• Nenhum resultado encontrado

A solução filmogênica de amido de milho, mucilagem de quiabo e glicerol foi avaliada e os resultados obtidos no teste de toxicidade aguda por via oral não mostraram mortalidade na dose avaliada. Isso significa que a solução formadora de filme é completamente segura para ingestão oral (não letal) por administração da dose de 2000 mg/kg de animal.

Os animais não mostraram sinais de toxicidade, como irritação ou insensibilidade ao toque, entre outros. Além disso, eles responderam satisfatoriamente a todos os estímulos e continuaram a executar normalmente todas as suas necessidades fisiológicas. Esse resultado demonstra que a ingestão da solução filmogênica pelos animais não alterou o sistema nervoso central dos mesmos, o que se torna positivo quando foi levantada a hipótese de que os constituintes químicos presentes na mucilagem poderiam ter grau tóxico.

6 CONCLUSÃO

É possível formar filme utilizando mucilagem de quiabo e amido de milho. A mucilagem do quiabo contribuiu para fortalecer a estrutura do filme e, com isso, tornou o mesmo mais resistente à tração e melhorou outras propriedades tecnológicas de interesse, como a barreira ao vapor de água, quando comparadas aos filmes feitos apenas com amido de milho, de acordo com vários estudos encontrados na literatura. Os filmes elaborados com estes materiais apresentaram estrutura compacta e uniforme, o que faz da sua aplicação em alimentos uma alternativa viável, uma vez que a embalagem atua como mecanismo de proteção às possíveis intempéries do meio externo.

As diferenças de composição entre as formulações dos filmes não influenciaram a degradação térmica do material, o que se deve à uniformidade entre as estruturas do material e amplia as possibilidades de utilização dos filmes como material de embalagem. O material precipitado apresenta características que se assemelham às de polissacarídeos de cadeia longa e o seu estudo foi importante para compreender a influência da associação de hidrocolóides a matrizes formadoras de filmes, além de subsidiar a ocorrência dos primeiros estudos registrados na literatura utilizando o quiabo como material constituinte de filmes para aplicações alimentares, destacando cada vez mais a importância e as propriedades deste fruto que anteriormente já havia sido muito empregado na indústria farmacêutica.

A solução filmogênica não causa reação toxicológica e reforça uma das principais características que os materiais utilizados como embalagem precisam ter: serem atóxicos. Além disso, os filmes formados com esta solução possuem boa capacidade de intumescimento e são sensíveis a soluções com diferentes faixas de pH, fator interessante quando se utilizam estes materiais como embalagem ativa, carreando compostos de interesse que visam prolongar a vida útil dos alimentos. Portanto, os filmes têm grande potencial para serem utilizados em estudos e em aplicações como embalagens de alimentos.

REFERÊNCIAS

ALAMRI, M. S.; MOHAMED, A. A.; HUSSAIN, S. Effect of okra gum on the pasting, thermal, and viscous properties of rice and sorghum starches. Carbohydrate Polymers, v.89, n. 1, p. 199-207, 2012.

ALBA, K. et al. Okra extracts as emulsifiers for acidic emulsions. Food Research International, v.54, n. 2, p. 1730-1737, 2013.

ALBA, K.; KONTOGIORGOS, V. Pectin at the oil-water interface: Relationship of molecular composition and structure to functionality. Food Hydrocolloids, v. 68, [s.n.], p. 211-218, 2017.

ALBA, K.; LAWS, A. P.; KONTOGIORGOS, V. Isolation and characterization of acetylated LM-pectins extracted from okra pods. Food Hydrocolloids, v. 43, [s.n.], p. 726-735, 2015.

ARCHANA, G. et al. Preparation and characterization of mucilage polysaccharide for biomedical applications. Carbohydrate Polymers, v. 98, n. 1, p. 89–94, 2013.

ASTM. ASTM E96-95 Standard Test Methods for Water Vapor Transmission of MaterialsASTM, v. 10, [s.n.], p. 1-8, 2000.

AYRANCI, E.; TUNC, S. A method for the measurement of the oxygen permeability and the development of edible films to reduce the rate of oxidative reactions in fresh foods. Food Chemistry, v. 80, n. 3, p. 423-431, 2003.

AZEREDO, H. M. C. et al. Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. Journal of Food Science, v. 74, n. 5. p. 31-35, 2009.

BARRERA, A. M. et al. Effect of pectins on the gelling properties of surimi from silver carp. Food Hydrocolloids, v. 16, n. 5, p. 441–447, 2002.

BASIAK, E.; LENART, A.; DEBEAUFORT, F. Effect of starch type on the physico- chemical properties of edible films. International Journal of Biological

Macromolecules, v. 98, p. 348–356, 2017.

BIDUSKI, B. et al. Impact of acid and oxidative modifications, single or dual, of sorghum starch on biodegradable films. Food Chemistry, v. 214, p. 53–60, 2017.

BIJI, K. B. et al. Smart packaging systems for food applications: a review. Journal of Food Science and Technology, v. 52, n. 10, p. 6125-6135, 2015.

BONILLA, J. et al. Edible films and coatings to prevent the detrimental effect of oxygen on food quality: Possibilities and limitations. Journal of Food Engineering. v. 110, n. 2, p. 208-213, 2012.

BONILLA, J. et al. Properties of wheat starch film-forming dispersions and films as affected by chitosan addition. Journal of Food Engineering, v. 114, n. 3, p. 303–312, 2013.

BOURTOOM, T. Edible films and coatings: Characteristics and properties. International Food Research Journal, v. 117, n. 3, p. 415-420, 2008.

CAPEK, P.; DRÁBIK, M.; TURJAN, J. Characterization of starch and its mono and hybrid derivatives by thermal analysis and FT-IR spectroscopy. Journal of Thermal Analysis and Calorimetry, v. 99, n. 2, p. 667–673, 2010.

CERQUEIRA, M. A. et al. Galactomannans use in the development of edible

films/coatings for food applications. Trends in Food Science and Technology, v. 22, n. 12, p. 662-671, 2011.

CHANDRA MOHAN, C. et al. Extraction and characterization of polysaccharides from tamarind seeds, rice mill residue, okra waste and sugarcane bagasse for its Bio-

thermoplastic properties. Carbohydrate Polymers, v. 186, p. 394–401, 2018.

CHEN, Y. et al. Pectin from Abelmoschus esculentus: Optimization of extraction and rheological properties. International Journal of Biological Macromolecules, v. 70, p. 498–505, 2014.

CHEN, Y. et al. Physicochemical properties and adsorption of cholesterol by okra (Abelmoschus esculentus) powder. Food and Function, v.6, n. 12, p. 3728-3736, 2015.

CHENG, L. H. et al. Modification of the microstructural and physical properties of konjac glucomannan-based films by alkali and sodium carboxymethylcellulose. Food Research International, v. 35, n. 9, p. 829–836, 2002.

CHOULITOUDI, E. et al. Edible coating enriched with rosemary extracts to enhance oxidative and microbial stability of smoked eel fillets. Food Packaging and Shelf Life, v. 12, p. 107–113, 2017.

COATES, J. Interpretation of Infrared Spectra , A Practical Approach Interpretation of Infrared Spectra , A Practical Approach. Encyclopedia of Analytical Chemistry, [s.l: s.n.], p. 10815–10837, 2000.

COLUSSI, R. et al. Acetylation of rice starch in an aqueous medium for use in food. LWT - Food Science and Technology, v. 62, n. 2, p. 1076–1082, 2015.

COSTANTINO, A. .; ROMANCHIK-CERPOVICZ, J. . Physical and sensory measures indicate moderate fat replacement in frozen dairy dessert is feasible using okra gum as a milk-fat ingredient substitute. Journal of the American Dietetic Association, v.104, n. 8, p. 44, 2004.

DE ABREU, D. A. P.; RODRIGUEZ, K. V.; CRUZ, J. M. Extraction, purification and characterization of an antioxidant extract from barley husks and development of an antioxidant active film for food package. Innovative Food Science and Emerging Technologies, v.13, [s.n], p. 134-141, 2012.

DE AZEREDO, H. M. C. Edible coatings. In______: Advances in Fruit Processing Technologies: Boca Raton: CRC Press, 2012. cap. 14.

DEHGHANI, S.; HOSSEINI, S. V.; REGENSTEIN, J. M. Edible films and coatings in seafood preservation: A reviewFood Chemistry, v. 240 [s.n], p.505-513, 2018. DHANAPAL, A.; RAJAMANI, L.; BANU, M. Edible films from Polysaccharides. Food Science and Quality, v. 3, n. 1, p. 9-18, 2012.

DO SOCORRO ROCHA BASTOS, M. et al. Physical and mechanical testing of

essential oil-embedded cellulose ester films. Polymer Testing, v. 49, p. 156–161, 2016.

DOMÍNGUEZ, R. et al. Active packaging films with natural antioxidants to be used in meat industry: A review. Food Research International, v. 113 [s.n]. p. 93-101, 2018.

DOS SANTOS, I. F. et al. Multivariate analysis of the mineral content of raw and cooked okra (Abelmoschus esculentus L.). Microchemical Journal, v. 110, p. 439– 443, 2013.

EINHORN-STOLL, U.; KUNZEK, H.; DONGOWSKI, G. Thermal analysis of chemically and mechanically modified pectins. Food Hydrocolloids, v. 21, n. 7, p. 1101–1112 2007a.

EINHORN-STOLL, U.; KUNZEK, H.; DONGOWSKI, G. Thermal analysis of chemically and mechanically modified pectins. Food Hydrocolloids, v. 21, n. 7, p. 1101–1112, 2007b.

EKIELSKI, A. Interactions Between Food Ingredients and Nanocomponents Used for Composite Packaging. In: Encyclopedia of Food Chemistry. [s.l: s.n.].

ENUJIUGHA, V. N.; OYINLOYE, A. M. Protein-Lipid Interactions and the Formation of Edible Films and Coatings. In: Encyclopedia of Food Chemistry. [s.l: s.n.].

FIGUEIRÓ, S. D. et al. On the physico-chemical and dielectric properties of

glutaraldehyde crosslinked galactomannan-collagen films. Carbohydrate Polymers, v. 56, n. 3, p. 313–320, 2004.

FRAZÃO, G. G. S.; BLANK, A. F.; DE AQUINO SANTANA, L. C. L. Optimisation of edible chitosan coatings formulations incorporating Myrcia ovata Cambessedes essential oil with antimicrobial potential against foodborne bacteria and natural microflora of mangaba fruits. LWT - Food Science and Technology, v. 79, [s.n], p. 79-101, 2017.

GALUS, S.; KADZIŃSKA, J. Food applications of emulsion-based edible films and coatings. Trends in Food Science & Technology, v. 45, n. 2, p. 273–283, 2015a. GALUS, S.; KADZIŃSKA, J. Food applications of emulsion-based edible films and coatings. Trends in Food Science and Technology, v. 45. n. 2, p. 273-283, 2015.

GANIARI, S.; CHOULITOUDI, E.; OREOPOULOU, V. Edible and active films and coatings as carriers of natural antioxidants for lipid food. Trends in Food Science and Technology, v. 68, [s.n], p. 70-82, 2017.

GARCIA, V. et al. Structural Changes of Cassava Starch Granules after Heating at Intermediate Water Contents. Starch - Stärke, v. 49, n. 5, p. 171–179, 1997.

GENSKOWSKY, E. et al. Assessment of antibacterial and antioxidant properties of chitosan edible films incorporated with maqui berry (Aristotelia chilensis). LWT - Food Science and Technology, v. 64, n. 2, p. 1057–1062, 2015.

GEORGIADIS, N. et al. Contribution of okra extracts to the stability and rheology of oil-in-water emulsions. Food Hydrocolloids, v. 25, n. 5, p. 991-999, 2011.

GEUEKE, B.; GROH, K.; MUNCKE, J. Food packaging in the circular economy: Overview of chemical safety aspects for commonly used materials. Journal of Cleaner Production, v. 193, [s.n.], p. 491-505, 2018.

GHORI, M. U. et al. Okra extracts in pharmaceutical and food applications. Food Hydrocolloids, v. 42, n. P3, p. 342–347, 2014.

GHORI, M. U. et al. Impact of purification on physicochemical, surface and functional properties of okra biopolymer. Food Hydrocolloids, v. 71, [s.n], p. 311-320, 2017.

GILFILLAN, W. N. et al. Thermal extrusion of starch film with alcohol. Journal of Food Engineering, v. 170, p. 92–99, 2015.

GÓMEZ-ESTACA, J. et al. Advances in antioxidant active food packaging. Trends in Food Science and Technology, v.35, n. 1, p. 42-51, 2014.

GUILLEN, M. D.; GOICOECHEA, E. Formation of oxygenated α,β-unsaturated aldehydes and other toxic compounds in sunflower oil oxidation at room temperature in closed receptacles. Food Chemistry, v.11, n. 1, p. 157-164, 2008.

GUILLÉN, M. D.; RUIZ, A. Oxidation process of oils with high content of linoleic acyl groups and formation of toxic hydroperoxy- and hydroxyalkenals. A study by 1H nuclear magnetic resonance. Journal of the Science of Food and Agriculture, v.85, n. 14, p. 2413-2420, 2005.

GUTIÉRREZ, T. J. et al. Edible films based on native and phosphated 80:20 waxy:normal corn starch. Starch/Staerke, v. 67, n. 1–2, p. 90–97, 2015.

HAHLADAKIS, J. N. et al. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. Journal of Hazardous Materials, v. 344, [s.n], p. 179-199, 2018.

HASSAN, B. et al. Recent advances on polysaccharides, lipids and protein based edible films and coatings: A reviewInternational. Journal of Biological Macromolecules, v. 109, [s.n], p. 1095-1107, 2018.

HUBER, M.; RUIZ, J.; CHASTELLAIN, F. Off-flavour release from packaging materials and its prevention: A foods company’s approach. Food Additives and Contaminants, v. 19, n. 1, p. 221-228, 2002.

HUSSEIN, M. M. et al. Utilization of some plant polysaccharides for improving yoghurt consistency. Annals of Agricultural Sciences, v. 56, n. 2, p. 97-103, 2011.

JANI, G. K. et al. Gums and mucilages: Versatile excipients for pharmaceutical

formulations. Asian Journal of Pharmaceutical Sciences, v. 4, n. 5, p. 309-323, 2009.

JIANG, Z.; NEETOO, H.; CHEN, H. Efficacy of freezing, frozen storage and edible antimicrobial coatings used in combination for control of Listeria monocytogenes on roasted turkey stored at chiller temperatures. Food Microbiology, v. 28, n. 7, p. 1394– 1401, 2011.

JIMÉNEZ, A. et al. Effect of sodium caseinate on properties and ageing behaviour of corn starch based films. Food Hydrocolloids, v. 29, n. 2, p. 265–271, 2012.

KCHAOU, H. et al. Development and characterization of cuttlefish (Sepia officinalis) skin gelatin-protein isolate blend films. International Journal of Biological

Macromolecules, v. 105, [s.n.], p. 1491-1500, 2017.

KHATHURIYA, R. et al. Recent Approaches and Pharmaceutical Applications of Natural Polysaccharides: a Review. International journal of pharmaceutical sciences and research, v. 6, n. 12, p. 4904–4919, 2015.

KONTOGIORGOS, V. et al. Rheological characterization of okra pectins. Food Hydrocolloids, v. 29, n. 2, p. 356–362, 2012.

KPODO, F. M. et al. Structure-Function Relationships in Pectin Emulsification. Food Biophysics, v. 13, n. 1, p. 71-79, 2018.

KUMAR, S. et al. Okra (abelmoschus spp.) in west and central africa: Potential and progress on its improvementAfrican. Journal of Agricultural Research, v. 5, n. 25, p. 3590-3598, 2010.

KURT, A.; KAHYAOGLU, T. Characterization of a new biodegradable edible film made from salep glucomannan. Carbohydrate polymers, v. 104, p. 50–8, abr. 2014.

LEE, C. S. et al. Optimisation of extraction and sludge dewatering efficiencies of bio- flocculants extracted from Abelmoschus esculentus (okra). Journal of Environmental Management, v. 157, p. 320–325, 2015.

LIU, F. et al. Optimizing color and lipid stability of beef patties with a mixture design incorporating with tea catechins, carnosine, and α-tocopherol. Journal of Food Engineering, v. 92, n. 2 p, 170-177, 2010.

LIU, J. et al. Structure characterisation of polysaccharides in vegetable “okra” and evaluation of hypoglycemic activity. Food Chemistry, v. 242, [s.n.], p. 211-216, 2018.

LÓPEZ-DE-DICASTILLO, C. et al. Improving the antioxidant protection of packaged food by incorporating natural flavonoids into ethylene-vinyl alcohol copolymer

10964, 2010.

LÓPEZ DE DICASTILLO, C. et al. Antioxidant films based on cross-linked methyl cellulose and native Chilean berry for food packaging applications. Carbohydrate Polymers,v. 136, [s.n.], p. 1052-1060, 2016.

LUCHESE, C. L.; SPADA, J. C.; TESSARO, I. C. Starch content affects

physicochemical properties of corn and cassava starch-based films. Industrial Crops and Products, v. 109, p. 619–626, 2017.

MACHADO, B. A. S. et al. Obtenção de nanocelulose da fibra de coco verde e incorporação em filmes biodegradáveis de amido plastificados com glicerol. Quimica Nova, v. 37, n. 8, p. 1275–1282, 2014.

MARSH, K.; BUGUSU, B. Food packaging - Roles, materials, and environmental issues: Scientific status summary. Journal of Food Science, v. 73, n. 3, p. 39-55, 2007.

MCHUGH, T. H.; KROCHTA, J. M. Sorbitol-vs Glycerol-Plasticized Whey Protein Edible Films: Integrated Oxygen Permeability and Tensile Property Evaluation. Journal of Agricultural and Food Chemistry, v. 42, n. 4, p. 841-845, 1994. MENDES, F. R. S. et al. Preparation and evaluation of hemicellulose films and their blends. Food Hydrocolloids, v. 70, p. 181–190, 2017.

MERCEA, P.; PIRINGER, O. Possibilities and Limitations of Migration Modeling. In: Plastic Packaging: Interactions with Food and Pharmaceuticals, Second Edition. [s.l: s.n.], 2008.

MILANI, J.; MALEKI, G. Hydrocolloids in Food Industry. In: Food Industrial Processes - Methods and Equipment. [s.l: s.n.], 2012.

MISHRA, A.; CLARK, J. H.; PAL, S. Modification of Okra mucilage with acrylamide: Synthesis, characterization and swelling behavior. Carbohydrate Polymers, v. 72, n. 4, p. 608–615, 2008.

MOHAMMADI, H. et al. Nanocomposite films with CMC, okra mucilage, and ZnO nanoparticles: Extending the shelf-life of chicken breast meat. Food Packaging and Shelf Life, v. 21, [s.n.], p. 1-7, 2019.

MOHAMMADI, H.; KAMKAR, A.; MISAGHI, A. Nanocomposite films based on CMC, okra mucilage and ZnO nanoparticles: Physico mechanical and antibacterial properties. Carbohydrate Polymers, v. 181, [s.n.], p. 351-357, 2018.

MONFREGOLA, L. et al. Physical and water sorption properties of chemically modified pectin with an environmentally friendly process. Biomacromolecules, v. 12, n. 6, p. 2311–2318, 2011.

NEETOO, H.; YE, M.; CHEN, H. Bioactive alginate coatings to control Listeria monocytogenes on cold-smoked salmon slices and fillets. International Journal of Food Microbiology, v. 136, n. 3, p. 326–331, 2010.

NIE, X.-R. et al. Structural characteristics, rheological properties, and biological activities of polysaccharides from different cultivars of okra (Abelmoschus esculentus) collected in China. International Journal of Biological Macromolecules, v. 139, [s.n.], p. 459-467, 2019.

NUSSINOVITCH, A. Biopolymer Films and Composite Coatings. In: Modern Biopolymer Science. [s.l: s.n.], p. 295-326, 2009.

OMS-OLIU, G.; SOLIVA-FORTUNY, R.; MARTÍN-BELLOSO, O. Edible coatings with antibrowning agents to maintain sensory quality and antioxidant properties of fresh-cut pears. Postharvest Biology and Technology, v. 50, n. 1, p. 87-94, 2008.

ORTEGA, F. et al. Active composite starch films containing green synthetized silver nanoparticles. Food Hydrocolloids, v. 70, p. 152–162, 2017.

PAJĄK, P. et al. Antioxidant properties of apple slices stored in starch-based films. International Journal of Food Properties, v. 20, n. 5, p. 1117-1128, 2017.

PEREZ-GAGO, M. B. et al. Effect of whey protein- and hydroxypropyl

methylcellulose-based edible composite coatings on color change of fresh-cut apples. Postharvest Biology and Technology, v. 36, n. 1, p. 77-85, 2005.

PIVNENKO, K. et al. Recycling of plastic waste: Presence of phthalates in plastics from households and industry. Waste Management, v. 54, [s.n.], p. 44-52, 2016.

QIU, X. et al. Quality enhancement in the Japanese sea bass (Lateolabrax japonicas) fillets stored at 4 °c by chitosan coating incorporated with citric acid or licorice extract. Food Chemistry, v. 162, [s.n.], p. 156-160, 2014.

RAHMANI, B. et al. Development and characterisation of chitosan or alginate-coated low density polyethylene films containing Satureja hortensis extract. International Journal of Biological Macromolecules, v. 105, [s.n.], p. 121-130, 2017.

RAI, D. R.; BALASUBRAMANIAN, S. Qualitative and textural changes in fresh okra pods (hibiscus esculentus l.) under modified atmosphere packaging in perforated film packages. Food Science and Technology International, v. 15, n. 2, p. 131-138, 2009.

ROBLES-SÁNCHEZ, R. M. et al. Influence of alginate-based edible coating as carrier of antibrowning agents on bioactive compounds and antioxidant activity in fresh-cut Kent mangoes. LWT - Food Science and Technology, v. 50, n. 1, p. 240-246, 2013.

SABITHA, V. et al. Antidiabetic and antihyperlipidemic potential of Abelmoschus esculentus (L.) Moench. in streptozotocin-induced diabetic rats. Journal of Pharmacy and Bioallied Sciences, v. 3, n. 3, p. 397–402, 2011.

SAHRAEE, S. et al. Protection of foods against oxidative deterioration using edible films and coatings: A review. Food Bioscience, v.32, [s.n.], p. 1-8, 2019.

meat products preservation. Scientific World Journal, [s.l: s.n.], p. 1-18, 2014.

SCHUSTER, K. C. et al. On-line FT-Raman spectroscopic monitoring of starch gelatinisation and enzyme catalysed starch hydrolysis. Vibrational Spectroscopy. v. 22, n. 1-2, p. 181–190, 2000.

SENGKHAMPARN, N. et al. Characterisation of cell wall polysaccharides from okra (Abelmoschus esculentus (L.) Moench). Carbohydrate Research, v. 344, n. 14, p. 1824–1832, 2009a.

SENGKHAMPARN, N. et al. Okra pectin contains an unusual substitution of its rhamnosyl residues with acetyl and alpha-linked galactosyl groups. Carbohydrate Research, v. 344, n. 14, p. 1842-1851, 2009b.

SENGKHAMPARN, N. et al. Physicochemical properties of pectins from okra (Abelmoschus esculentus (L.) Moench). Food Hydrocolloids, v. 24, n. 1, p. 35–41, 2010.

ŠEŠLIJA, S. et al. Edible blend films of pectin and poly(ethylene glycol): Preparation and physico-chemical evaluation. Food Hydrocolloids, v. 77, [s.n.], p. 494-501, 2017.

SHIVHARE, U. S. et al. Drying characteristics and product quality of okra. Drying Technology, v. 18, n. 1-2, p. 409-419, 2000.

SOHAIL, M.; SUN, D. W.; ZHU, Z. Recent developments in intelligent packaging for enhancing food quality and safety. Critical Reviews in Food Science and Nutrition, [s.l: s.n.], p. 1-13, 2018.

STEINKA, I. Microbiological Aspects of the Interaction Between Food and Packaging. In: Reference Module in Food Science. [s.l: s.n.], p. 1-8, 2017.

TAHIR, H. E. et al. Recent developments in gum edible coating applications for fruits and vegetables preservation: A review. Carbohydrate Polymers, [s.l: s.n.], p. 1-61, 2019.

TAMAKI, Y. et al. Isolation and structural characterisation of pectin from endocarp of Citrus depressa. Food Chemistry, v. 107, n. 1, p. 352–361, 2008.

TOLDRÁ, F. Irradiation of food commodities: techniques, applications, detection, legislation, safety and consumer opinion. Trends in Food Science & Technology, v. 22, n. 1, p. 50, 2011.

VAN WILLIGE, R. W. G. et al. Influence of flavour absorption on oxygen permeation through LDPE, PP, PC and PET plastics food packaging. Food Additives and

Contaminants, v. 19, n. 3, p. 303-313, 2002.

VIEBKE, C.; AL-ASSAF, S.; PHILLIPS, G. O. Food hydrocolloids and health claimsBioactive. Carbohydrates and Dietary Fibre, v. 4, n. 2, p. 102-114, 2014.

composite films: Effect of starch type and concentrations. Food Chemistry, v. 216, [s.n.], p. 209-216, 2017.

WANG, K. et al. Optimization of ultrasound-assisted extraction of okra (Abelmoschus esculentus (L.) Moench) polysaccharides based on response surface methodology and antioxidant activity. International Journal of Biological Macromolecules, v. 217, [s.n.], p. 43-49, 2018.

WANG, Y. et al. Transglutaminase-induced crosslinking of gelatin-calcium carbonate composite films. Food Chemistry, v. 166, [s.n.], p. 414-422, 2015.

XU, J. B.; BARTLEY, J. P.; JOHNSON, R. A. Preparation and characterization of alginate-carrageenan hydrogel films crosslinked using a water-soluble carbodiimide (WSC). Journal of Membrane Science, v. 218, n. 1-2, p. 131-146, 2003.

XU, K. et al. Cloudy wheat beer enriched with okra [abelmoschus esculentus (L.) moench]: Effects on volatile compound and sensorial attributes. International Journal of Food Properties, v. 21, n. 1, p. 1289-300, 2018.

XU, K.; GUO, M.; DU, J. Molecular characteristics and rheological properties of water- extractable polysaccharides derived from okra (Abelmoschus esculentus L.).

International Journal of Food Properties, v. 20, n. 1, p. 899-909, 2017.

YEN, M. T.; YANG, J. H.; MAU, J. L. Antioxidant properties of chitosan from crab shells. Carbohydrate Polymers, v. 74, n. 4, p. 840-844, 2008.

YUAN, B.; RITZOULIS, C.; CHEN, J. Extensional and shear rheology of okra

hydrocolloid–saliva mixtures. Food Research International, v. 106, [s.n.], p. 204-212, 2018.

ZAHARUDDIN, N. D.; NOORDIN, M. I.; KADIVAR, A. The use of hibiscus

esculentus (Okra) gum in sustaining the release of propranolol hydrochloride in a solid oral dosage form. BioMed Research International, [s.l., s.n.], p. 1-8, 2014.

ZHANG, T. et al. Preliminary characterization and anti-hyperglycemic activity of a pectic polysaccharide from okra (Abelmoschus esculentus (L.) Moench). Journal of Functional Foods, v. 41, [s.n.], p. 19-24, 2018.

APÊNDICE

APÊNCIDE A - CERTIFICADO DO COMITÊ DE ÉTICA DA UNIVERSIDADE DE FORTALEZA (UNIFOR) APROVANDO O INÍCIO DOS ENSAIOS DE TOXICIDADE EM RATOS.

Documentos relacionados