• Nenhum resultado encontrado

A Escala Modificada de Ashworth consiste no padrão outro de avaliação de tônus muscular, possuindo boa confiabilidade inter e intra-avaliadores(63). Ela consiste em uma escala de 6 pontos que avalia a resistência ao movimento passivo, nos quais escores mais altos correspondem a espasticidade ou aumento do tônus, enquanto escores mais baixos indicam tônus muscular normal(64).

Estudos utilizando a TE associada a outras técnicas (estimulação

elétrica funcional, reabilitação convencional) apresentaram melhorias

significativamente maiores nas funções motoras e espasticidade do MS distal do que proximal, comparada aos grupos controle(32, 65, 66).

2.5 Terapia do Espelho

A TE é uma das técnicas de reabilitação potencialmente benéficas para a recuperação sensório-motora do MS de pacientes após AVC e é baseada na teoria da plasticidade cerebral e reorganização funcional cortical(12, 21, 67, 68). A TE foi primeiramente introduzida por Ramachandran, em 1996, para tratar a

dor no membro fantasma após a amputação(15), e este estudo tornou-se a base

para futuras pesquisas sobre a neuroplasticidade do SNC. Desde então, a TE vem sendo aplicada para o tratamento do AVC, lesões do sistema nervoso periférico, distrofia simpático reflexa e desordens de coordenação motora(7, 12, 65).

Somente no final da década de 1990, Altschuler et al. (1999)(14)

introduziram a TE na reabilitação de pacientes hemiparéticos após AVC, apresentando melhorias na amplitude de movimento, velocidade, destreza,

força muscular e recuperação funcional do braço parético(69). A partir de então,

a TE tem sido utilizada para melhorar a função do MS, principalmente em

indivíduos após AVC crônico(7). A maioria das pesquisas mostram a eficácia da

TE na melhora da função do MS(68), entretanto, se essa melhora é devido a TE

ou apenas a sua associação com outras abordagens terapêuticas, ainda não é claro, já que a maioria dos estudos associam a TE com outras modalidades terapêuticas(5).

A TE é aplicada por meio de um espelho que é posicionado entre os MSs do indivíduo de modo sagital. Com a intenção de reeducar o cérebro e

20 promover uma ilusão visual e sinestésica, o indivíduo realiza uma série de movimentos com o membro saudável que são refletidos pelo espelho e

interpretados como se fossem realizados pelo membro afetado(15). Assim,

cria-se uma ilusão convincente de que os movimentos do braço afetado atrás do

espelho parecem ser feitos de forma tão eficaz quanto o braço não afetado(70).

Esta ilusão visual pode ser utilizada para melhorar o desempenho motor e a percepção do membro afetado(19, 68).

Sugere-se que os efeitos da TE podem estar relacionados à ativação de neurônios espelho, os quais são ativados quando um indivíduo observa outro realizando movimentos, e durante a prática mental de tarefas motoras(17), (19). Neurônios espelho são células nervosas com propriedades visual-motoras, que

foram descobertas na área F5 do cérebro do macaco(71, 72). Esse tipo específico

de neurônios, também presente no cérebro humano, são ativados quando uma ação está em andamento ou quando a ação é observada, sendo realizada por outros(73).

Embora pesquisas clínicas indiquem a eficácia da TE, as alterações neurais subjacentes associadas à ela ainda são pouco compreendidas. Pesquisas sugerem que o feedback do espelho modifica o funcionamento do córtex motor primário do hemisfério que controla o braço atrás do espelho

(hemisfério lesionado)(74). Após a TE, há um declínio na ativação do hemisfério

contralesional e movimentos de equilíbrio de ativação em direção ao hemisfério

lesionado(5). Assim, a TE induz uma reorganização das áreas pré-motoras

bilaterais para estabelecer comunicação funcional com o córtex motor primário contralateral; há uma comunicação calosa aumentada do hemisfério lesionado para o sadio, equilibrando a inibição inter-hemisférica; o cerebelo também pode demonstrar ativação para melhorar o controle motor e a aprendizagem motora(18).

Uma interconexão funcional, essencial para o movimento do membro parético, também é estabelecida entre o córtex somatossensorial e motor

ipsilesional após sessão única de TE(37). Além disso, é observada uma

excitabilidade aumentada das vias corticoespinhais correspondentes ao lado do corpo afetado, há uma ativação da área motora primária, córtex somatossensorial primário, área motora suplementar e área pré-motora do

21 Em um estudo de magnetoencefalografia, a presença do espelho mudou o padrão de ativação inicialmente assimétrico em pacientes com AVC para um padrão mais simétrico, indicando que a assimetria de ativação entre os

hemisférios cerebrais pode ser normalizada pela TE(20). Além das áreas

motoras, a TE também estimula áreas como o córtex pré-frontal dorsolateral relacionado à cognição, aumenta a atividade no córtex precuneus e cingulado posterior, áreas associadas à consciência corporal e atenção espacial(67).

A maioria dos estudos sobre TE relatam o seu efeito (associado a outras modalidades terapêuticas) através de movimentos simétricos bilaterais, estimulando os pacientes verbalmente para que movam ambos os braços, da maneira que for possível(7, 14, 21, 61, 65, 68). Já, outros autores testaram diferentes condições de treinamento (unilateral ou bilateral, com ou sem espelho) a fim de investigar os efeitos de curto prazo durante a tarefa de alcance e não observaram diferenças em relação ao tempo de movimento entre as condições

bimanuais com ou sem espelho(24). De outra maneira, Rodrigues et al.

(2016)(75) observou melhora significativa na comparação do desempenho pré e

pós-treinamento apenas para tarefas bilaterais.

O valor agregado da TE é que o espelho substitui o feedback sobre o movimento do lado afetado por um feedback visual que cria a ilusão de que o lado parético se move com um padrão de movimento normal. No entanto, a partir do número relativamente pequeno de estudos e a falta de comparação direta, devido aos diferentes tipos de treinamento da TE, a forma de treinamento ideal ainda não está clara(24).

3 REFERÊNCIAS BIBLIOGRÁFICAS DA REVISÃO

1. Prange GB, Jannink MJ, Groothuis-Oudshoorn CG, Hermens HJ,

Ijzerman MJ. Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev. 2006;43(2):171-84.

2. Rostami HR, Arefi A, Tabatabaei S. Effect of mirror therapy on hand

function in patients with hand orthopaedic injuries: a randomized controlled trial. Disabil Rehabil. 2013;35(19):1647-51.

3. Mendis S. Stroke disability and rehabilitation of stroke: World Health Organization perspective. Int J Stroke. 2013;8(1):3-4.

22

4. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone

G, et al. Heart disease and stroke statistics--2010 update: a report from the American Heart Association. Circulation. 2010;121(7):e46-e215.

5. Mirela Cristina L, Matei D, Ignat B, Popescu CD. Mirror therapy

enhances upper extremity motor recovery in stroke patients. Acta Neurol Belg. 2015;115(4):597-603.

6. Aprile I, Rabuffetti M, Padua L, Di Sipio E, Simbolotti C, Ferrarin M. Kinematic analysis of the upper limb motor strategies in stroke patients as a tool towards advanced neurorehabilitation strategies: a preliminary study. Biomed Res Int. 2014;2014:636123.

7. Yavuzer G, Selles R, Sezer N, Sütbeyaz S, Bussmann JB, Köseoğlu F,

et al. Mirror therapy improves hand function in subacute stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2008;89(3):393-8.

8. Alt Murphy M, Willén C, Sunnerhagen KS. Kinematic variables

quantifying upper-extremity performance after stroke during reaching and drinking from a glass. Neurorehabil Neural Repair. 2011;25(1):71-80.

9. Dejong SL, Lang CE. Comparison of unilateral versus bilateral upper

extremity task performance after stroke. Top Stroke Rehabil. 2012;19(4):294-305.

10. Broeks JG, Lankhorst GJ, Rumping K, Prevo AJ. The long-term outcome

of arm function after stroke: results of a follow-up study. Disabil Rehabil. 1999;21(8):357-64.

11. Lai SM, Studenski S, Duncan PW, Perera S. Persisting consequences of

stroke measured by the Stroke Impact Scale. Stroke. 2002;33(7):1840-4.

12. Lee MM, Cho HY, Song CH. The mirror therapy program enhances

upper-limb motor recovery and motor function in acute stroke patients. Am J Phys Med Rehabil. 2012;91(8):689-96, quiz 97-700.

13. da Silva Ribeiro NM, Ferraz DD, Pedreira É, Pinheiro Í, da Silva Pinto AC, Neto MG, et al. Virtual rehabilitation via Nintendo Wii® and conventional physical therapy effectively treat post-stroke hemiparetic patients. Top Stroke Rehabil. 2015;22(4):299-305.

14. Altschuler EL, Wisdom SB, Stone L, Foster C, Galasko D, Llewellyn DM,

et al. Rehabilitation of hemiparesis after stroke with a mirror. Lancet. 1999;353(9169):2035-6.

15. Ramachandran VS, Rogers-Ramachandran D. Synaesthesia in phantom

23 16. Rothgangel AS, Braun BS. Mirror Therapy: practical protocol for stroke rehabilitation. Munich: Pflaum Verlag2013.

17. Ji SG, Cha HG, Kim MK, Lee CR. The effect of mirror therapy integrating

functional electrical stimulation on the gait of stroke patients. J Phys Ther Sci. 2014;26(4):497-9.

18. Arya KN. Underlying neural mechanisms of mirror therapy: Implications

for motor rehabilitation in stroke. Neurol India. 2016;64(1):38-44.

19. Thieme H, Mehrholz J, Pohl M, Behrens J, Dohle C. Mirror therapy for improving motor function after stroke. Cochrane Database Syst Rev. 2012(3):CD008449.

20. Rossiter HE, Borrelli MR, Borchert RJ, Bradbury D, Ward NS. Cortical mechanisms of mirror therapy after stroke. Neurorehabil Neural Repair. 2015;29(5):444-52.

21. Michielsen ME, Selles RW, van der Geest JN, Eckhardt M, Yavuzer G,

Stam HJ, et al. Motor recovery and cortical reorganization after mirror therapy in chronic stroke patients: a phase II randomized controlled trial. Neurorehabil Neural Repair. 2011;25(3):223-33.

22. Egsgaard LL, Petrini L, Christoffersen G, Arendt-Nielsen L. Cortical

responses to the mirror box illusion: a high-resolution EEG study. Exp Brain Res. 2011;215(3-4):345-57.

23. Kang YJ, Park HK, Kim HJ, Lim T, Ku J, Cho S, et al. Upper extremity rehabilitation of stroke: facilitation of corticospinal excitability using virtual mirror paradigm. J Neuroeng Rehabil. 2012;9:71.

24. Selles RW, Michielsen ME, Bussmann JB, Stam HJ, Hurkmans HL,

Heijnen I, et al. Effects of a mirror-induced visual illusion on a reaching task in stroke patients: implications for mirror therapy training. Neurorehabil Neural Repair. 2014;28(7):652-9.

25. Wagner JM, Lang CE, Sahrmann SA, Edwards DF, Dromerick AW.

Sensorimotor impairments and reaching performance in subjects with poststroke hemiparesis during the first few months of recovery. Phys Ther. 2007;87(6):751-65.

26. Chen HL, Lin KC, Liing RJ, Wu CY, Chen CL. Kinematic measures of

Arm-trunk movements during unilateral and bilateral reaching predict clinically important change in perceived arm use in daily activities after intensive stroke rehabilitation. J Neuroeng Rehabil. 2015;12:84.

27. Hsieh YW, Liing RJ, Lin KC, Wu CY, Liou TH, Lin JC, et al. Sequencing

bilateral robot-assisted arm therapy and constraint-induced therapy improves reach to press and trunk kinematics in patients with stroke. J Neuroeng Rehabil. 2016;13:31.

24 28. Van Dokkum L, Hauret I, Mottet D, Froger J, Métrot J, Laffont I. The contribution of kinematics in the assessment of upper limb motor recovery early after stroke. Neurorehabil Neural Repair. 2014;28(1):4-12.

29. Wu CY, Yang CL, Chuang LL, Lin KC, Chen HC, Chen MD, et al. Effect

of therapist-based versus robot-assisted bilateral arm training on motor control, functional performance, and quality of life after chronic stroke: a clinical trial. Phys Ther. 2012;92(8):1006-16.

30. Arya KN, Pandian S, Verma R, Garg RK. Movement therapy induced

neural reorganization and motor recovery in stroke: a review. J Bodyw Mov Ther. 2011;15(4):528-37.

31. Ramachandran VS, Rogers-Ramachandran D, Cobb S. Touching the

phantom limb. Nature. 1995;377(6549):489-90.

32. Kim H, Lee G, Song C. Effect of functional electrical stimulation with mirror therapy on upper extremity motor function in poststroke patients. J Stroke Cerebrovasc Dis. 2014;23(4):655-61.

33. Kim JH, Lee BH. Mirror therapy combined with biofeedback functional

electrical stimulation for motor recovery of upper extremities after stroke: a pilot randomized controlled trial. Occup Ther Int. 2015;22(2):51-60.

34. Cho HS, Cha HG. Effect of mirror therapy with tDCS on functional

recovery of the upper extremity of stroke patients. J Phys Ther Sci. 2015;27(4):1045-7.

35. Yoon JA, Koo BI, Shin MJ, Shin YB, Ko HY, Shin YI. Effect of

constraint-induced movement therapy and mirror therapy for patients with subacute stroke. Ann Rehabil Med. 2014;38(4):458-66.

36. Harmsen WJ, Bussmann JB, Selles RW, Hurkmans HL, Ribbers GM. A

Mirror Therapy-Based Action Observation Protocol to Improve Motor Learning After Stroke. Neurorehabil Neural Repair. 2015;29(6):509-16.

37. Saleh S, Adamovich SV, Tunik E. Mirrored feedback in chronic stroke: recruitment and effective connectivity of ipsilesional sensorimotor networks. Neurorehabil Neural Repair. 2014;28(4):344-54.

38. Kolominsky-Rabas PL, Weber M, Gefeller O, Neundoerfer B,

Heuschmann PU. Epidemiology of ischemic stroke subtypes according to TOAST criteria: incidence, recurrence, and long-term survival in ischemic stroke subtypes: a population-based study. Stroke. 2001;32(12):2735-40.

39. Faralli A, Bigoni M, Mauro A, Rossi F, Carulli D. Noninvasive strategies to promote functional recovery after stroke. Neural Plast. 2013;2013:854597.

40. Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation. Lancet.

25

41. Stokes M. Neurofisiologia para fisioterapeutas. 2000. p. São Paulo.

42. Umphered DA . Fisioterapia Neurológica. editora Manole2004.

43. Taub E, Uswatte G, Morris DM. Improved motor recovery after stroke

and massive cortical reorganization following Constraint-Induced Movement therapy. Phys Med Rehabil Clin N Am. 2003;14(1 Suppl):S77-91, ix.

44. Dipietro L, Krebs HI, Fasoli SE, Volpe BT, Hogan N. Submovement

changes characterize generalization of motor recovery after stroke. Cortex. 2009;45(3):318-24.

45. Carmichael ST. Targets for neural repair therapies after stroke. Stroke. 2010;41(10 Suppl):S124-6.

46. Foscarin S, Rossi F, Carulli D. Influence of the environment on adult CNS plasticity and repair. Cell Tissue Res. 2012;349(1):161-7.

47. Nowak DA. The impact of stroke on the performance of grasping:

usefulness of kinetic and kinematic motion analysis. Neurosci Biobehav Rev. 2008;32(8):1439-50.

48. Reisman DS, Scholz JP. Aspects of joint coordination are preserved

during pointing in persons with post-stroke hemiparesis. Brain. 2003;126(Pt 11):2510-27.

49. Massie C, Malcolm MP, Greene D, Thaut M. The effects of constraint-induced therapy on kinematic outcomes and compensatory movement patterns: an exploratory study. Arch Phys Med Rehabil. 2009;90(4):571-9.

50. Caimmi M, Carda S, Giovanzana C, Maini ES, Sabatini AM, Smania N, et

al. Using kinematic analysis to evaluate constraint-induced movement therapy in chronic stroke patients. Neurorehabil Neural Repair. 2008;22(1):31-9.

51. Cirstea CM, Ptito A, Levin MF. Feedback and cognition in arm motor skill

reacquisition after stroke. Stroke. 2006;37(5):1237-42.

52. Kaminski TR, Bock C, Gentile AM. The coordination between trunk and

arm motion during pointing movements. Exp Brain Res. 1995;106(3):457-66.

53. Wu CY, Huang PC, Chen YT, Lin KC, Yang HW. Effects of mirror therapy

on motor and sensory recovery in chronic stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2013;94(6):1023-30.

54. Sathian K, Greenspan AI, Wolf SL. Doing it with mirrors: a case study of

a novel approach to neurorehabilitation. Neurorehabil Neural Repair. 2000;14(1):73-6.

26

55. Kwakkel G, Kollen BJ, van der Grond J, Prevo AJ. Probability of

regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke. 2003;34(9):2181-6.

56. Parker VM, Wade DT, Langton Hewer R. Loss of arm function after

stroke: measurement, frequency, and recovery. Int Rehabil Med. 1986;8(2):69-73.

57. Térémetz M, Colle F, Hamdoun S, Maier MA, Lindberg PG. A novel

method for the quantification of key components of manual dexterity after stroke. J Neuroeng Rehabil. 2015;12:64.

58. Mathiowetz V, Volland G, Kashman N, Weber K. Adult norms for the Box

and Block Test of manual dexterity. Am J Occup Ther. 1985;39(6):386-91.

59. Desrosiers J, Bravo G, Hébert R, Dutil E, Mercier L. Validation of the Box

and Block Test as a measure of dexterity of elderly people: reliability, validity, and norms studies. Arch Phys Med Rehabil. 1994;75(7):751-5.

60. Amasyali SY, Yaliman A. Comparison of the effects of mirror therapy and

electromyography-triggered neuromuscular stimulation on hand functions in stroke patients: a pilot study. Int J Rehabil Res. 2016;39(4):302-7.

61. Lin KC, Chen YT, Huang PC, Wu CY, Huang WL, Yang HW, et al. Effect

of mirror therapy combined with somatosensory stimulation on motor recovery and daily function in stroke patients: A pilot study. J Formos Med Assoc. 2014;113(7):422-8.

62. Shumway-Cook A, MH W. Motor control: theory and pratical applications.

Baltimore: Williams & Wilkins2000.

63. Gregson JM, Leathley M, Moore AP, Sharma AK, Smith TL, Watkins CL.

Reliability of the Tone Assessment Scale and the modified Ashworth scale as clinical tools for assessing poststroke spasticity. Arch Phys Med Rehabil. 1999;80(9):1013-6.

64. Bohannon RW, Smith MB. Assessment of strength deficits in eight

paretic upper extremity muscle groups of stroke patients with hemiplegia. Phys Ther. 1987;67(4):522-5.

65. Dohle C, Püllen J, Nakaten A, Küst J, Rietz C, Karbe H. Mirror therapy promotes recovery from severe hemiparesis: a randomized controlled trial. Neurorehabil Neural Repair. 2009;23(3):209-17.

66. Holleran CL, Rodriguez KS, Echauz A, Leech KA, Hornby TG. Potential

contributions of training intensity on locomotor performance in individuals with chronic stroke. J Neurol Phys Ther. 2015;39(2):95-102.

67. Deconinck FJ, Smorenburg AR, Benham A, Ledebt A, Feltham MG,

27 of mirror visual feedback on the brain. Neurorehabil Neural Repair. 2015;29(4):349-61.

68. Rothgangel AS, Braun SM, Beurskens AJ, Seitz RJ, Wade DT. The

clinical aspects of mirror therapy in rehabilitation: a systematic review of the literature. Int J Rehabil Res. 2011;34(1):1-13.

69. Stevens JA, Stoykov ME. Using motor imagery in the rehabilitation of hemiparesis. Arch Phys Med Rehabil. 2003;84(7):1090-2.

70. Jax SA, Rosa-Leyra DL, Coslett HB. Enhancing the mirror illusion with transcranial direct current stimulation. Neuropsychologia. 2015;71:46-51.

71. Gallese V, Fadiga L, Fogassi L, Rizzolatti G. Action recognition in the premotor cortex. Brain. 1996;119 ( Pt 2):593-609.

72. Rizzolatti G, Fadiga L, Gallese V, Fogassi L. Premotor cortex and the recognition of motor actions. Brain Res Cogn Brain Res. 1996;3(2):131-41.

73. Buccino G, Solodkin A, Small SL. Functions of the mirror neuron system:

implications for neurorehabilitation. Cogn Behav Neurol. 2006;19(1):55-63. 74. Garry MI, Loftus A, Summers JJ. Mirror, mirror on the wall: viewing a mirror reflection of unilateral hand movements facilitates ipsilateral M1 excitability. Exp Brain Res. 2005;163(1):118-22.

75. Rodrigues LC, Farias NC, Gomes RP, Michaelsen SM. Feasibility and

effectiveness of adding object-related bilateral symmetrical training to mirror therapy in chronic stroke: A randomized controlled pilot study. Physiother Theory Pract. 2016;32(2):83-91.

28 4 ARTIGO

ACUTE EFFECT OF MIRROR THERAPY ON MOTOR CONTROL, MANUAL DEXTERITY AND SPASTICITY OF PARETIC UPPER EXTREMITY AFTER

CHRONIC STROKE

(Este artigo será submetido ao periódico Clinical Rehabilitation)

Ariane Bôlla Freire1, Elren Passos Monteiro2, Chen Chai Ling3, Rochelle Rocha Costa4, Caren Luciane Bernardi5

1Rehabilitation Sciences Graduate Program, Universidade Federal de Ciências

da Saúde de Porto Alegre (UFCSPA), Brazil

2,4Health Sciences Graduate Program, Universidade Federal de Ciências da

Saúde de Porto Alegre (UFCSPA), Brazil.

3Undergraduate in Physiotherapy course, Universidade Federal de Ciências da

Saúde de Porto Alegre (UFCSPA), Brazil

4School of Physical Education, Universidade Federal do Rio Grande do Sul, Brazil

5Departmentof Physiotherapy, Universidade Federal de Ciências da Saúde de

Porto Alegre (UFCSPA), Brazil.

Correspondent Author: Ariane Bôlla Freire, PT, MSc

Programa de Pós-Graduação em Ciências da Reabilitação

Universidade Federal de Ciências da Saúde de Porto Alegre – UFCSPA 245 Sarmento Leite Street - Porto Alegre, RS, Brazil - Zip code: 90050-170 Phone: +55-55-991731191

29 ABSTRACT

Objective: To investigate the acute effect of mirror therapy (MT) on motor control, manual dexterity and spasticity of the paretic upper extremity (UE) of individuals with chronic hemiparesis after stroke, during reaching task.

Design: Randomized cross-over single-blinded trial.

Subjects: Thirty-three patients post chronic stroke completed the study.

Intervention: Patients who first participated in the MT intervention performed a single session of MT, whereas in the control intervention a single session composed of the same exercises was performed, but without the mirror. After a month washout, the patients switched groups.

Main measure: The primary outcome measure was motor control. The secondary outcome measure was manual dexterity and UE spasticity.

Results: Among the kinematic outcomes, only the movement cycle time (MCT) presented statistical significance in both groups after interventions (ES=0.53; p<0.006). The manual dexterity (ES=0.03; p<0.016), spasticity of elbow flexors (ES=0.29; p<0.000), wrist flexors (ES=0.54; p<0.001) and horizontal shoulder adductor (ES=0.68; p<0.011) also improved after both interventions. Only the spasticity of wrist flexors demonstrated a difference between the interventions (p<0.046), suggesting that the magnitude of the spasticity reduction observed after MT was higher than that observed after the control intervention. Conclusions: These results demonstrate an effective improvement in MCT, manual dexterity and spasticity of paretic UE after both interventions, however, comparisons between groups did not reveal significant differences except for spasticity of the wrist flexors. Thus, this study indicates that isolated MT was no more effective than training of both UE in post chronic stroke subjects.

30 INTRODUCTION

Stroke is a leading global cause of incapacity(1).Although complex motor,

sensory and cognitive dysfunctions contribute in various proportions to the global disability, motor impairment is often the most striking deficit(1). Up to approximately 85% of stroke survivors experience paresis of the upper

extremity (UE) after the stroke(2). Patients with hemiparesis generally

demonstrate abnormal motor patterns in terms of muscle tone, coordination, disrupted joint recruitment and deficits in endpoint control, which is characterized by smaller movement amplitude, prolonged movement times and segmented movement trajectories, considerably reducing motor function of the affected limb(3).

An accurate and precise measurement of UE performance is essential for rehabilitation(4). Kinematic measures can better clarify the motor control strategies underlying the motor improvements of stroke patients(5), including movement trajectories (endpoint control), joint recruitment and inner joint coordination, variables frequently used to characterize the deficit, recovery and treatment effects of motor control strategies during reaching(6). Reaching has

Documentos relacionados