• Nenhum resultado encontrado

(a) Queueing delay (DL).

0 5 10 15 20

Throughput (Mbps) 0%

20%

40%

60%

80%

100%

Likelihood (%)

μQoSQoS1

(1%) BE 3

BE 4 QoS 1

(b) Throughput (DL).

0 5 10 15 20

Throughput (Mbps) 0%

20%

40%

60%

80%

100%

Likelihood (%)

μQoSQoS2(1%) BE 1 BE 2 QoS 2

(c) Throughput (UL).

10−210−1100 101 102 103 104 105 Queueing delay (ms) 0%

20%

40%

60%

80%

100%

Likelihood (%)

DQoSQoS1 (93%)

BE 3BE 4 QoS 1

(d) Queueing delay (DL).

0 5 10 15 20

Throughput (Mbps) 0%

20%

40%

60%

80%

100%

Likelihood (%)

μQoSQoS1(66%)

BE 3 BE 4 QoS 1

(e) Throughput (DL).

0 5 10 15 20

Throughput (Mbps) 0%

20%

40%

60%

80%

100%

Likelihood (%)

μQoS2QoS (76%) BE 1 BE 2 QoS 2

(f) Throughput (UL).

Figure 16.Experiment 3 CDFs. (a) Queueing delay of slices (DL), (b) throughput of slices (DL), and (c) throughput of flows from STAs (UL) with Gómez et al. [5]; (d) queueing delay of slices (DL), (e) throughput of slices (DL), and (f) throughput of flows from STAs (UL) with our approach.

QoS 1 BE 3 BE 4

1010101010101010−10123456

Queueing Dela (ms)

DQoSQoS1

(5ms)

Gómez et al. Proposed

(a) Queueing delay (DL).

QoS 1 BE 3 BE 4

0 5 10 15 20 25

Throughput (Mbps) μQoS1

(10Mbps)QoS

Gómez et al. Proposed

(b) Throughput (DL).

BE 1 BE 2 QoS 2

0 5 10 15 20 25 25

Throughput (Mbps) μQoS2

(5Mbps)QoS

Gómez et al. Proposed

(c) Throughput (UL).

Figure 17.Experiment 3 box-and-whiskers plots. (a) Queueing delay of slices (DL); (b) throughput of slices (DL); (c through-put of flows from STAs (UL).

6. Conclusions and Future Work

In this new era of 5G communication, MCAs are imposing stricter QoS requirements on coexisting technologies, such as IEEE 802.11 networks. Because traditional IEEE 802.11 networks are known to achieve insufficient reliability and non-deterministic latency, dy-namic, and precise RA mechanisms are essential. In this paper, we proposed a delay-aware approach for MAC management via airtime-based network slicing and traffic shaping, as well as user association while using MCDA in IEEE 802.11 SD-RANs. With the centralized view of the network, our approach performs traffic shaping on the STAs to prevent BE flows from degrading the QoS requirements of others. Differently from most work in the literature, our approach considers QoS and BE flows in both the UL and DL directions.

Focusing on MCAs, we designed our experiments based on the QoS requirements from the use case of process automation and remote control in future digital factories. Through experimentation in a real-world testbed, our results show that our approach enhances the QoS support at runtime, drawing closer to the MCA requirements, as compared to a state-of-the-art user association algorithm [5].

As future work, we plan to address the design of a more deterministic scheduling algo-rithms for precise QoS service differentiation on the AP, the design of decentralized control algorithms for airtime-shaping and local decision-making, and the use of monitoring information with finer granularity for network management in general.

Author Contributions:Conceptualization, all authors; methodology, P.H.I., D.J.K., and V.R.S.; soft-ware, P.H.I. and D.J.K.; validation, P.H.I., D.J.K., and V.R.S.; formal analysis, P.H.I.; investigation, P.H.I.; resources, all authors; writing—original draft preparation, P.H.I., D.J.K., and V.R.S.; writing—

review and editing, all authors; visualization, P.H.I.; supervision, J.M.M.-B., L.Z.G., S.L., and V.R.S.

All authors have read and agreed to the published version of the manuscript

Funding:This research received partial funding from a research project of The Flemish Research Fund (FWO), from The European Union’s Horizon 2020 Research and innovation program, under grant agreement No. 826284 (ProTego), from The U.S. National Science Foundation NeTS Award 1813451, and was also supported by the FLEXNET project: “Flexible IoT Networks for Value Creators”

(Celtic 2016/3), in the Eureka Celtic-Next Cluster.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available in FigShare at https://doi.org/10.6084/m9.figshare.13607276, reference number 13607276.

Conflicts of Interest:The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

A-MSDU Aggregated MAC Service Data Unit ADWRR Airtime Deficit Weighted Round Robin AHP Analytic Hierarchy Process

AP Access Point

API Application Programming Interface ARP Address Resolution Protocol

BE Best-Effort

CDF Comulative Ditribution Function CSA Channel Switch Annoucement CUPS Control/User Plane Split

CW Contention Window

DCF Distributed Coordination Function

DL Downlink

DSCP Differentiated Services Code Point

E2E End-to-End

EDCA Enhanced Distributed Channel Access HD High-Definition

HT High Throughput

LVAP Light Virtual Access Point MAC Medium Access Control MCA Mission-Critical Application MCDA Multi-Criteria Decision Analysis MCS Modulation and Coding Scheme NIC Network Interface Card

QoS Quality of Service QoSS Quality of Service Slicing RA Resource Allocation RAN Radio Access Network RAT Radio Access Technology

RSSI Received Signal Strength Indicator SD-RAN Software-Defined Radio Access Network SDN Software-Defined Networking

SLA Service Level Agreement SMA Simple Moving Average SMM Simple Moving Median SSID Service Set Identifier

STA Station

TCP Transmission Control Protocol

TOPSIS Technique for Order of Preference by Similarity to Ideal Solution TXOP Transmission Opportunity

UDP User Datagram Protocol

UL Uplink

URLLC Untral-Reliably Low Latency Communication VHT Very High Throughput

References

1. 5GPPP Architecture Working Group. View on 5G Architecture. Available online:https://5g-ppp.eu/wp-content/uploads/201 8/01/5G-PPP-5G-Architecture-White-Paper-Jan-2018-v2.0.pdf(accessed on 19 January 2021).

2. 3GPP. Service Requirements for the 5G System; Technical Specification (TS) 22.261; 3rd Generation Partnership Project (3GPP):

Valbonne, France, 2020; Version 18.0.0.

3. Coronado, E.; Riggio, R.; Villalón, J.; Garrido, A. Wi-balance: Channel-aware user association in software-defined Wi-Fi networks.

In Proceedings of the NOMS 2018—2018 IEEE/IFIP Network Operations and Management Symposium, Taipei, Taiwan, 23–27 April 2018; pp. 1–9.

4. Coronado, E.; Riggio, R.; Villa1ón, J.; Garrido, A. Lasagna: Programming Abstractions for End-to-End Slicing in Software-Defined WLANs. In Proceedings of the 2018 IEEE 19th International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), Chania, Greece, 12–15 June 2018; pp. 14–15.

5. Gómez, B.; Coronado, E.; Villalón, J.; Riggio, R.; Garrido, A. User Association in Software-Defined Wi-Fi Networks for Enhanced Resource Allocation. In Proceedings of the IEEE WCNC 2020 Conference, Virtual Conference, 25–28 May 2020.

6. Aijaz, A. High-Performance Industrial Wireless: Achieving Reliable and Deterministic Connectivity Over IEEE 802.11 WLANs.

IEEE Open J. Ind. Electron. Soc.2020,1, 28–37. doi:10.1109/OJIES.2020.2983259.

7. Wickboldt, J.A.; Jesus, W.P.D.; Isolani, P.H.; Both, C.B.; Rochol, J.; Granville, L.Z. Software-defined networking: management requirements and challenges. IEEE Commun. Mag.2015,53, 278–285. doi:10.1109/MCOM.2015.7010546.

8. Alliance, N. Perspectives on Vertical Industries and Implications for 5G; White Paper; NGMN Alliance: Berkshire, UK, 2016.

9. Vassilaras, S.; Gkatzikis, L.; Liakopoulos, N.; Stiakogiannakis, I.N.; Qi, M.; Shi, L.; Liu, L.; Debbah, M.; Paschos, G.S. The Algorith-mic Aspects of Network Slicing.IEEE Commun. Mag.2017,55, 112–119. doi:10.1109/MCOM.2017.1600939.

10. 3GPP. Study on Management and Orchestration of Network Slicing for Next Generation Network; Technical Report TR 28.801 V15.0.0T;

3rd Generation Partnership Project (3GPP): Valbonne, France, 2017.

11. Coronado, E.; Khan, S.N.; Riggio, R. 5G-EmPOWER: A Software-Defined Networking Platform for 5G Radio Access Networks.

IEEE Trans. Netw. Serv. Manag.2019,16, 715–728. doi:10.1109/TNSM.2019.2908675.

12. Fendt, A.; Schmelz, L.C.; Wajda, W.; Lohmüller, S.; Bauer, B. A Network Slice Resource Allocation Process in 5G Mobile Networks.

In Proceedings of the 12th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, Kunibiki Messe, Matsue, Japan, 4–6 July 2018.

13. Richart, M.; Baliosian, J.; Serrat, J.; Gorricho, J. Resource Slicing in Virtual Wireless Networks: A Survey. IEEE Trans. Netw. Serv.

Manag.2016,13, 462–476. doi:10.1109/TNSM.2016.2597295.

14. Richart, M.; Baliosian, J.; Serrati, J.; Gorricho, J.; Agüero, R.; Agoulmine, N. Resource allocation for network slicing in WiFi access points. In Proceedings of the 2017 13th International Conference on Network and Service Management (CNSM), Tokyo, Japan, 26–30 November 2017; pp. 1–4. doi:10.23919/CNSM.2017.8256046.

15. Høiland-Jørgensen, T.; Kazior, M.; Täht, D.; Hurtig, P.; Brunstrom, A. Ending The Anomaly: Achieving Low Latency and Airtime Fairness in WiFi. In Proceedings of the 2017 USENIX Annual Technical Conference (USENIX ATC 17), Santa Clara, CA, USA, 12–14 July 2017; pp. 139–151.

16. Aleixendri, J.J.; Betzler, A.; Camps-Mur, D. A practical approach to slicing Wi-Fi RANs in future 5G networks. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakech, Morocco, 15–19 April 2019; pp. 1–6.

17. Høiland-Jørgensen, T.; Hurtig, P.; Brunstrom, A. PoliFi: Airtime Policy Enforcement for WiFi. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakech, Morocco, 15–19 April 2019; pp. 1–6.

doi:10.1109/WCNC.2019.8885440.

18. Isolani, P.H.; Cardona, N.; Donato, C.; Marquez-Barja, J.; Granville, L.Z.; Latré, S. SDN-based Slice Orchestration and MAC Management for QoS delivery in IEEE 802.11 Networks. In Proceedings of the 2019 Sixth International Conference on Software Defined Systems (SDS), Rome, Italy, 10–13 June 2019; pp. 260–265. doi:10.1109/SDS.2019.8768642.

19. Isolani, P.H.; Cardona, N.; Donato, C.; Pérez, G.A.; Marquez-Barja, J.M.; Granville, L.Z.; Latré, S. Airtime-Based Resource Allocation Modeling for Network Slicing in IEEE 802.11 RANs.IEEE Commun. Lett.2020,24, 1077–1080.

20. Richart, M.; Baliosian, J.; Serrat, J.; Gorricho, J.L.; Agüero, R. Slicing with Guaranteed Quality of Service in WiFi Networks. IEEE Trans. Netw. Serv. Manag.2020,17, 1822–1837. doi:10.1109/TNSM.2020.3005594.

21. Isolani, P.H.; Kulenkamp, D.J.; Marquez-Barja, J.M.; Latré, S.; Syrotiuk, V.R. Delay-Aware Slicing and MAC Management Using MCDA in IEEE 802.11 SD-RANs. Unpublished work, 2021.

22. Agiwal, M.; Roy, A.; Saxena, N. Next Generation 5G Wireless Networks: A Comprehensive Survey. IEEE Commun. Surv. Tutor.

2016,18, 1617–1655. doi:10.1109/COMST.2016.2532458.

23. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification.Amendment 8: Medium Access Control (MAC) Quality of Service (QoS); ANSI/IEEE Std 802.11e; LAN/MAN Standards Committee of the IEEE Computer Society Std.:

New York, NY, USA, 2005.

24. Luo, H.; Shyu, M. An Optimized Scheduling Scheme to Provide Quality of Service in 802.11e Wireless LAN. In Proceedings of the 2009 11th IEEE International Symposium on Multimedia, San Diego, CA, USA 14–16 December 2009; pp. 651–656.

doi:10.1109/ISM.2009.109.

25. Serrano, P.; Banchs, A.; Patras, P.; Azcorra, A. Optimal Configuration of 802.11e EDCA for Real-Time and Data Traffic. IEEE Trans. Veh. Technol.2010,59, 2511–2528. doi:10.1109/TVT.2010.2043274.

26. Pang, W.L.; Chieng, D.; Ahmad, N.N. Adaptive Priority Sliding Admission Control and Scheduling Scheme for DCF and EDCA WLANs. Wirel. Pers. Commun.2013,70, 295–321. doi:10.1007/s11277-012-0695-2.

27. Charfi, E.; Gueguen, C.; Chaari, L.; Cousin, B.; Kamoun, L. Dynamic frame aggregation scheduler for multimedia applications in IEEE 802.11n networks. Trans. Emerg. Telecommun. Technol.2017,28, e2942.

28. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications.Amendment 5: Enhancements for Higher Throughput; ANSI/IEEE Std 802.11n; LAN/MAN Standards Committee of The IEEE Computer Society Std.: New York, NY, USA, 2009.

29. Sarret, M.G.; Ashta, J.S.; Mogensen, P.; Catania, D.; Cattoni, A.F. A Multi-QoS Aggregation Mechanism for Improved Fairness in WLAN. In Proceedings of the 2013 IEEE 78th Vehicular Technology Conference (VTC Fall), Las Vegas, NV, USA, 2–5 September 2013; pp. 1–5. doi:10.1109/VTCFall.2013.6692041.

30. Kim, D.; An, S. Throughput enhancement by Dynamic Frame Aggregation in multi-rate WLANs. In Proceedings of the 2012 19th IEEE Symposium on Communications and Vehicular Technology in The Benelux (SCVT), Eindhoven, The Netherlands, 16 November 2012; pp. 1–5. doi:10.1109/SCVT.2012.6399389.

31. Azhari, S.V.; Gurbuz, O.; Ercetin, O. QoS based aggregation in high speed IEEE802.11 wireless networks. In Proceedings of the 2016 Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net), Vilanova i la Geltrú, Spain, 21–21 June 2016; pp. 1–7.

doi:10.1109/MedHocNet.2016.7528418.

32. Maqhat, B.; Dani Baba, M.; Rahman, R.A.; Saif, A. Performance analysis of fair scheduler for A-MSDU aggregation in IEEE802.11n wireless networks. In Proceedings of the 2014 2nd International Conference on Electrical, Electronics and System Engineering (ICEESE), Kuala Lumpur, Malaysia, 9–10 December 2014; pp. 60–65. doi:10.1109/ICEESE.2014.7154608.

33. Seytnazarov, S.; Kim, Y. QoS-Aware Adaptive A-MPDU Aggregation Scheduler for Voice Traffic in Aggregation-Enabled High Throughput WLANs. IEEE Trans. Mob. Comput.2017,16, 2862–2875. doi:10.1109/TMC.2017.2672994.

34. Banchs, A.; Serrano, P.; Patras, P.; Natkaniec, M. Providing Throughput and Fairness Guarantees in Virtualized WLANs Through Control Theory. Mob. Netw. Appl.2012,17, 435–446. doi:10.1007/s11036-012-0382-2.

35. Nakauchi, K.; Shoji, Y.; Nishinaga, N. Airtime-based resource control in wireless LANs for wireless network virtualization. In Proceedings of the 2012 Fourth International Conference on Ubiquitous and Future Networks (ICUFN), Phuket, Thailand, 4–6 July 2012; pp. 166–169. doi:10.1109/ICUFN.2012.6261686.

36. Guo, K.; Sanadhya, S.; Woo, T. ViFi: Virtualizing WLAN Using Commodity Hardware. In Proceedings of the 9th ACM Workshop on Mobility in The Evolving Internet Architecture, MobiArch ’14, Maui, HI, USA, 11 September 2014; ACM: New York, NY, USA, 2014; pp. 25–30. doi:10.1145/2645892.2645893.

37. Derakhshani, M.; Wang, X.; Tweed, D.; Le-Ngoc, T.; Leon-Garcia, A. AP-STA Association Control for Throughput Maximization in Virtualized WiFi Networks. IEEE Access2018,6, 45034–45050.

38. Smith, G.; Chaturvedi, A.; Mishra, A.; Banerjee, S. Wireless Virtualization on Commodity 802.11 Hardware. In Proceedings of the Second ACM International Workshop on Wireless Network Testbeds, Experimental Evaluation and Characterization, WinTECH

’07, Montreal, QC, Canada, 10 September 2007; Association for Computing Machinery: New York, NY, USA, 2007; pp. 75–82.

doi:10.1145/1287767.1287782.

39. Bhanage, G.; Vete, D.; Seskar, I.; Raychaudhuri, D. SplitAP: Leveraging Wireless Network Virtualization for Flexible Sharing of WLANs. In Proceedings of the 2010 IEEE Global Telecommunications Conference GLOBECOM 2010, Miami, FL, USA, 6–10 December 2010; pp. 1–6. doi:10.1109/GLOCOM.2010.5684328.

40. Mahindra, R.; Bhanage, G.D.; Hadjichristofi, G.; Seskar, I.; Raychaudhuri, D.; Zhang, Y.Y. Space Versus Time Separation for Wireless Virtualization on an Indoor Grid. In Proceedings of the 2008 Next Generation Internet Networks, Kraków, Poland, 28–30 April 2008; pp. 215–222.

41. Katsalis, K.; Choumas, K.; Korakis, T.; Tassiulas, L. Virtual 802.11 wireless networks with guaranteed throughout sharing. In Proceedings of the 2015 IEEE Symposium on Computers and Communication (ISCC), Larnaca, Cyprus, 6–9 July 2015; pp. 845–850.

doi:10.1109/ISCC.2015.7405619.

42. Xia, L.; Kumar, S.; Yang, X.; Gopalakrishnan, P.; Liu, Y.; Schoenberg, S.; Guo, X. Virtual WiFi: Bring Virtualization from Wired to Wireless. SIGPLAN Not.2011,46, 181–192. doi:10.1145/2007477.1952706.

43. Heusse, M.; Rousseau, F.; Berger-Sabbatel, G.; Duda, A. Performance anomaly of 802.11b. In Proceedings of the IEEE INFOCOM 2003, Twenty-Second Annual Joint Conference of The IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428), San Francisco, CA, USA, 30 March–2 April 2003; Volume 2, pp. 836–843. doi:10.1109/INFCOM.2003.1208921.

44. Murty, R.; Padhye, J.; Chandra, R.; Wolman, A.; Zill, B. Designing High Performance Enterprise Wi-Fi Networks. In Proceedings of the 5th USENIX Symposium on Networked Systems Design and Implementation, NSDI’08, San Francisco, CA, USA, 16–18 April 2008; USENIX Association: Berkeley, CA, USA, 2008; pp. 73–88.

45. Murty, R.; Padhye, J.; Wolman, A.; Welsh, M. Dyson: An Architecture for Extensible Wireless LANs. In Proceedings of the Usenix annual Technical Conference, Boston, MA, USA, 23–25 June 2010.

46. Suresh, L.; Schulz-Zander, J.; Merz, R.; Feldmann, A.; Vazao, T. Towards Programmable Enterprise WLANS with Odin.

In Proceedings of the First Workshop on Hot Topics in Software Defined Networks, Helsinki, Finland, 13–17 Auguest 2012; ACM:

New York, NY, USA, 2012; pp. 115–120. doi:10.1145/2342441.2342465.

47. Rangisetti, A.K.; Baldaniya, H.B.; B, P.K.; Tamma, B.R. Load-aware hand-offs in software defined wireless LANs. In Proceedings of the 2014 IEEE 10th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Larnaca, Cyprus, 8–10 October 2014; pp. 685–690. doi:10.1109/WiMOB.2014.6962245.

48. Sen, A.; Sivalingam, K.M. An SDN framework for seamless mobility in enterprise WLANs. In Proceedings of the 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Helsinki, Finland, 13–16 September 2015; pp. 1985–1990. doi:10.1109/PIMRC.2015.7343624.

49. Zubow, A.; Zehl, S.; Wolisz, A. BIGAP—Seamless handover in high performance enterprise IEEE 802.11 networks. In Proceedings of the NOMS 2016—2016 IEEE/IFIP Network Operations and Management Symposium, Istanbul, Turkey, 25–29 April 2016;

pp. 445–453. doi:10.1109/NOMS.2016.7502842.

50. Wang, H.; Ooi, W.T.; Chan, M.C. JurCast: Joint user and rate allocation for video multicast over multiple APs. In Proceedings of the IEEE INFOCOM 2016—The 35th Annual IEEE International Conference on Computer Communications, San Francisco, CA, USA, 10–15 April 2016; pp. 1–9. doi:10.1109/INFOCOM.2016.7524569.

51. Rodrigues de Sa, F.; da Cunha, A.M.; de Azevedo Castro Cesar, C. Effective AP Association in SDWN Based on Signal Strength and Occupancy Rate. In Proceedings of the 2017 IEEE 42nd Conference on Local Computer Networks (LCN), Singapore, 9–12 October 2017; pp. 159–162. doi:10.1109/LCN.2017.101.

52. Aldhaibani, O.; Bouhafs, F.; Makay, M.; Raschellá, A. An SDN-Based Architecture for Smart Handover to Improve QoE in IEEE 802.11 WLANs. In Proceedings of the 2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA), Kraków, Poland, 16–18 May 2018; pp. 287–292.

53. Zeljkovi´c, E.; Marquez-Barja, J.M.; Kassler, A.; Riggio, R.; Latré, S. Proactive Access Point Driven Handovers in IEEE 802.11 Networks. In Proceedings of the 2018 14th International Conference on Network and Service Management (CNSM), Rome, Italy, 5–9 November 2018; pp. 261–267.

54. Zeljkovi´c, E.; Slamnik-Kriještorac, N.; Latré, S.; Marquez-Barja, J.M. ABRAHAM: Machine Learning Backed Proactive Handover Algorithm Using SDN.IEEE Trans. Netw. Serv. Manag.2019,16, 1522–1536.

55. Bayhan, S.; Coronado, E.; Riggio, R.; Zubow, A. User-AP Association Management in Software-Defined WLANs. IEEE Trans.

Netw. Serv. Manag.2020,17, 1838–1852. doi:10.1109/TNSM.2020.3001869.

Documentos relacionados