, Coprecipitation. In: JONG, K.P,. Synthesis of solid catalyst, 1ed. Weinhein: Wiley-VCH, 423p.

LOWELL, S., SHIELDS, J., 1979, Powder surface area and porosity, New York: John Wiley & Sons, 462p.

Referências

105

MA, X., ZHOU, A., SONG, C., 2007, “A novel method for oxidative desulfurization of liquid hydrocarbon fuels based on catalytic oxidation using molecular oxygen coupled with selective adsorption”, Catalysis Today, v. 123, pp. 276-284.

MAKOWSKI, W., CHMIELARZ, L., KUSTROWSKI, P., 2009, “Determination of the pore size distribution of mesopouros silicas by means of quasi-equilibrated thermodesorption of n-nonane”, Microporous and Mesoporous Materials, v. 120, pp. 257-262.

MCBAIN, J. W., 1932, The Sorption of Gases and Vapors by Solids, Rutledge and Sons, London.

MCCORMICK, B., 2005, Effects of Biodiesel on Pollutant Emissions, National Renewable Energy Laboratory Report, Golden, Colorado.

MEI, H., MEI, B.W., YEN, T.F., 2003, “A new method for obtaining ultra-low sulfur diesel fuel via ultrasound assisted oxidative desulfurization”, Fuel, v.82, pp. 405- 414.

MERCURI, L.P.P., MATOS, J. R., ZUOJIANG L.I, et al., 2006, “Comparative thermogravimetric and adsorption study of highly ordered mesoporous materials”,

Journal of Colloid and Interface Science, v. 296, pp. 377-380.

MOCHIDA, I., SAKANISHI, K., NAGOA, S., 1996, “Deep hydrodesulfurization of diesel fuel: Design of reaction process and catalysts”. Catalysis Today, v. 29, pp. 185-189.

MOU, C. Y., LIN, H. P., 2000, “Control of morphology in synthesizing mesoporous silica”, Pure Appl. Chem., v. 72, pp. 137.

MOULIJIN, J. A., LEEUVEN, P. W. N. M., VAN SANTEN, R. A., 1993, Catalysis:

an integrated approach to homogeneous, heterogeneous and industrial catalysis. In: DELMON, B., YATES, J. T., Studies in Surface Science and Catalysis, 1ed.

Referências

106

MOULDER, J. F., W. F., STICKLE, P. E., SOBOL, et al., 1992, Handbook of X-ray

Photoelectron Spectroscopy, Perkin-Elmer Corporation, Minnesota.

MURATA, S., BANDOH, N., KIDENA K., et al., 2004, “Methyl group migration during heat treatment of coal in the presence of polycyclic aromatic compounds”,

Fuel, v. 79, pp. 317–322.

NARES, R., RAMÍREZ, J., GUTIÉRREZ-ALEJANDRE, A., et al., 2009, “Characterization and hydrogenation activity of Ni/Si(Al)-MCM-41 catalysts prepared by deposition-preciptation”, Industrial and Engineering Chemical

Research, v. 48, pp. 1154-1162.

NASCENTE, P.A.P., 2006, “Structure, morphology, and composition of nanometric Pd films deposited by dc magnetron sputtering on Cu, Ag, and Au foils”, Materials

Science and Enginnering A, v. 432, pp. 303-307.

OEMAR, U., HIDAJAT, K., KAWI, S., 2011, “Role of catalyst support over PdO-NiO catalysts on catalyst activity and stability for oxy-CO2 reforming of methane”,

Applied Catalysis A: General, v. 402, pp. 176.

PINHEIRO, L.M.P., 2005, “Structure, morphology and composition of thin Pd and Ni films deposited by dc magnetron sputtering on polycrystalline Ni and Pd foils”,

Journal of Physics D Applied Physics, v. 38, pp. 4241-4244.

PINNA, F., 1998, “Supported metal catalysts preparation”, Catalysis Today, v. 41, pp. 129-137.

POPOVA, M., SZEGEDI, A., CHERKEZOVA-ZHELEVA, Z., et al., 2009, “Toluene oxidation on titanium- and iron-modified MCM-41 materials”, Journal of

Hazardous Materials, v. 168, pp. 226.

PRASAD, V.V.D.N., JEONG, K.E., CHAE, H.J., 2008, “Oxidative desulfurization of 4, 6-dimethyl dibenzothiophene and light cycle oil over supported molybdenum oxide catalysts”, Catalysts Commun, v. 9, pp. 1966–1969.

Referências

107

QI, Y., LI, W., CHEN, H., et al., 2004, “Desulfurization of coal through pyrolysis in a fluidized-bed reactor under nitrogen and 0.6% O2-N2 atmosphere”, Fuel, v.83, pp.705-712.

RAHIMPOUR, M.R., JOKAR, S.M., JAMSHIDNEJAD, Z., 2012, “A novel slurry bubble column membrane reactor concept for Fischer-Tropsch synthesis in GTL technology”, Chemical engineering research, v. 90, pp. 383–396.

RAMACHANDRAN, V.S., 2002, Handbook of Termal Analysis of Construction

Materials. Noyels Publications, New York, U.S.A.

RANA, R. K., VISWANATHAN, B., 1998, “Mo incorporation in MCM-41 type zeolite”, Catalysis Letters, v. 52, pp. 25-29.

RAO, K. K., GRAVELLE, M., VALENTE, J. S., et al., 1998, “Activation of Mg–Al Hydrotalcite Catalysts for Aldol Condensation Reactions”, Journal of Catalysis, v. 173, pp. 115-121.

RAPPAS, A. S., NERO, V. P., DE CANTO, S. J., 2004, Process for removing low

amounts of organic sulfur from hydrocarbon, Unipure Corporation, Houston, pp.

5298.

RAVIKOVITCH, P. I.; NEIMARK, A. V., 2000, “Relations between structural parameters and adsorption characterization of templated nanoporous materials with cubic symmetry”. Langmuir, v. 16, pp. 2419-2423.

REN, J., WANG, A., LI, X., et al., 2008, “Hydrodessulfurization of dibenzothiophene catalyzed by Ni-Mo sulfides supported on a misture of MCM-41 and HY zeolite”,

Applied Catalysis A: General, v. 344, pp. 175-182.

REZVANI, M. A., SHOJAIE, A. F., LOGHMANI, M. H., 2012, “Synthesis and characterization of novel nanocomposite, anatase sandwich type polyoxometalate, as a reusable and green nano catalyst in oxidation desulfurization of simulated gas oil”. Catalysis Communications, v. 25, pp. 36-40.

Referências

108

ROQUEROL, J., RODRIGUEZ, R.F., SING, K. S. W., 1994, Characterization of

Porous Solids III, Elsevier, Amsterdam.

RYOO, R., KIM, J. M., 1995, “Structural Order in MCM-41 controlled by Shifting Silicate Polymerization Equilibrium”, Journal of the Chemical Society, pp. 711- 712.

SACHDEVA, T.O., PANT, K. K., 2010, “Deep desulfurization of diesel via peroxide oxidation using phosphotungstic acid as phase transfer catalyst”, Fuel Processing

Technology, v. 91, pp. 1133-1138.

SADJADI, M. S.; FARHADYAR, N.; ZARE, K., 2009, “Improvement of the alkaline protease properties via immobilization on the TiO2 nanoparticles supported by mesoporous MCM-41”, Superlattices and Microstructures, v. 46, pp.77.

SAMADI-MAYBODI, A., TEYMOURI, M., VAHID, A., et al., 2011, “In situ incorporation of nickel nanoparticles into the mesopores of MCM-41 by manipulation of solvent–solute interaction and its activity toward adsorptive desulfurization of gas oil”, Journal of Hazardous Materials, v. 192, pp. 1667-1674.

SAMATOV, P.P., DZHEMILEV, U. M.; SHARIPOV, A. K., 2006, “Oxidation of Sulfides in Petroleum Diesel Fraction with Hydrogen Peroxide Catalyzed by Molybdenum Compounds”. Journal Petroleum Chemistry, v. 46, pp. 439-441.

SARDA, K. K., BHANDARI, A., PANT, K. K., 2012, “Deep desulfurization of diesel fuel by selective adsorption over Ni/Al2O3 and Ni/ZSM-5 extrudates”, Fuel, v. 93, pp. 86-91.

SAXENA, R. C., JAYARAMAN, A., CHAUHAN, R.K., 2010, “Studies on corrosion control of naphtha fractions in overhead condensing system using laboratory distillation device”, Fuel Processing Technology, v. 91, pp. 1235-1240.

SELVAM, P.; BHATIA, S. K.; SONWANE, C. G., 2001, “Recent Advances in Processing and Characterization of Periodic Mesoporous MCM-41 Silicate Molecular Sieves”, Industrial & Engineering Chemistry Research, v. 40, pp. 3237- 3261.

Referências

109

SETTLE, F., 1997, Handbook of Instrumental Techniques for Analytical Chemistry. U.S.A, Prentice Hall.

SONG, H; SAINI, A. K.; YONEYAMA, Y., 2000, “A new process for catalytic liquefaction of coal using dispersed MoS2 catalyst generated in situ with added H2O2”, Fuel, v. 79, pp. 249.

SONWANE, C. G.; LUDOVICE, P. J., 2005, “A note on micro- and mesoporous in the walls of SBA-15 and hysteresis of adsorption isotherms”, Journal of Molecular

Catalysis A: Chemical, v. 238, pp.135-137.

SOUZA, M. J. B., SILVA, A. O. S., ARAÚJO, A. S., 2004, “Kinetic study of template removal of MCM-41 nanostructured material”, Journal of Thermal Analysis and

Calorimetry, v. 75, pp. 693-698.

SOUZA, M. J. B., 2005, Desenvolvimento de Catalisadores de Cobalto e Molibdênio

Suportados em Materiais tipo MCM-41 para a Hidrodessulfurização de Frações de Petróleo. Tese de D.Sc. Universidade Federal do Rio Grande do Norte, Rio

Grande do Norte, RN, Brasil.

SOUZA, M. J. B., ARAUJO, A. S., PEDROSA A. M. G., 2006, “Textural Features of Highly Ordered Al-MCM-41 Molecular Sieve Studied By X-Ray Diffraction, Nitrogen Adsorption and Transmission Electron Microscopy”. Materials Letters, v. 60, pp. 2682-2685.

SPEIGHT, J. G., 2002, Handbook of Petroleum analysis, New York: J. Wiley & Sons.

SUBHAN, F., LIU, B. S., 2011, “Acidic sites and deep desulfurization performance of nickel supported mesoporous AlMCM-41 sorbents”, Chemical Engineering

Journal, v. 178, pp. 69-77.

SUGIYAMA, S., KATO, Y., WADA, T., et al., 2010, “Ethanol conversion on MCM-41 and FSM-16, and on Ni-doped MCM-41 and FSM-16 prepared without hydrothermal conditions”, Topics in Catalysis, v. 53, pp. 550-554.

Referências

110

TAM, P. P. S., KITTRELL, J. R., ELDRIDGE, J. W. , 1990, “Desulfurization of fuel oil by oxidation and extraction, Enhancement of extraction oil yield”, Ind. Eng. Chem.

Res., v. 29, pp. 321-324.

TE, M., FAIRBRIDGE, C., RING, Z., et al., 2001, “Oxidation reactivities of dibenzothiophenes in polyoxometalate/H202 and formic acid/HzO2 systems”, Appl.

Catal. A Gen., v. 219, pp. 267-280.

TEIXEIRA, V. G., COUTINHO, F. M. B., GOMES. A. S., 2001, “Principais métodos de caracterização da porosidade de resinas à base de divinilbenzeno”, Química

Nova, v. 24, pp. 808-818.

TIAN, H., ZHANG, T., SUN, X., et al., 2001, Performance and deactivation of Ir/γ- Al2O3 catalyst in the hydrogen peroxide monopropellant thruster. Applied

Catalysis A: General, v. 210, pp. 55-62.

TIENGCHAD, N., MEKASUWANDUMRONG, O., NA-CHIANGMAI, C., 2011, “Geometrical confinement effect in the liquid-phase semihydrogenation of phenylacetylene over mesostructured silica supported Pd catalysts”, Catalysis

Communications, v. 12, pp. 910.

TOST, R. M., GONZÁLEZ J.S., TORRES P.M., et al., 2002, “Nickel oxide supported on zirconium-doped mesoporous silica for selective catalytic reduction of NO with NH3”, J. Mater. Chem., v.12, pp. 3331-3336.

VARTULI, J. C., SCHMITT, K. D., KRESGE, et al., 1994, “Effect of Surfactant/Silica Molar Ratios on the Formation of Mesoporous Molecular Sieves: Inorganic Mimicry of Surfactant Liquid-Crystal Phases and Mechanistic Implications”,

Chemical Materials, v. 6, pp. 2317-2326.

VENEZIA, A.M., MURANIA, R., La PAROLA, V., 2010, “Post-synthesis alumination of MCM-41: Effect of the acidity on the HDS activity of supported Pd catalysts”,

Referências

111

VIEIRA, R., CUONG, P., KELLER, N., et al., 2003, “Novos materiais à base de nanofibras de carbono como suporte de catalisador na decomposição da hidrazina”,

Química Nova, v. 26, pp. 665-669.

VYAZOVKIN, S., WRIGHT, C. A., 1999, “Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data”, Thermochim. Acta, v. 340, pp. 53.

WACHS, I. E., 2005, “Recent Conceptual advances in the catalysis science of mixed metal oxide catalytic materials”, Catalysis Today, v. 100, pp. 79-94.

WATTS, J.F.; WOLSTENHOLME, J., 2003, Introduction to surface analysis by XPS

and AES. Chichester: John Wiley & Sons.

WANG, D., LIU, Y., XU, C., et al., 2008 “Local microstructure and photoluminescence of Er-doped 12CaO·7Al2O3 powder”, Journal of Rare Earths, v. 26, pp. 433-438.

WINJNGAARDEN, R. J., KRONBERG, A., WESTERTERP, K. R., 1996, Industrial

catalysis: optimizing catalysts and process, New York, Wiley-VCH.

WU, X., HUI, K.N., HUI, K.S., et al., 2012, “Adsorption of basic yellow 87 from aqueous solution onto two different mesoporous adsorbents”, Chemical

Engineering Journal, v. 180, pp. 91-98.

YAN X., MEI, P., LEI, J., et al., 2009, “Synthesis and characterization of mesoporous phosphotungstic acid/TiO2 nanocomposite as a novel oxidative desulfurization catalyst” Journal of Molecular Catalysis A: Chemical v. 04, pp. 52–57.

YAN, S., DIMAGGIO, C., MOHAN, S., et al., 2010, “Advancements in heterogeneous catalysis for biodiesel synthesis”, Topics in Catalysis, v. 53, pp. 721-736.

YU, WEI H., CHUN H. Z., XIANG S. X., 2007, “Catalytic oxidation of 4-tert- butyltoluene over Ti-MCM-41”, Chinese Chemical Letters, v. 18, pp. 341–344.

Referências

112

ZANNIKOS, F., LOIS, E., STOURNAS, S., 1995, “Desulfurization of petroleum fractions by oxidation and solvent extraction”, Journal Fuel Processing

Technology, v. 42, pp. 35-45.

ZAPATA, B., PEDRAZA, F., VALENZUELA, M. A., 2005, “Catalyst screening for oxidative desulfurization using hydrogen peroxide”, Catalysis Today, v.106, pp. 219-221.

ZHANG, N. L., ZHANG W., 2001, "Speeding Up the Convergence of Value Iteration in Partially Observable Markov Decision Processes", v. 14, pp. 29-51.

ZHANG, Y., WU, D., SUN, Y., et al., 2002, “Synthesis of more stable MCM-41 under high-pressurized conditions”, Materials Letters, v. 55, pp. 17-19.

ZHANG, Y., YANG, Y., HAN, et al., 2012, “Ultra-deep desulfurization via reactive adsorption on Ni/ZnO: The effect of ZnO particle size on the adsorption performance”, Applied Catalysis B: Environmental, v. 13, pp. 119-120.

ZHAO, D.S., SUN, Z., SHAN, F. LI, H., 2009, “Optimization of oxidative desulfurization of dibenzothiophene using acidic ionic liquid as catalytic solvent”, Journal Fuel Chemistry Technology, v. 37, pp. 194-198.

ZHAO, X. S., LU, M. G. Q., MILLAR, G. J., 1996, “Advances in mesoporous molecular sieve MCM-41”, Industrial and Engineering Chemical Research, v. 35, pp. 2075.

ZHOU, F., LI, X., WANG, A., et al., 2010, “Hydrodesulfurization of dibenzothiophene catalyzed by Pd supported on overgrowth-type MCM-41/HY composite”,