• Nenhum resultado encontrado

5 CONCLUSÕES E SUGESTÕES PARA TRABALHOS FUTUROS

5.2 Sugestões para trabalhos futuros

Indica-se, como desdobramentos desse trabalho:

1. Considerar sistemas diferentes dos estudados, a fim de verificar se, mesmo com a mudança da região de transição de estabilidade, o limite é afetado da mesma forma pelos parâmetros considerados.

2. Considerar modelos numéricos de mancais hidrodinâmicos (generalizando a modelagem para qualquer mancal, não apenas aqueles que atendem a hipótese de mancais curtos), para melhorar a precisão dos resultados de limite de estabilidade em relação a um sistema real e comparar com os resultados desse trabalho.

3. Considerar modelos de variação da viscosidade em função da temperatura para modelar a variação da viscosidade, a fim de obter condições de variação mais próximas das reais.

4. Considerar a estimativa da confiabilidade de sistemas rotativos através dos métodos FORM (First order reliability method) e SORM (Second order reliability method).

Referências

ARCHER, J. S., Consistent Mass Matrix for Distributed Mass Systems. ASME Journal of Structural Division, v.89, n.4, p.161-178, 1963.

BENTLY, D. E. The description of fluid-induced whirl. Orbit, Vol.17, n. 1, p. 3, 1996.

BUTTON, S.T. IM 317 – Metodologia para Planejamento Experimental e Análise de Resultados. Fev. 2016, 88p.

CAFEO, J. A., THOMAS, R. S. , The use of statistical tools to contend with variability in engineering. Experimental techniques. p.26-28, 1997.

CAMPBELL, W. E. The protection of steam-turbine disk wheels from axial vibration. Trans. ASME, p.31-160, 1924.

CAPONE, G., Orbital motions of rigid symmetric rotor supported on journal bearings. La Meccanica Italiana, n.199, p. 37-46, 1986.

CAPONE, G., Descrizione analitica del campo di forze fluidodinamico nei cuscinetti cilindrici lubificati. L.Energia Elletrica, n.3, p. 105-110, 1991.

CARNEIRO, A. C. S. G. P., Análise de Estabilidade em Sistemas Rotativos. Campinas, 2014, 196 p. Dissertação (Mestrado) – Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas, Campinas, 2014.

CASTRO, H. F., Análise de Mancal Hidrodinâmico sob Instabilidade Fluído-Induzida. Campinas. 2007, 189 p. Dissertação (Doutorado) - Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas, Campinas, 2007.

CASTRO, H. F., CAVALCA, K. L., NORDMANN, R., Whirl and whip instabilities in rotor- bearing system considering a non linear force model. Journal of Sound and Vibration. Vol. 317, p. 273-293, 2008.

CASTRO, H. F., SANTOS, J. M. C., SAMPAIO, R., Uncertainty analysis of rotating systems. Proceedings of the XVII International Symposium on Dynamic Problems of Mechanics. Brasil, Março, 2017.

CAVALCA, K. L. L’Interazione tra rotori e strutura portante: metodologie per la sua modellazione. 1993, 143p. Tese (Doutorado) - Politecnico Di Milano, Milão, 1993.

CAVALINI JR., A. A., LARA-MOLINA, F. A., SALES, T. de P., KOROISHI, E. H., SEFFEN JR., V. Uncertainty analysis of a flexible rotor supported by fluid film bearings. Latin American Journal of Solids and Structures, 12(8), 1487-1504. 2015.

CHAVIN JR, D. An experimental investigation of whirl instability including effect of lubricant temperature in plain circular journal bearing. 2003. 99p. Dissertação (Mestrado) - Nicholls State University, Thibodaux, 2003.

CHILDS, D. Turbomachinery Rotordynamics. Phenomena, Modeling and Analysis. John Wiley& Sons, 1993, 476 p.

CUNHA JR., A., NASSER, R. SAMPAIO, R., LOPES, H., BREITMAN, K., Uncertainty quantification through the Monte Carlo method in a cloud computing setting. Computer Physics Communications. Vol. 185, Issue 5, p. 1355-1363, 2014.

DEVROYE, L. Non-Uniform Ramdom Variate Generation. Springer-Verlag, 1986. Cap. 2, p.27-65.

DIDIER, J., SINOU, J-J., FAVERJON, B., Study of the non-linear dynamic response of a rotor system with faults and uncertainties. Journal of Sound and Vibration v.331, p. 671- 703, 2012.

DIMARAGONAS, A. D. A general method for stability analysis of rotating shafts. Ingenieur-Archive, v.44, p. 9-20, 1975.

DUNKERLEY, S. On the whirling and vibration of shafts. Phil. Trans. of the Royal Society, v.185, n. I, p. 279-360, 1895.

FALSONE, G., IMPOLLONIA, N. A new approach for the stochastic analysis of finite element modelled structures with uncertain parameters. Computer methods in applied mechanics and engineering, v. 191, pp. 5067-5085, 2002.

FÖPPL, A. Das Problem der Levalschen Turbinenwelle. Der Civilingenieur, v.4, p. 421-430, 1985.

GAROLI, G.Y., CASTRO, H.F., Stochastic collocation approach for evaluation of journal bearing dynamic coefficients. Proceedings of the 3rd International Symposium on Uncertainty Quantification and Stochastic Modeling, Vol. 1,pp. 1- 10. 2016a.

GAROLI, G.Y., CASTRO, H.F., Stochastic Collocation approach to evaluate the nonlinear response of a rotor. VIRM 11 – Vibration in Rotating Machinery, Vol.1, Manchester, United Kingdom, pp. 397-406, 2016b.

GASCH, R. Vibration of large turbo-rotors in fluid film bearings on an elastic foundation. Journal of Sound and Vibration, v. 47, p. 53-73, 1976.

GASCH, R., NORDMANN, R., PFÜTZNER, H., Rotordynamik, Springer, 2002.

GENTA, G. Dynamics of Rotating Systems, Springer, 2015.

GRAHAM, L.L., DEODATIS, G. Response and eigenvalue analysis of stochastic finite element systems with multiple correlated material and geometric properties. Probabilistic Engineering Mechanics, v. 16, p. 11-29, 2001.

HASHIMOTO H., WADA, S., ITO, J. An application of Short Bearing Theory to Dynamic Characteristics Problems of Turbulent Journal Bearings. Transactions of the ASME – Journal of Tribology. Vol. 109, p.307-314, 1987.

HUMMEL, C. Krostosche Drehzahlen als Folge der Nachgiebgkeit des Schmiermittels im Lager, VDI Forschungsheft, 287p., 1926.

ISHIDA, Y., YAMAMOTO, T., Linear and Nonlinear Rotordynamics, Wiley-VCH, 2012.

JEFFCOTT, H. H. The lateral vibration of loaded shafts in the neighbourhood of a whirling speed. Phil. Mag., v. 6, n. 37, p. 304-314, 1919.

KRÄMER, E., Dynamics of Rotors and Foundations, 1. ed., Berlim: Springer-Verlag, 1993.

LUND, J. W., STERNLICHT, B. Rotor-Bearing Dynamics With Emphasis on Attenuation. Transactions of the ASME – Journal of Basic Engineering. p. 491-502, 1962.

LUND, J. W. Spring and Damping Coefficients for the Tilting-Pad Journal Bearing. ASLE Transactions. Vol. 7, p. 342-352, 1964.

LUND, J. W. Review of the Concept of Dynamic Coefficients for Fluid Film Journal Bearings. Transactions of the ASME – Journal of Tribology. Vol. 109, p.37-41, 1987.

MACHADO, T. H., CAVALCA, K. L., Evaluation of Dynamic Coefficients for Fluid Journal Bearings with Different Geometries. In 20TH Internation Congress of Mechanical

Engineering- COBEM, ABCM 2009. Anais… Rio de Janeiro, 2009, v.1. p. 1-11.

MONTGOMERY, D. C., RUNGER G. C., Applied Statistics and Probability for Engineers. 6. ed. John Wiley & Sons, 2014, p. 594-607.

MUSZYNKA, A. Whirl and Whip – Rotor Bearing Stability Problems. Journal of Sound and Vibration. Vol. 110, n.3, p.443-462, 1986.

MUSZYNKA, A. Stability if Whirl and Whip in Rotor Bearing System. Journal of Sound and Vibration. Vol. 127, n.3, p.49-64, 1988.

MUSZYNKA, A., BENTLY, D. E., Fluid-generated Instabilities of Rotors. Orbit. Vol. 10, n.1, p. 6-14, 1989.

MUSZYNKA, A., BENTLY, D. E., Fluid-induced instabilities of rotors: Whirl and whip – summary of results. Orbits. First quarter, p. 7-15, 1996.

NELSON, H. D., MCVAUGH, J. M., The Dynamics of Rotor-Bearing Systems Using Finite Elements. Journal of engineering for Industry – Transaction of the ASME, v.98, n.2, p.593- 600, May 1976.

NELSON, H. D. A finite rotating shaft element using Timoshenko beam theory. ASME Journal of Mechanical Design, v. 102, n. 4, p. 793-803, 1980.

NEWKIRK, B, L., TAYLOR, H. D. Shaft whipping due to oil action in journal bearings. General Electric Review, v.28, n. 8, 1925.

NOH, H. C., Stochastic behavior of Mindlin plate with uncertain geometric and material parameters. Probabilistic Engineering Mechanics, v. 20, p. 296-306, 2005.

NORTON, R. L.,Projeto de Máquinas, 4ª Edição. Porto Alegre: Bookman, 2011.

OCVIRK, E. W. Short bearing approximation for full journal bearings, National Advisory Committee for Aeronautics, Technical Note 2808, Cornell University, 1952.

PERADOTTO, E., PANUNZIO, A. M., SALLES, L., SCHWINGSHACKL, C. Stochastic Methods for Nonlinear Rotordynamics with Uncertainties, Proceedings of ASME Turbo Expo, Canada, Junho 2015.

PETROFF, N. P., Friction in Machines and the Effect of the Lubricant, Inzhenernii Zhurnal, St. Perersburg, Vol. 3, p. 377-436, 1883.

PINKUS, O. Analysis of Eliptical Bearings, Transactions of ASME, vol. 78, p. 965-973, 1956

PINKUS, O. Solution of Reynolds Equation for Finite Journal Bearings, Transactions of ASME, Vol. 80, p. 858-864, 1958.

PINKUS, O. Analysis and Characteristics of Three-lobe Bearings, Journal of Basic Engineering, p. 49-55, 1959.

RAMAKUMAR, R. Engineering Reliability: Fundamentals and Applications. Prentice- Hall, 1993.

RANKINE, W. J. M. On the centrifugal force of rotating shafts. The Engineer, v.27, 1869.

REYNOLDS, O. On the Theory of Lubrication and its Application to Mr. Beauchamp Tower’s Experiments Including an Experimental Determination of the Viscosity of the Olive Oil, Phios. Trans. R. Soc. London, Series A, Vol. 177, Part 1, p. 157-234, 1886.

ROHATGI, V. K., SALEH, A. K. MD. E., An Introduction to Probability and Statistics, 2 Edição. John Wiley & Sons, Inc. Hoboken, 2001.

RUHL, R. L., BOOKER, J. F. A finite element model for distributes parameter turborotor systems. ASME Journal of engineering for Industry, v. 94, p. 128-132, 1972.

SAMPAIO, R., LIMA, R. Q., Modelagem Estocástica e Geração de Amostras de Variáveis e Vetores Aleatórios. Sociedade Brasileira de Matemática Aplicada e Computacional. São Carlos, 2012.

SCHUËLLER, G. I. A state-of-the-art report on computational stochastic mechanics. Probabilistic Engineering Mechanics, vol. 12, n. 4, p. 197-321, 1997.

SHANNON, C.E.,.A mathematical theory of communication. Bell System Technical Journal, Vol. 27, p. 379–423 e 623–659, 1948.

SHINOZUKA, M. Monte Carlo Solution of Structural Dynamics. Computers & Structures, vol. 2, p. 855-874, 1972.

SHONKWILLER, R., MENDIVIL, F. Explorations in Monte Carlo Methods. Springer, New York, USA, 2009.

SILVEIRA, Z. C. Análise Estatística e Otimização de Parâmetros de Projeto em Componentes de Sistemas Mecânicos, 2003, 201 p. Tese (Doutorado) - Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas, Campinas, 2003.

SINGHAL, G. C. Computation Methods for hydrodynamic problems (Reynold’s Equation). Computer-Aided Design, Vol. 13, n.3 , p.151-154, 1982.

SINOU, J.-J., DIDIER, J., FAVERJON, B., Stochastic non-linear response of a flexible rotor with local non-linearities. International Journal of Non-Linear Mechanics, Vol. 74, P. 92- 99, 2015.

SOIZE, C. Short Course on Uncertainties and Stochastic Modeling. PUC-Rio University, Rio de Janeiro, Agosto de 2008.

SOMMERFELD, A. Zur Hydrodynamischen Theorie der Schmiermittelreibung, Zs. Math. And Phys. Vol. 50, No.1 p.97-155, 1904.

STEINBERG, D. M., HUNTER, W. G., Experimental design: review and comment. Technometrics. v.26, n.2, p. 71-97. 1984.

STODOLA, A. Kritische Wellenstorung infolge der Nechgiebigkeit des Oelpolsters im Lager. Schweizerische Bauzeiting, v.85, p. 265-266, 1925.

TAPIA, T. A., Modelagem dos Acoplamentos Mecânicos nos Sistemas Horizontais Rotor- Acoplamento-Mancal. 2003, 250 p. Tese (Doutorado) - Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas, Campinas, 2003.

THORKILDSEN, T. Solution of a distributed mass and unbalanced rotor system using a consistente mass matrix approach. MSE Engineering Report, Arizona State University, 1972.

TOWER, B., First Report on Friction Experiments, Proc. Inst. Mech. Eng. p 58-70, 1885.

TUCKMANTEL, F. W. DA S. Integração de Sistemas Rotor-Mancais Hidrodinâmicos – Estrutura da Suporte para Resolução Numérica. 2010. Dissertação (Mestrado) –

Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas, Campinas, 2010.

VANCE, J. M., Rotordynamics of Turbomachinery, John Wiley & Sons, New York, 1998, 388p.

ZORZI, E. S., NELSON, H. D. Finite element simulation of rotor-bearing systems with internal damping. ASME Journal of Engineering for Power, v. 99, n.1, p. 71-76, 1977.

ZORZI, E. S., NELSON, H. D. The dynamics of rotor-bearing systems with axial torque – A finite element approach. ASME Journal of Mechanical Design, v. 102, p. 158-161, 1980.

Documentos relacionados