• Nenhum resultado encontrado

A tecnologia envolvida na criação e desenvolvimento de dispositivos baseados em pontos quânticos ainda tem um longo caminho a percorrer, pelo que são muitas as direcções que podem ser seguidas em termos de estudo e investigação deste tipo de dispositivos. No seguimento do trabalho realizado para a concretização desta dissertação, são propostas algumas sugestões de trabalho futuro:

• Implementação de um simulador baseado em modelos de várias populações de pontos quânticos, MPREM.

• Estudo da sensibilidade de cada modelo de QD-SOAs a variações dos diferentes parâmetros envolvidos.

• Desenvolvimento de modelos simplificados para aplicações especificas, de forma a tornar a sua implementação computacional menos exigente.

• Continuação do estudo das aplicações estudadas, bem como o estudo de novas aplicações com QD-SOAs.

• Comparação e validação dos resultados determinados por simulação com resultados experimentais.

Estas são apenas algumas das muitas sugestões de trabalhos que podem ser realizados no seguimento desta tese.

Apêndice – Parâmetros dos modelos

Tabelas com os valores dos parâmetros dos modelos de QD-SOAs utilizados na construção dos simuladores.

Símbolo Descrição Valor

W Largura da região activa 3×10-6 m

L Comprimento da região activa 1×10-3 m

H Altura da região activa 0.2×10-6 m

L

H Espessura da wetting layer 1×10-9 m

D

N Densidade volumétrica de pontos quânticos 2×1021 m-3

D

V Volume de um ponto quântico 2.3×10-24 m3

l

n Número de camadas de pontos quânticos 3

wg

τ Tempo médio de captura da wetting layer para o estado fundamental 2×10-12 s

r

τ Tempo médio de recombinação espontânea nos pontos quânticos 1×10-9 s

sr

τ Tempo médio de recombinação espontânea na wetting layer 0.2×10-9 s

max

g Ganho modal máximo 12×102 m-1

loss

α Perdas internas 2×102 m-1

e

m Massa efectiva dos electrões 0.026m0

h

m Massa efectiva das lacunas 0.074m0

g

ε Degenerância do estado fundamental 2

hom

E Largura a meia altura do alargamento espectral homogéneo 5 meV

hom

n

E Largura a meia altura do alargamento espectral não homogéneo 40 meV

w g

c c

EE Diferença de energia entre a wetting layer e o estado fundamental 100 meV

g v

E Energia do nível mais elevado na banda de condução dos pontos quânticos 42 meV

w v

Símbolo Descrição Valor

W Largura da região activa 10×10-6 m

L Comprimento da região activa 2×10-3 m

H Altura da região activa 0.2×10-6 m

D

N Densidade de pontos quânticos 3.8×1022 m-3

D

V Volume de um ponto quântico 2.3×10-24 m3

we

τ Tempo médio de captura 3×10-12 s

ew

τ Tempo médio de escape do estado excitado para a wetting layer 1×10-9 s

eg

τ Tempo médio de relaxação do estado excitado para o estado fundamental 0.16×10-12 s

ge

τ Tempo médio de excitação do estado fundamental para o estado excitado 1.2×10-12 s

r

τ Tempo médio de recombinação espontânea nos pontos quânticos 1×10-9 s

sr

τ Tempo médio de recombinação espontânea na wetting layer 0.2×10-9 s

max

g Ganho modal máximo 11.5×102 m-1

loss

α Perdas internas 3×102 m-1

α

Factor de alargamento espectral 1

λ Comprimento de onda 1.55×10-6 m

n Índice de refracção 3.5

[1] G. P. Agrawal, Fiber-Optic Communication Systems, New York, Jonh Wiley & Sons, Icn., 2002. [2] G. Keiser, Optical Fiber Communications, McGraw-Hill International Editions, 2000.

[3] G. P. Agrawal and N. K. Dutta, Long-wavelength Semiconductor Lasers, New Jersey, Van Nostrand Reinhold Company Inc., 1986.

[4] P. S. B. André, “Componentes optoelectrónicos para redes fotónicas de alto débito”, Tese de Doutoramento, Universidade de Aveiro, 2002.

[5] A. B. Carlson, P. B. Crilly and J. C. Rutledge, Communication Systems – An Introduction to Signals

and Noise in Electrical Communications, McGraw-Hill, 2002.

[6] M. J. Connelly, Semiconductor Optical Amplifiers, Kluwer Academic Press, 2002.

[7] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Jonh Wiley & Sons, Icn., 1991. [8] O. Wada, “Femtosecond all-optical devices for ultrafast communication and signal processing”, [9] M. Sugawara, Self-Assembled InGaAs/GaAs Quantum Dots, Semiconductors and Semimetals –

Volume 60, Academic Press, 1999.

[10] T. W. Berg, “Quantum Dot Semiconductor Optical Amplifiers – Physics and Applications”, Tese de Doutoramento, Technical University of Denmark, 2002.

[11] Z. Li, “Ultrafast all-optical signal processing using semiconductor optical amplifiers”, Tese de Doutoramento, Technische Universiteit Eindhoven, 2007.

[12] M. Sugawara, H. Ebe, N. Hatori and M. Ishida, “Theory of signal amplification and processing by quantum-dot semiconductor optical amplifiers”, Physical Review B, Vol. 69, 2004.

[13] M. Sugawara, N. Hatori, T. Akiyama and Y. Nakata, “Optical gain in InGaAs/GaAs self-assembled quantum dots and its effect on devices”, International Conference on Indium Phosphide and Related Materials, Japan, 2001.

[14] M. J. P. Bormann, Seminar Talk on Nonlinear Dynamics and Quantum Dot Lasers at the Institute , 2005.

[16] T. Akiyama, K. Kawaguchi, M. Sugawara, M. Ekawa, H. Ebe and Y. Arakawa, “Quantum-Dot Semiconductor Optical Amplifiers”, IEEE LEOS, 2006.

[17] L. M. Sá and H. J. Silva, “Wavelength Conversion at 40 Gbit/s by Four-Wave Mixing in Quantum- Dot Semiconductor Optical Amplifiers”, 6th Conference on Telecommunications, Portugal, 2007. [18] M. L. Redígolo, “Caracterização óptica de pontos quânticos de CdTe em matriz vítrea”, Tese de

Doutoramento, Universidade Estadual de Campinas, 2002.

[19] M. Sugawara, T. Akiyama, N. Hatori, Y. Nakata, H. Ebe and H. Ishikawa, “Quantum-dot semiconductor optical amplifiers for high-bit-rate signal processing up to 160 Gb-1 and a new scheme of 3R regenerators”, Meas. Sci. Technol., Vol. 13, pp 1683, 2002.

[20] H. A. Zalan. M. B. Saleh and M. H. Aly, ”SOA Characteristics Using Different Quaternary Compounds”.

[21] H. C. Wong, G. B. Ren and J, M, Rorison, “Mode amplification in inhomogeneous QD semiconductor optical amplifiers”, Optical and Quantum Electronics, vol. 38, pp 395-409, 2006. [22] A. Bilenca and G. Eisenstein, “On the Noise Properties of linear and Nonlinear Quantum-Dot

Semiconductor Optical Amplifiers: The Impact of Inhomogeneous Broadened Gain and Fast Carrier Dynamics”, IEEE Journal of Quantum Electronics, Vol. 40, No. 6, pp. 690, 2004.

[23] A. Sakamoto and M. Sugawara, “Theoretical Calculation of Lasing Spectral of Quantum-Dot Lasers: Effect of Homogeneous Broadening of Optical Gain”, IEEE Photonicas Technology Letters, Vol. 12, No. 2, pp107, 2000.

[24] M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1-xAs/GaAs quantum dot lasers”, Physical Review B, Vol. 61, No. 11, pp. 7595, 2000.

[25] T. W. Berg, J. Mork and J. M. Hvam, “Gain dynamics and saturation in semiconductor quantum dot amplifiers”, New Journal of Physics, Vol. 6, No. 178, 2004.

[26] M. Sugawara, “Effect of Carrier Dynamics on Quantum-Dot Lasers Performance”, 10th Intern. Conf. on Indium Phosphide and Related Materials, Japan, 1998.

[27] H. D. Summers and P. Rees, “Derivation of a modified Fermi-Dirac distribution for quantum dot ensembles under nonthermal conditions”, Journal of Applied Physics, Vol. 101, 2007.

[28] Y. Ben-Ezra, M. Haridim and B. I. Lembrikov, “Theoretical Analysis of Gain-Recovery Time and Chirp in QD-SOA”, IEEE Photonics Technology Letters, Vol. 17, No. 9, pp. 1803, 2005.

[29] M. Gioannini, A. Sevega and I. Montrosset, “Simulations of differential gain and linewidth anhancement factor of quantum dot semiconductor lasers”, Optical and Quantum Electronics, Vol. 38, pp. 381-394, 2006.

[30] H. Sun, Q. Wang, H. Dong and N. K. Dutta, “XOR performance of a quantum dot semiconductor optical amplifier based Mach-Zehnder interferometer”, Optics Express, Vol. 13, No. 6, pp. 1892, 2005.

[31] H. Ju, A. V. Uskov, Z. Li, J. M. Vázquez, R. Notzel, D. Lenstra, G. D. Khoe and H. J. S. Dorren, “Two-photon-absorption Tera Hertz optical gain modulation in quantum-dot optical amplifiers”, Physica E, vol. 32, pp. 543-546, 2006.

[32] H. Ju, A. V. Uskov, R. Notzel, Z. Li, J. M. Vázquez, D. Lenstra, G. D. Khoe and H. J. S. Dorren, “ Effects of Two-photon absorption on carrier dynamics in quantum-dot optical amplifiers”, Appl. Phys. B., 2006.

[33] G. A. Narvaez, G. Bester and A. Zunger, “Carrier relaxation mechanisms in self-assembled (In,Ga)As/GaAs quantum dots: Efficient P Æ S Auger relaxation of electrons”, 2006.

[34] S. Raymond, K. Hinzer and S. Fafard, “Experimental determination of Auger capture coefficient in self-assembled quantum dots”, Physical Review B, Vol. 61, No. 24, pp. R16 331, 2000.

[35] A. V. Uskov, T. W. Berg and J. Mork, “Theory of Pulse-Train Amplification Without Patterning Effects in Quantum-Dot Semiconductor Optical Amplifiers”, IEEE Journal of Quantum Electronics, Vol. 40, No. 3, pp.306, 2004.

[36] O. Qasaimeh, “Ultrafast dynamic properties of quantum dot semiconductor optical amplifiers including line broadening and carrier heating”, IEE Proc. – Optoelectron., Vol. 151, No. 4, pp. 205, 2004.

[37] A. Issac, “Photoluminescence Intermittency of Semiconductor Quantum Dots in Dielectric Environments”, M. Sc. Phys., 2006.

[38] H. C. Wong, G. B. Ren and J. M. Rorison, “The Constraints on Quantum-Dot Semiconductor Optical Amplifiers for Multichannel Amplification”, IEEE Photonics Technology Letters, Vol. 18, No. 20, pp. 2075, 2006.

[39] T. W. Berg and J. Mork, “Saturation and Noise properties of Quantum-Dot Optical Amplifiers”, IEEE Journal of Quantum Electronics, Vol. 40, No. 11, pp. 1527, 2004.

[40] T. W. Berg and J. Mork, “Quantum dot amplifiers with high output power and low noise”, Applied

Physics Letters, Vol. 82, No. 18, pp. 3083, 2003.

[41] H. Kawaguchi, “All-Optical Switching of Picosecond Pulses by Four-Wave Mixing in a Semiconductor Optical Amplifier”, Photonics Based on Wavelength Integration and Manipulation, IPAP Books 2, pp. 271-282, 2005.

[42] X. Li and Guifang Li, “Comments on ‘Theoretical Analysis of Gain-Recovery Time and Chirp in QD-SOA’ ”, IEEE Photonics Technology Letters, Vol. 18, No. 22, pp. 2434, 2006.

[43] O. Qasaimeh, “Theory of Four-Wave Mixing Wavelength Conversion in Quantum Dot Semiconductor Optical Amplifiers”, IEEE Photonics Thechnology Letters, Vol. 6, No. 4, pp. 003, 2004.

[44] Y. Ben-Ezra, B. I. Lembrikov and M. Haridin, “Acceleration og Gain Recovery and Dynamics of Electrons in QD-SOA”, IEEE Journal of Quantum Electronics, Vol. 41, No. 10, pp. 1268, 2005. [45] T. W. Berg, S. Bischoff, I. Magnusdottir and J. Mork, “Ultrafast Gain Recovery and Modulation

Limitations in Self-Assembled Quantum-Dot Devices”, IEEE Photonics Technology Letters, Vol. 13, No. 6, pp.541, 2001.

[46] O. Qasimeh, “Characteristics of Cross-Gain (XG) Wavelength Conversion in Quantum Dot Semiconductor Optical Amplifiers”, IEEE Photonics Technology Letters, Vol. 16, No. 2, pp. 542, 2004.

[48] S. Wabnitz and W. Kielem, “Theory of Pattern-Free Optical Soliton Amplification by Auantum Dot SOAs”, 2005.

[49] O. Qasaimeh, “Effect of Inhomogeneous Line Broadening on Gain and Differential Gain of Quantum Dpt Lasers”, IEEE Transactions on Electron Devices, Vol. 50, No. 7, pp. 1575, 2003. [50] S. H. Kim, J. W. Choi, C. W. Son, Y. T. Byun, Y. M. Jhon, S. Lee, D. H. Woo and S. H. Kim, “All-

optical half adder using cross gain modulation in semiconductor optical amplifiers”, Optics Express, Vol. 14, No. 22, pp. 10693, 2006.

[51] H. Sun, Q. Wang, H. Dong and N. K. Dutta, “All-optical logic performance of quantum-dot semiconductor amplifier-based devices”, Microwave and Optical Technology Letters, Vol. 48, No. 1, pp. 29, 2006.

[52] K. E. Stubkjaer, “Semiconductor Optical Amplifier-Based All-Optical Gates for High-Speed Optical Processing”, IEEE Journal on Selected Topics in Quantum Electronics, Vol. 6, No. 6, pp. 1428, 2000.

[53] J. H. Kim, C. W. Son, Y. Kim, Y. T. Byun, Y. M. Jhon, S. Lee, D. H. Woo and S. H. Kim, “All- Optical Signal Processing Using Semiconductor Optical Amplifier Based Logic Gates”, IEEE. [54] A. V. Uskov, E. P. O’Reilly, R. J. Manning, R. P. Webb, D. Cotter, M. Laemmlin, N. N. Ledentsov

and D. Bimberg, “On Ultrafast Optical Switching Based on Quantum-Dot Semiconductor Optical Amplifiers in Nonlinear Interferometers”, IEEE Photonics Technology Letters, Vol. 16, No. 5, pp. 1265, 2004.

[55] L. Q. Guo and M. J. Connelly, “All-Optical Gate Using Nonlinear Polarization Rotation in a Bulk Semiconductor Optical Amplifier”.

[56] A. Hamié, A. Sharaiha, M. Guégan, J. L. Bihan and A. Hamzé, “All-Optical logic OR gate using two cascaded semiconductor optical amplifiers”, Microwave and Optical Technology Letters, Vol. 49, No. 7, pp. 1568, 2007.

[57] S. H. Kim, J. H. Kim, B. G. Yu, Y. T. Byun, Y. M. Jeon, S. Lee, D. H. Woo and S. H. Kim, “All- optical NAND gate using cross-gain modulation in semiconductor optical amplifiers”, Electronics Letters, Vol. 41, No. 18, 2005.

[58] R. V. Penty, L. H. White, S. Liu, X. Hu, M. G. Thompson, R. L. Sellin, K. A. Williams and A. R. Kovsh, “Quantum Dot Semiconductor Optical Amplifiers and Switches”.

[59] K. L. Hall and K. A. Rauschenbach, “All-optical pattern generation and matching“, Electronics

Letters, Vol. 32, No. 13, pp. 1214, 1996.

[60] T. Fjelde, A. Kloch. D. Wolfson, B.Dagens, A. Coquelin, I. Guillemont, F. Gaborit, F. Poingt and M. Renaud, “Novel Scheme for Simple Label-Swapping Employing XOR Logic in an Integrated Interferometric Wavelength Converter”, IEEE Photonics Technology Letters, Vol. 13, No. 7, pp, 750, 2001.

[61] H. Chen, M. Chen, Y. Dai, S. Xie and B. Zhou, “All optical labeling scheme with vestigial sideband payload“, Optics Express, Vol. 13, No. 7, pp. 2282, 2005.

[62] L. N. Binh, B. Pujji and S. L. Leong, “Vestigial Side Band (VSB) Modulation Formats for Ultra- high Capacity 40 Gb/s Optical Communications Systems”, technical Report of Nonash Univesity, 2003.

[63] U. Lee, H. Jung and S. Han, “Optical Single Sideband Signal Generation Using Phase Modulation of Semiconductor Optical Amplifier”, IEEE Photonics Technology Letters, Vol. 16, No. 5, pp. 1373, 2004.

[64] C. Pavanasam, “Vestigial Side Band Demultiplexing for Heigh Spectral Efficiency WDM systems”, Dissertação de Mestrado, Anna University, Chennai, India, 2000.

[65] H. Chen, M. Chen, S. Xie and B. Zhou, “Investigation of vestigial sideband carrier suppressed return-to-zero formats due to optical filtering in a 40-Gbit/s system”, Optical Engineering Letters, Vol. 45, No. 4, 2006.

[66] D. F. Hewitt, “Design and Performance of Optical Vestigial Sideband Filters in Digital 40 Gbit/s Systems”, IEEE, 2003.

[67] S. R. Blais and J. Yao, “Optical Single Sideband Modulation Using an Ultranarrow Dual- Transmission-Band Fiber Bragg Grating”, IEEE Technology Letters, Vol. 18, No. 21, pp. 2230, 2006.

[68] P. M. Watts, R. I. Killey, V. Mikhailov and P. Bayvel, ”Demonstration of Electrical Dispersion Compensation of Single Sideband Optical Transmission”.

[69] Y. Kim, S. Kim, I. Lee and J. Jeong, ”Opticmization of Transmission Performance of 10-Gb/s Optical Vestigial Sideband Signals Using Electrical Dispersion Compensation by Numerical Simulation”, IEEE Journal of Selected Topics in Quantum Electronics, Vol. 10, No. 2, pp. 371, 2004.

[70] V. Silva, L. Amaral, P. Monteiro, A. Ferreira, T. Silveira, M. Madureira, R. Ribeiro and D. Fonseca, “Optical Single-Sideband Transmitter for Alternate- Mark-Inversion Electrical Signal”.

[71] R. Sousa, M. Violas, A. Ferreira, T. Silveira, P. Monteiro and R. Ribeiro, “ 10 Gbit/s Optical Single Sideband Prototype”.

[72] E. Vourch, D. Le Berre, and D. Hervé, “Lightwave single sideband wavelength self tunable filter using an InP:Fe crystal for fiber-wireless systems”, IEEE Photonics Techonol. Letters, 2002. [73] D. Fonseca, A. V. T. Cartaxo and P. Monteiro, “Optical Single-Sideband Transmitter for Various

Electrical Signaling Formats”, Journal of Lightwave Technology, Vol. 24, No. 5, pp. 2059, 2006. [74] P. M. Watts, V. Mikhailov, M. Glick, P. Bayvel and R. I. Killey, “Single sideband optical signal

generation and chromatic dispersion compensation using digital filters”, Electronics Letters, Vol. 40, No. 15, 2004.

[75] T. G. Silveira, A. L. J. Teixeira, A. P. S. Ferreira and P. M. N. P. Monteiro, “All-Optical Vestigial Sideband Generation Using a Semiconductor Optical Amplifier”, IEEE Photonics Technology

Letters, Vol. 18, No. 21, pp. 2212, 2006.

[76] T. Silveira, A. Teixeira, A. Ferreira, P. Monteiro, P. André, “Influence of SOA Based Devices on Optical Single Sideband Signals”, 2005.

[77] S. Jansen, R. H. Derksen, C. Shubert, X. Zhou, M. Birk, C. Weiske, M. Bohn, D. Borne, P. Krummrich, M. Moller, F. Horst, B. Offrein, H. Waardt, G. Khoe and A. Kirstadter, “107-Gb/s full ETDM transmission over field installed fiber using vestigial sideband modulation”.