• Nenhum resultado encontrado

- Avaliar o efeito da biodegradação de blendas PBAT/TPS e de um biocompósito baseado nessas blendas com o auxílio das técnicas de cromatrografia de permeação em gel (GPC), espectroscopia no infravermelho por transformada de Fourier (FTIR) e respirometria.

- Avaliar a influência da temperatura e da composição na morfologia da blenda de PBAT/TPS e do seu biocompósito com mesocarpo de babaçu.

- Avaliar o efeito da biodegradação nas propriedades mecânicas e reológicas das blendas PBAT/TPS e seus biocompósitos;

-Avaliar a influência da quantidade de mesocarpo de babaçu nas propriedades dos biocompósitos de PBAT/TPS;

- Avaliar a ecotoxicidade das blendas e biocompósitos de PBAT/TPS, por meio do crescimento de plantas.

REFERÊNCIAS BIBLIOGRÁFICAS

AGGARWAL, P.; DOLLIMORE, D. The combustion of starch, cellulose and cationically modified products of these compounds investigated using thermal analysis. Thermochimica Acta, v. 291, n. 1, p. 65-72, 1997.

AL-ITRY, R. Blends based on poly (lactic acid): structure/rheology/processing relationship. 2013. 185 Thesis (Doctorat en Matériaux Polymères) Laboratoire des Matériaux Macromoléculaires, INSA de Lyon, Lyon - France.

AL-ITRY, R.; LAMNAWAR, K.; MAAZOUZ, A. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polymer Degradation and Stability, v. 97, n. 10, p. 1898-1914, 2012.

ALBERTSSON, A. C.; ANDERSSON, S. O.; KARLSSON , S. The mechanism of biodegradation of polyethylene. Polymer Degradation Stabilization, v. 18, p. 73 - 87, 1987.

ALBIERO, D.; MACIEL, A. J. D. S.; LOPES, A. C.; MELLO, C. A.; GAMERO, C. A. Proposta de uma máquina para colheita mecanizada de babaçu (Orbignya phalerata Mart.) para a agricultura familiar. Acta amazônica, v. 37, n. 03, p. 337-346, 2007.

ALMEIDA, T. G.; NETO, J. E. S.; COSTA, A. R. M.; DA SILVA, A. S.; CARVALHO, L. H.; CANEDO, E. L. Degradation during processing in poly (butylene adipate-co- terephthalate)/vegetable fiber compounds estimated by torque rheometry. Polymer Testing, v. 55, p. 204-211, 2016.

ALVAREZ, V.; VÁZQUEZ, A. Thermal degradation of cellulose derivatives/starch blends and sisal fibre biocomposites. Polymer Degradation and Stability, v. 84, n. 1, p. 13-21, 2004.

ALVES, T. S.; NETO, J. E. S.; SILVA, S. M.; CARVALHO, L. H.; CANEDO, E. L. Process simulation of laboratory internal mixers. Polymer Testing, v. 50, p. 94-100, 2016.

ALVES, V. Produção e caracterização de biomateriais a partir de fibras naturais ou amidos com Poli (butileno adipato co-tereftalato)(PBAT). 2007. 185f. Tese (Doutorado em Engenharia de Alimentos) Departamento de Ciência e Tecnologia de Alimentos, Universidade Estadual de Londrina, Londrina-Paraná.

ANDERSON, A. B.; ANDERSON, E. S.; EWEL, J. J. People and the palm forest: biology and utilization of babassu forests in Maranhão, Brazil. 1987.

ANDRADY, A. L. Assessment of environmental biodegradation of synthetic polymers. Journal of Macromolecular Science, Part C: Polymer Reviews, v. 34, n. 1, p. 25- 76, 1994.

ARVANITOYANNIS, I.; BILIADERIS, C. G.; OGAWA, H.; KAWASAKI, N. Biodegradable films made from low-density polyethylene (LDPE), rice starch and

potato starch for food packaging applications: Part 1. Carbohydrate Polymers, v. 36, n. 2, p. 89-104, 1998.

ATLAS , R. M.; BARTHA, R. Microbial Ecology: Fundamentals and Applications. Benjamin/Cummings Publishing Company, 1997. ISBN 0805306552.

AVEROUS, L.; BOQUILLON, N. Biocomposites based on plasticized starch: thermal and mechanical behaviours. Carbohydrate Polymers, v. 56, n. 2, p. 111-122, 2004.

AVÉROUS, L.; FRINGANT, C.; MORO, L. Plasticized starch–cellulose interactions in polysaccharide composites. Polymer, v. 42, n. 15, p. 6565-6572, 2001.

AVÉROUS, L.; POLLET, E. Biodegradable polymers. In: (Ed.). Environmental Silicate Nano-Biocomposites: Springer, 2012. p.13-39. ISBN 1447141016.

BABAEE, M.; JONOOBI, M.; HAMZEH, Y.; ASHORI, A. Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers. Carbohydrate Polymers, v. 132, p. 1-8, 2015.

BAGDI, K.; MÜLLER, P.; PUKÁNSZKY, B. Thermoplastic starch/layered silicate composites: structure, interaction, properties. Composite Interfaces, v. 13, n. 1, p. 1- 17, 2006.

BARDI, M. A.; MUNHOZ, M. M.; AURAS, R. A.; MACHADO, L. D. Assessment of UV exposure and aerobic biodegradation of poly (butylene adipate-co- terephthalate)/starch blend films coated with radiation-curable print inks containing degradation-promoting additives. Industrial Crops and Products, v. 60, p. 326-334, 2014.

BARLAZ, M. A.; HAM, R. K.; SCHAEFER, D. M. Mass-balance analysis of anaerobically decomposed refuse. Journal of Environmental Engineering, v. 115, n. 6, p. 1088-1102, 1898.

BEMILLER, J. N.; WHISTLER, R. L. Starch: chemistry and technology. Amsterdam Academic Press, 2009.

BÉNÉZET, J.-C.; STANOJLOVIC-DAVIDOVIC, A.; BERGERET, A.; FERRY, L.; CRESPY, A. Mechanical and physical properties of expanded starch, reinforced by natural fibres. Industrial Crops and Products, v. 37, n. 1, p. 435-440, 2012.

BERTHET, M. A.; ANGELLIER‐COUSSY, H.; GUILLARD, V.; GONTARD, N. Vegetal fiber‐based biocomposites: Which stakes for food packaging applications? Journal of Applied Polymer Science, v. 133, n. 2, 2016.

BIKIARIS, D. N. Nanocomposites of aliphatics polyesters: An overview of the effect of different nanofillers on enzymatic hydrolysis and biodegradation of polyesters. Polymer Degradation and Stability, v. 98, n. 9, p. 1908-1928, 2013.

BOOTKLAD, M.; KAEWTATIP, K. Biodegradation of thermoplastic starch/eggshell powder composites. Carbohydrate Polymers, v. 97, n. 2, p. 315-320, 2013.

BRESLIN, V. T. Degradation of Starch–Calcium Carbonate Disposable Packaging in a Solid Waste Composting Facility. Journal of Environmental Polymer Degradation, v. 6, n. 1, p. 9-21, 1998.

BRIASSOULIS, D. Mechancal design requirements for low tunnel biodegradable and conventional films. Biosystems Engineering, v. 87, n. 2, p. 209-223, 2004.

BRIASSOULIS, D. The effects of tensile stress and the agrochemicals Vapam on the ageing of low density polyethylene (LDPE) agricultural films. Part I. Mechanical behaviour. Polymer Degradation and Stability, v. 86, p. 489-503, 2005.

CANEDO, E. L. Torque e Massa Molar - Apostila: 22 p. p. 2016.

CARVALHO FILHO, C. Influência das dietas rica em carboidrato sobre a produção de anticorpos auto-reativos em camundongos. 2003. 65 f. Dissertação de Mestrado. (Mestrado em Saúde Pública). Universidade Federal do Maranhão, São Luiz - Maranhão.

CASTILLO, L.; LÓPEZ, O.; LÓPEZ, C.; ZARITZKY, N.; GARCÍA, M. A.; BARBOSA, S.; VILLAR, M. Thermoplastic starch films reinforced with talc nanoparticles. Carbohydrate Polymers, v. 95, n. 2, p. 664-674, 2013.

CERCLÉ, C.; SARAZIN, P.; FAVIS, B. D. High performance polyethylene/thermoplastic starch blends through controlled emulsification phenomena. Carbohydrate Polymers, v. 92, n. 1, p. 138-148, 2013.

CERRUTI, P.; SANTAGATA, G.; D’AYALA, G. G.; AMBROGI, V.; CARFAGNA, C.; MALINCONICO, M.; PERSICO, P. Effect of a natural polyphenolic extract on the properties of a biodegradable starch-based polymer. Polymer Degradation and Stability, v. 96, n. 5, p. 839-846, 2011.

CHAKRABORTY, A.; SAIN, M.; KORTSCHOT, M.; CUTLER, S. Dispersion of wood microfibers in a matrix of thermoplastic starch and starch–polylactic acid blend. Journal of Biobased Materials and Bioenergy, v. 1, n. 1, p. 71-77, 2007.

CHAND, N.; DWIVEDI, U. Sliding wear and friction characteristics of sisal fibre reinforced polyester composites: effect of silane coupling agent and applied load. Polymer Composites, v. 29, n. 3, p. 280-284, 2008.

CHANDRA, R.; RUSTGI, R. Biodegradable polymers. Progress in Polymer Science, v. 23, n. 7, p. 1273-1335, 1998.

CHEN, Y.; TAN, L.; CHEN, L.; YANG, Y.; WANG, X. Study on biodegradable aromatic/aliphatic copolyesters. Brazilian Journal of Chemical Engineering, v. 25, n. 2, p. 321-335, 2008.

CHO, H.; MOON, H.; KIM, M.; NAM, K.; KIM, J. Biodegradability and biodegradation rate of poly (caprolactone)-starch blend and poly (butylene succinate) biodegradable polymer under aerobic and anaerobic environment. Waste management, v. 31, n. 3, p. 475-480, 2011.

CIPRIANO, P. B. Preparação e caracterização de compósitos de PHB e mesocarpo de babaçu. 2012. Dissertação de mestrado. (Mestrado em Engenharia de Materiais). Programa de pós-graduação em Ciência e Engenharia de Materiais, Universidade Federal de Campina Grande, Campina Grande - Paraíba.

COPINET, A.; BERTRAND, C.; LONGIERAS, A.; COMA, V.; COUTURIER, Y. Photodegradation and biodegradation study of a starch and poly (lactic acid) coextruded material. Journal of Polymers and the Environment, v. 11, n. 4, p. 169- 179, 2003.

CORRÊA, M. P. Dicionário de plantas úteis do Brasil e das exóticas cultivadas. In: (Ed.). Dicionário de plantas úteis do Brasil e das exóticas cultivadas: Imprensa Nacional Brasília, 1984.

COSTA, A. R. M.; ALMEIDA, T. G.; SILVA, S. M.; CARVALHO, L. H.; CANEDO, E. L. Chain extension in poly (butylene-adipate-terephthalate). Inline testing in a laboratory internal mixer. Polymer Testing, v. 42, p. 115-121, 2015.

CURVELO, A.; DE CARVALHO, A.; AGNELLI, J. Thermoplastic starch–cellulosic fibers composites: preliminary results. Carbohydrate Polymers, v. 45, n. 2, p. 183- 188, 2001.

DAI, H.; CHANG , P. R.; YU, J.; GENG, F.; MA, X. N-(2-hydroxypropyl)formamide and N-(2-hydroxyethyl)-N-methylformamide as two new plasticizers for thermoplastic starch. Carbohydrate Polymers, v. 80, p. 139-144, 2010.

DAVIS, G. Characterization and characteristics of degradable polymer sacks. Materials Characterization, v. 51, n. 2, p. 147-157, 2003.

DE CARVALHO, A.; CURVELO, A.; AGNELLI, J. A first insight on composites of thermoplastic starch and kaolin. Carbohydrate Polymers, v. 45, n. 2, p. 189-194, 2001.

DI FRANCO, C.; CYRAS, V.; BUSALMEN, J.; RUSECKAITE, R.; VÁZQUEZ, A. Degradation of polycaprolactone/starch blends and composites with sisal fibre. Polymer Degradation and Stability, v. 86, n. 1, p. 95-103, 2004.

DIGABEL, L.; AVÉROUS, L. Effects of lignin content oon the properties of lignocellulose-based biocomposites. Carbohydrate Polymers, v. 66, p. 537-545, 2006.

DUBEY, K.; CHAUDHARI, C.; RAJE, N.; PANICKAR, L.; BHARDWAJ, Y.; SABHARWAL, S. Radiation‐assisted morphology modification of LDPE/TPS blends: A study on starch degradation‐processing‐morphology correlation. Journal of Applied Polymer Science, v. 124, n. 4, p. 3501-3510, 2012.

DUFRESNE, A.; CAVAILLE, J.-Y.; VIGNON, M. R. Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. Journal of applied polymer science, v. 64, n. 6, p. 1185-1194, 1997.

DUFRESNE, A.; VIGNON, M. R. Improvement of starch film performances using cellulose microfibrils. Macromolecules, v. 31, n. 8, p. 2693-2696, 1998.

DUVAL, C. Matériaux dégradables In Matières plastiques et environnement - Recyclage, valorisation, biodégradabilité, écoconception. Paris: Dunod, 2004. EL-HADI, A.; SCHNABEL, R.; MULLER, G.; HENNING, S. Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly(3-hydroxyalanoate) PHAs and their blends. Polymer Testing, v. 21, p. 665-674, 2002.

EL-REHIM, H. A.; HEGAZY, E.-S. A.; ALI, A.; RABIE, A. Synergistic effect of combining UV-sunlight–soil burial treatment on the biodegradation rate of LDPE/starch blends. Journal of Photochemistry and Photobiology A: Chemistry, v. 163, n. 3, p. 547- 556, 2004.

FAN, Y.; NISHIDA, H.; SHIRAI, Y.; TOKIWA, Y.; ENDO, T. Thermal degradation behaviour of poly (lactic acid) stereocomplex. Polymer Degradation and Stability, v. 86, n. 2, p. 197-208, 2004.

FERRARI, M. Cancer nanotechnology: opportunities and challenges. Nature Reviews Cancer, v. 5, p. 161-171, 2005.

FLORES, A. M. Biobased and biodegradable polymer blends and nanocomposites with superior dispersion and physical properties created using solid-state shear pulverization. 2008. 179 Dissertation (Doctor of Philosophy). Chemical and Biological Engineering Northwestern University, Evanston-Illinois.

FONSECA, V.; FERNANDES, V.; DE CARVALHO, L.; D'ALMEIDA, J. Evaluation of the mechanical properties of sisal–polyester composites as a function of the polyester matrix formulation. Journal of Applied Polymer Science, v. 94, n. 3, p. 1209-1217, 2004.

FRANCO, F. J. P. Aproveitamento da fibra do epicarpo do coco babaçu em compósito com matriz epóxi: estudo do efeito do tratamento da fibra. 2010.

FRAZÃO, J. M. F. Projeto quebra coco: alternativas econômicas para agricultura familiar assentadas em áreas de ecossistemas de babaçuais: estudo de viabilidade econômica. 2001.

FUKUSHIMA, K.; RASYIDA, A.; YANG, M.-C. Characterization, degradation and biocompatibility of PBAT based nanocomposites. Applied Clay Science, v. 80, p. 291- 298, 2013.

GAN, Z.; KUWABARA, K.; YAMAMOTO, M.; ABE, H.; DOI, Y. Solid-state structures and thermal properties of aliphatic–aromatic poly (butylene adipate-co-butylene terephthalate) copolyesters. Polymer Degradation and Stability, v. 83, n. 2, p. 289- 300, 2004.

GARROS-ROSA, I. Estudo químico qualitativo e quantitativo do resíduo amiláceo do coco babaçu. Rev Quim Ind, v. 647, p. 15-18, 1986.

GATTIN, R.; COPINET, A.; BERTRAND, C.; COUTURIER, Y. Comparative biodegradation study of starch-and polylactic acid-based materials. Journal of Polymers and the Environment, v. 9, n. 1, p. 11-17, 2001.

GHANBARZADEH, B.; ALMASI, H. Biodegradable polymers. Biodegradation—Life of Science. R. Chamy and F. Rosenkranz, ed. InTech, Rijeka, Croatia, p. 141-186, 2013.

GONZÁLEZ SELIGRA, P.; ELOY MOURA, L.; FAMÁ, L.; DRUZIAN, J. I.; GOYANES, S. Influence of incorporation of starch nanoparticles in PBAT/TPS composite films. Polymer International, 2016.

GU, J.; FORD, T.; MITTON, D.; MITCHELL, R. Microbiological degradation of polymeric materials. In: (Ed.). The Uhlig Corrosion Handbook. Third Edition. New York: John Wiley & Sons, 2011. p.421-438.

GUERRA, R.; BARROQUEIRO, E.; CHAGAS, A. Increase of self-antibodies and glucose levels in mice treated with babassu (Orbignya phalerata). Scand J Immunol, v. 54, n. Suppl, p. 66, 2001.

GUIMARÃES, J.; WYPYCH, F.; SAUL, C.; RAMOS, L.; SATYANARAYANA, K. Studies of the processing and characterization of corn starch and its composites with banana and sugarcane fibers from Brazil. Carbohydrate Polymers, v. 80, n. 1, p. 130- 138, 2010.

GUO, G.; ZHANG, C.; DU, Z.; ZOU, W.; TIAN, H.; XIANG, A.; LI, H. Structure and property of biodegradable soy protein isolate/PBAT blends. Industrial Crops and Products, v. 74, p. 731-736, 2015.

HABLOT, E.; DEWASTHALE, S.; ZHAO, Y.; ZHIGUAN, Y.; SHI, X.; GRAIVER, D.; NARAYAN, R. Reactive extrusion of glycerylated starch and starch–polyester graft copolymers. European Polymer Journal, v. 49, n. 4, p. 873-881, 2013.

HELBING, C.; ABANILLA, M.; LEE, L.; KARBHARI, V. M. Issues of variability and durability under synergistic exposure conditions related to advanced polymer composites in civil infrastructure. Composites Part A, v. 37, n. 8, p. 1102-1110, 2006.

HIETALA, M.; MATHEW, A. P.; OKSMAN, K. Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. European Polymer Journal, v. 49, n. 4, p. 950-956, 2013.

HUANG, M.-F.; YU, J.-G.; MA, X.-F. Studies on the properties of montmorillonite- reinforced thermoplastic starch composites. Polymer, v. 45, n. 20, p. 7017-7023, 2004.

IOVINO, R.; ZULLO, R.; RAO, M. A.; CASSAR, L.; GIANFREDA, L. Biodegradation of poly(lactic acidd)/starch/coir biocomposites under controlled composting conditions. Polymer Degradation and Stability, v. 93, p. 147-157, 2008.

IPEKOGLU, B.; BÖKE, H.; CIZER, O. Assessment of material use inrelation to climate in historical buildings. Building and Environment, v. 42, p. 970-978, 2007.

ISHIOKA, R.; KITAKUNI, E.; ICHIKAWA, Y. Aliphatic polyesters:“Bionolle”. Biopolymers Online, 2005.

JAKUBOWICZ, I.; YARAHMADI, N.; PETERSEN, H. evaluation of the rate of abiotic degradation of biodegradable polyethylene in various environments. Polymer Degradation and Stability, v. 91, n. 6, p. 1556-1562, 2006.

JANG, J. K.; PYUN, Y. R. Effect of moisture content on the melting of wheat starch. Starch v. 48, n. 2, p. 48-51, 1996.

JAYASEKARA, R.; HARDING, I.; BOWATER, I.; CHRISTIE, G. B.; LONERGAN, G. T. Biodegradation by composting of surface modified starch and PVA blended films. Journal of Polymers and the Environment, v. 11, n. 2, p. 49-56, 2003.

KAUSHIK, A.; SINGH, M.; VERMA, G. Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydrate Polymers, v. 82, n. 2, p. 337-345, 2010.

KAWAI, F. Breakdown of plastics and polymers by microorganisms. Advances in Biochemical Engineering / Biotechnology, v. 52, p. 151-94, 1995.

KIATKAMJORNWONG, S.; SONSUK, M.; WITTAYAPICHET, S.;

PRASASSARAKICH, P.; VEJJANUKROH, P. C. Degradation of styrene-g-cassava starch filled polystyrene plastics. Polymer Degradation and Stability, v. 66, n. 3, p. 323-335, 1999.

KIJCHAVENGKUL, T.; AURAS, R.; RUBINO, M. Measuring gel content of aromatic polyesters using FTIR spectrophotometry and DSC. Polymer Testing, v. 27, n. 1, p. 55-60, 2008.

KIJCHAVENGKUL, T.; AURAS, R.; RUBINO, M.; NGOUAJIO, M.; FERNANDEZ, R. T. Development of an automatic laboratory-scale respirometric system to measure polymer biodegradability. Polymer testing, v. 25, n. 8, p. 1006-1016, 2006.

KIJCHAVENGKUL, T.; AURAS, R.; RUBINO, M.; SELKE, S.; NGOUAJIO, M.; FERNANDEZ, R. T. Biodegradation and hydrolysis rate of aliphatic aromatic polyester. Polymer Degradation and Stability, v. 95, n. 12, p. 2641-2647, 2010.

KISTER, G.; CASSANAS, G.; BERGOUNHON, M.; HOARAU, D.; VERT, M. Structural characterization and hydrolytic degradation of solid copolymers of D, L-lactideco-e- ccaprolactone by Raman spectroscopy. Polymer, v. 41, p. 925-932, 2000.

KLEEBERG, I.; WELZEL, K.; VANDENNHEUVEL, J.; MÜLLER, R. J.; DECKWER, W. D. Characterization of a New Extracellular Hydrolase from Thermobifida fusca Degradaing Aliphatic-Aromatic Copolyesters. Biomacromolecules, v. 6, n. 1, p. 262- 270, 2005.

KOPINKE, F.-D.; MACKENZIE, K. Mechanistic aspects of the thermal degradation of poly (lactic acid) and poly (β-hydroxybutyric acid). Journal of Analytical and applied Pyrolysis, v. 40, p. 43-53, 1997.

KOZŁOWSKI, R.; WŁADYKA‐PRZYBYLAK, M. Flammability and fire resistance of composites reinforced by natural fibers. Polymers for Advanced Technologies, v. 19, n. 6, p. 446-453, 2008.

KRUPP, L. R.; JEWELL, W. J. Biodegradability of modified plastic films in controlled biological environments. Environmental Science & Technology, v. 26, n. 1, p. 193- 198, 1992.

KUCIEL, S.; KÚZNIAR, P.; MIKUŁA, J.; LIBER-KNÉC, A. Mineral microparticles and wood flour as fillers of different biocomposites. Journal of Biobased Materials and Bioenergy, v. 6, n. 4, p. 475-480, 2012.

KWEON, D. K.; KAWASAKI, N.; NAKAYAMA, A.; AIBA, S. Preparation and characterization of starch/polycaprolactone blend. Journal of applied polymer science, v. 92, n. 3, p. 1716-1723, 2004.

LANDREAU, E.; TIGHZERT, L.; BLIARD, C.; BERZIN, F.; LACOSTE, C. Morphologies and properties of plasticized starch/polyamide compatibilized blends. European Polymer Journal, v. 45, n. 9, p. 2609-2618, 2009.

LIM, S.; JANE, J. L.; RAJAGOPALAN, S.; SEIB, P. A. Effect of starch granule size on physical properties of starch-filled polyethylene film. Biotechnology Progress, v. 8, n. 1, p. 51-57, 1992.

LÓPEZ, J.; MUTJÉ, P.; CARVALHO, A.; CURVELO, A.; GIRONES, J. Newspaper fiber-reinforced thermoplastic starch biocomposites obtained by melt processing: evaluation of the mechanical, thermal and water sorption properties. Industrial Crops and Products, v. 44, p. 300-305, 2013.

MA, X.; YU, J.; KENNEDY, J. F. Studies on the properties of natural fibers-reinforced thermoplastic starch composites. Carbohydrate Polymers, v. 62, n. 1, p. 19-24, 2005.

MANNERS, D. J. Recent developments in our understanding of amylopectin structure. Carbohydrate Polymers, v. 11, p. 87-112, 1989.

MARK, H. F. Encyclopedia of Polymer Science and Technology, Concise. Wiley- Interscience, 2007.

MARTEN, E.; MÜLLER, R.-J.; DECKWER, W.-D. Studies on the enzymatic hydrolysis of polyesters. II. Aliphatic–aromatic copolyesters. Polymer Degradation and Stability, v. 88, n. 3, p. 371-381, 2005.

MASSARDIER-NAGEOTTE, V.; PESTRE, C.; CRUARD-PRADET, T.; BAYARD, R. Aerobic and anaerobic biodegradability of polymer films and physico-chemical characterization. Polymer Degradation and Stability, v. 91, n. 3, p. 620-627, 2006.

MAY, P. H. Palmeiras em chamas: transformação agrária e justiça social na zona do babaçu. In: (Ed.). Palmeiras em chamas: transformaçao agraria e justica social na Zona do babacu: EMAPA/FINEP, 1990.

MOHANTY, A. K.; KHAN, M. A.; HINRICHSEN, G. Surface modification of jute and its influence on performance of biodegradable jute-fabric/Biopol composites. Composites Science and Technology, v. 60, n. 7, p. 1115-1124, 2000.

MOHANTY, A. K.; MISRA, M.; DRZAL, L. T. Alternative low-cost biomass for the biocomposite industry. In: STOKKES, D. D. (Ed.). Natural fibers, biopolymers, and biocomposites: CRC Press, 2005. cap. 5, ISBN 0203508203.

MOHANTY, S.; NAYAK, S. Biodegradable nanocomposites of poly (butylene adipate- co-terephthalate)(PBAT) and organically modified layered silicates. Journal of Polymers and the Environment, v. 20, n. 1, p. 195-207, 2012.

MOHANTY, S.; NAYAK, S. K. Starch based biodegradable PBAT nanocomposites: Effect of starch modification on mechanical, thermal, morphological and biodegradability behaviour. International Journal of Plastics Technology, v. 13, n. 2, p. 163-185, 2009.

MOHANTY, S.; NAYAK, S. K. Biodegradable nanocomposites of poly (butylene adipate-co-terephthalate)(PBAT) with organically modified nanoclays. International Journal of Plastics Technology, v. 14, n. 2, p. 192-212, 2010.

MORANCHO, J.; RAMIS, X.; FERNANDEZ, X.; CADENATO, A.; SALLA, J.; VALLÉS, A.; CONTAT, L.; RIBES, A. Calorimetric and thermogravimetric studies of UV- irradiated polypropylene/starch-based materials aged in soil. Polymer Degradation and Stability, v. 91, n. 1, p. 44-51, 2006.

MORIANA, R.; KARLSSON, S.; RIBES‐GREUS, A. Assessing the influence of cotton fibers on the degradation in soil of a thermoplastic starch‐based biopolymer. Polymer Composites, v. 31, n. 12, p. 2102-2111, 2010.

MUKAI, K.; DOI, Y. Microbial degradation of polyesters. Progress in Industrial Microbiology, v. 32, p. 189-204, 1995.

MÜLLER, R.-J.; KLEEBERG, I.; DECKWER, W.-D. Biodegradation of polyesters containing aromatic constituents. Journal of Biotechnology, v. 86, n. 2, p. 87-95, 2001.

MÜLLER, R.-J.; WITT, U.; RANTZE, E.; DECKWER, W.-D. Architecture of biodegradable copolyesters containing aromatic constituents. Polymer Degradation and Stability, v. 59, n. 1, p. 203-208, 1998.

MULLER, R. J.; WITT, U.; DECKWER, W. D. Architecture of biodegradable copolyesters containing aromatic constituents. Polymer Degradation and Stability, v. 59, p. 203-208, 1998.

MUMTAZ, T.; KHAN, M. R.; HASSAN, M. A. Study of environmental biodegradation of LDPE films in soil using optical and scanning electron microscopy. Micron, v. 41, n. 5, p. 430-438, 2010.

MUNIYASAMY, S.; REDDY, M. M.; MISRA, M.; MOHANTY, A. Biodegradable green composites from bioethanol co-product and poly (butylene adipate-co-terephthalate). Industrial Crops and Products, v. 43, p. 812-819, 2013.

MUTHUKUMAR, T.; ARAVINTHAN, A.; MUKESH, D. Effect of environment on the degradation of starch and pro-oxidant blended polyolefins. Polymer Degradation and Stability, v. 95, n. 10, p. 1988-1993, 2010.

NAKAJIMA-KAMBE, T.; ICHIHASHI, F.; MATSUZOE, R.; KATO, S.; SHINTANI, N. Degradation of aliphatic–aromatic copolyesters by bacteria that can degrade aliphatic polyesters. Polymer Degradation and Stability, v. 94, n. 11, p. 1901-1905, 2009.

NAKAMURA, E.; CORDI, L.; ALMEIDA, G.; DURAN, N.; MEI, L. I. Study and development of LDPE/starch partially biodegradable compounds. Journal of Materials Processing Technology, v. 162, p. 236-241, 2005.

NAYAK, S. K. Biodegradable PBAT/starch nanocomposites. Polymer-Plastics Technology and Engineering, v. 49, p. 1406-1418, 2010.

NAYARAN , R. Biodegradation of polymeric materials (anthropogenic macromolecules) during composting. In: HOITINK, H. A. J. e KEENER, H. M. (Ed.). Science and Engineering of Composting: Design, Environmenta, Microbiological and Utilization Aspects. Washington: Renaissance Publishers, 1993. p.339-362. NETRAVALI, A. N.; CHABBA, S. Composites get greener. Materials today, v. 6, n. 4, p. 22-29, 2003.

NIKAZAR, M.; SAFARI, B.; BONAKDARPOUR, B.; MILANI, Z. Improving the biodegradability and mechanical strength of corn starch-LDPE blends through formulation modification. Iranian Polymer Journal, v. 14, n. 12, p. 1050, 2005.

OLIVATO, J.; GROSSMANN, M.; YAMASHITA, F.; EIRAS, D.; PESSAN, L. Citric acid and maleic anhydride as compatibilizers in starch/poly (butylene adipate-co- terephthalate) blends by one-step reactive extrusion. Carbohydrate Polymers, v. 87, n. 4, p. 2614-2618, 2012.

OLIVATO, J.; NOBREGA, M.; MÜLLER, C.; SHIRAI, M.; YAMASHITA, F.; GROSSMANN, M. Mixture design applied for the study of the tartaric acid effect on starch/polyester films. Carbohydrate Polymers, v. 92, n. 2, p. 1705-1710, 2013.

OLIVATO, J. B.; GROSSMANN, M. V.; YAMASHITA, F.; NOBREGA, M. M.; SCAPIN, M. R.; EIRAS, D.; PESSAN, L. A. Compatibilisation of starch/poly (butylene adipate

co‐terephthalate) blends in blown films. International Journal of Food Science & Technology, v. 46, n. 9, p. 1934-1939, 2011.

OLIVATO, J. B.; MARINI, J.; POLLET, E.; YAMASHITA, F.; GROSSMANN, M. V. E.; AVÉROUS, L. Elaboration, morphology and properties of starch/polyester nano- biocomposites based on sepiolite clay. Carbohydrate Polymers, v. 118, p. 250-256, 2015.

OLIVEIRA, M. F.; CHINA, A. L.; OLIVEIRA, M. G.; LEITE, M. C. Biocomposites based on Ecobras matrix and vermiculite. Materials Letters, v. 158, p. 25-28, 2015.

ORTEGA-TORO, R.; SANTAGATA, G.; D’AYALA, G. G.; CERRUTI, P.; OLIAG, P. T.; BOIX, M. A. C.; MALINCONICO, M. Enhancement of interfacial adhesion between starch and grafted poly (ε-caprolactone). Carbohydrate Polymers, v. 147, p. 16-27, 2016.

PARK, H. M.; LI, X.; JIN, C. Z.; PARK, C. Y.; CHO, W. J.; HA, C. S. Preparation and properties of biodegradable thermoplastic starch/clay hybrids. Macromolecular Materials and Engineering, v. 287, n. 8, p. 553-558, 2002.

PEANASKY, J. S.; LONG, J.; WOOL, R. Percolation effects in degradable polyethylene‐starch blends. Journal of Polymer Science Part B: Polymer Physics, v. 29, n. 5, p. 565-579, 1991.

PEÑARANDA CONTRERAS, O. I.; PERILLA PERILLA, J. E.; ALGECIRA ENCISO, N. A. A review of using organic acids to chemically modify starch. Ingeniería e Investigación, v. 28, n. 3, p. 47-52, 2008.

POSPISIL, J.; NESPUREK, S. Highlights in chemistry and physics of polymers stabilization. Macromolecular Symposia, v. 115, p. 143-163, 1997.

PRACHAYAWARAKORN, J.; CHAIWATYOTHIN, S.; MUEANGTA, S.; HANCHANA, A. Effect of jute and kapok fibers on properties of thermoplastic cassava starch composites. Materials & Design, v. 47, p. 309-315, 2013.

PRACHAYAWARAKORN, J.; SANGNITIDEJ, P.; BOONPASITH, P. Properties of thermoplastic rice starch composites reinforced by cotton fiber or low-density polyethylene. Carbohydrate Polymers, v. 81, n. 2, p. 425-433, 2010.

PRAMILA, R.; RAMESH, K. Biodegradation of low density polyethylene (LDPE) by fungi isolated from marine water—a SEM analysis. African Journal of Microbioly Research, v. 5, n. 28, p. 5013-5018, 2011.

PRANCE, G. T. Manual de botânica econômica do Maranhão. Universidade Federal de Maranhão, 1985.

PREECHAWONG, D.; PEESAN, M.; SUPAPHOL, P.; RUJIRAVANIT, R. Characterization of starch/poly (ε-caprolactone) hybrid foams. Polymer testing, v. 23, n. 6, p. 651-657, 2004.

PROIKAKIS, C. S.; MAMOUZELOUS, N. J.; TARANTILI, P. A.; ANDREAPOULOS, A. G. Swelling and hydrolytic degradation of poly(D, L-lactic acid) in aqueous solution. Polymer Degradation and Stability, v. 91, n. 3, p. 614-619, 2006.

Projeto Babcoäll visa potencializar os recursos integrais do coco babaçu. https://goo.gl/r4QGKe, 2015. Acesso em: 29.08.2016.

PUGLIA, D.; TOMASSUCCI, A.; KENNY, J. Processing, properties and stability of biodegradable composites based on Mater‐Bi® and cellulose fibres. Polymers for Advanced Technologies, v. 14, n. 11‐12, p. 749-756, 2003.

QIN, J. G.; KIM, J. S.; LEE, J. S. Synthesis and magnetic properties of nanostructured y-Ni-Fe alloys. . Nanostructured Materials, v. 11, p. 259-270, 1999.

RAY, S. S.; BOUSMINA, M. Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Progress in Materials Science, v. 50, n. 8, p. 962-1079, 2005.

REN, J.; FU, H.; REN, T.; YUAN, W. Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, poly(lactic acid) and poly(butylene adipate-co-terephthalate). Carbohydrate Polymers, v. 77, n. 3, p. 576-585, 2009.

ROSENTHAL, F.; ESPINDOLA, A. O amido do coco de babaçu, algumas propriedades dos grânulos e das pastas. Rev Bras Tecnol, v. 6, p. 6-29, 1975.

RUDNIK, E.; MATUSCHEK, G.; MILANOV, N.; KETTRUP, A. Thermal properties of starch succinates. Thermochimica Acta, v. 427, n. 1, p. 163-166, 2005.

SAADI, Z.; CESAR, G.; BEWA, H.; BENGUIGUI, L. Fungal degradation of poly (butylene adipate-co-terephthalate) in soil and in compost. Journal of Polymers and the Environment, v. 21, n. 4, p. 893-901, 2013.

SANGWAN, P.; PETINAKIS, E.; DEAN, K. Chapter 13 - Effects of Formulation, Structure, and Processing on Biodegradation of Starches A2 - Avérous, Peter J. HalleyLuc. In: (Ed.). Starch Polymers. Amsterdam: Elsevier, 2014. p.357-378. ISBN 978-0-444-53730-0.

SARIKAYA, E.; HIGASA, T.; ADACHI, M.; MIKAMI, B. Comparison of degradation abilities of α-and β-amylases on raw starch granules. Process Biochemistry, v. 35, n. 7, p. 711-715, 2000.

SAVADEKAR, N. R.; MHASKE, S. T. Synthesis of nano cellulose fibers and effect on thermoplastics starch based films. Carbohydrate Polymers, v. 89, p. 146-151, 2012.

SCHLEMMER, D.; SALES, M. J.; RESCK, I. S. Degradation of different polystyrene/thermoplastic starch blends buried in soil. Carbohydrate Polymers, v. 75, n. 1, p. 58-62, 2009.

SHAH, A. A.; HASAN, F.; HAMEED, A.; AHMED, S. Biological degradation of plastics: A comprehensive review. Biotechnology Advances, v. 26, n. 3, p. 246-265, 2008.

SHANKS, R.; KONG, I. Thermoplastic elastomers. Rijeka: InTech, 2012. ISBN 9535103466.

SIEGENTHALER, K.; KÜNKEL, A.; SKUPIN, G.; YAMAMOTO, M. Ecoflex® and Ecovio®: biodegradable, performance-enabling plastics. In: (Ed.). Synthetic Biodegradable Polymers. Berlin: Springer, 2011. p.91-136.

SIEGENTHALER, K. O.; KUNKEL, A.; SKUPIN, G.; YAMAMOTO, M. Ecoflex and Ecovio: Biodegradable, Perfomance-Enabling Plastics. Advanced Polymer Science, v. 245, p. 104, 2012.

SIGNORI, F.; COLTELLI, M.-B.; BRONCO, S. Thermal degradation of poly (lactic acid)(PLA) and poly (butylene adipate-co-terephthalate)(PBAT) and their blends upon melt processing. Polymer Degradation and Stability, v. 94, n. 1, p. 74-82, 2009.

SILVA, I. F.; YAMASHITA, F.; MÜLLER, C. M.; MALI, S.; OLIVATO, J. B.; BILCK, A. P.; GROSSMANN, M. V. How reactive extrusion with adipic acid improves the mechanical and barrier properties of starch/poly (butylene adipate‐co‐terephthalate) films. International Journal of Food Science & Technology, v. 48, n. 8, p. 1762- 1769, 2013.

SINGH, B.; SHARMA, N. Mechanistic implications of plastic degradation. Polymer Degradation and Stability, v. 93, p. 561-584, 2007.

SINGH, R. P.; PANDEY, J. K.; RUTOT, D.; DEGÉE, P.; DUBOIS, P. Biodegradation of poly (ε-caprolactone)/starch blends and composites in composting and culture environments: the effect of compatibilization on the inherent biodegradability of the

Documentos relacionados