• Nenhum resultado encontrado

7.3 Trabalhos futuros

A pesquisa cientíĄca não é como um projeto, que possui começo, meio e Ąm. Trata- se de algo muito maior, englobando projetos, equipes e instituições. Não citar trabalhos futuros em qualquer produção cientíĄca que seja (artigo, monograĄa, dissertação, tese etc.) é atestar que a pesquisa acabou e que será ŞengavetadaŤ.

Continuando a análise experimental de algoritmos, pretende-se explorar melhor a apli- cação ao Problema Quadrático de Alocação, além de aplicar a outros problemas de oti- mização combinatória, especiĄcamente a problemas multiobjetivo, tais como as versões multiobjetivo do Problema da Árvore Geradora Mínima e do Caminho mais Curto. As ver- sões multiobjetivo dos problemas já abordados nesta tese (PCV e PQA) também poderão ser abordadas em novos experimentos computacionais.

Pretende-se também explorar mais recursos da AMHM, tais como a combinação de metaheurísticas de trajetória com partes de metaheurísticas baseadas em população e a aplicação de novos métodos decisão e de aprendizagem. Assim, serão realizados mais expe- rimentos computacionais para testar as novas funcionalidades. O uso de séries temporais (WOOLDRIDGE, 2012) também será utilizado para observar a execução dos algoritmos ao longo do tempo, a Ąm de veriĄcar e analisar o comportamento das metaheurísticas utilizadas.

No âmbito da pesquisa aplicada, pretende-se trabalhar tanto com alunos em nível de graduação como em nível técnico a aplicação da AMHM em problemas práticos do mundo real, nas áreas de Computação, Automação Industrial e Eletrônica.

113

Referências

AARTS, E. E. H.; LENSTRA, J. K. Local search in combinatorial optimization. New Jersey: Princeton University Press, 1997.

AHUJA, R. K.; ORLIN, J. B.; TIWARI, A. A greedy genetic algorithm for the quadratic assignment problem. Computers and Operations Research, v. 27, p. 917Ű934, 2000. ANSTREICHER, K.; BRIXIUS, N.; GOUX, J.-P.; LINDEROTH, J. Solving large quadratic assignment problems on computational grids. Mathematical Programming, Springer, v. 91, n. 3, p. 563Ű588, 2002.

APPLEGATE, D.; BIXBY, R.; CHVÁTAL, V.; COOK, W. Finding tours in the TSP. Technical Report TR99-05, Department of Computational and Applied Mathematics, Rice University, 1999.

APPLEGATE, D.; COOK, W.; ROHE, A. Chained lin-kernighan for large traveling salesman problems. INFORMS Journal on Computing, v. 15, n. 1, p. 82Ű92, 2003. APPLEGATE, D. L.; BIXBY, R. E.; CHVATAL, V.; COOK, W. J. The traveling

salesman problem: a computational study. [S.l.]: Princeton University Press, 2006.

AXELROD, R.; HAMILTON, W. D. The evolution of cooperation. Science, American Association for the Advancement of Science, v. 211, n. 4489, p. 1390Ű1396, 1981. BACHELET, V.; HAFIDI, Z.; PREUX, P.; TALBI, E.-G. Diversifying tabu search by genetic algorithms. In: INFORMSŠ98 Operations Research & Management Science

Meeting. Montreal, Canada: [s.n.], 1998.

BALDACCI, R.; BARTOLINI, E.; LAPORTE, G. Some applications of the generalized vehicle routing problem. Journal of the Operational Research Society, Nature Publishing Group, v. 61, n. 7, p. 1072Ű1077, 2009.

BARBUCHA, D. Agent-based guided local search. Expert Systems with Applications, Elsevier, v. 39, n. 15, p. 12032Ű12045, 2012.

BELLMORE, M.; NEMHAUSER, G. L. The traveling salesman problem: a survey.

Operations Research, INFORMS, v. 16, n. 3, p. 538Ű558, 1968.

BLUM, C.; AGUILERA, M. J. B.; ROLI, A. Hybrid metaheuristics: an emerging

approach to optimization. [S.l.]: Springer Verlag, 2008.

BLUM, C.; LI, X. Swarm intelligence in optimization. In: BLUM, C.; MERKLE, D. (Ed.). Swarm Intelligence. [S.l.]: Springer, 2008, (Natural Computing Series). p. 43Ű85. BLUM, C.; PUCHINGER, J.; RAIDL, G. R.; ROLI, A. Hybrid metaheuristics in combinatorial optimization: A survey. Applied Soft Computing, v. 11, n. 6, p. 4135Ű4151, 2011.

BLUM, C.; ROLI, A. Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys (CSUR), ACM, v. 35, n. 3, p. 268Ű308, 2003.

114 Referências

BURKARD, R. E.; ÇELA, E.; ROTE, G.; WOEGINGER, G. J. The quadratic

assignment problem with a monotone anti-monge and a symmetric toeplitz matrix: Easy and hard cases. Mathematical Programming, Springer, v. 82, n. 1-2, p. 125Ű158, 1998. BURKARD, R. E.; ÇELA, E.; PARDALOS, P. M.; PITSOULIS, L. S. The quadratic assignment problem. In: ZHU, D. Z.; PARDALOS, P. M. (Ed.). Handbook of

Combinatorial Optimization. [S.l.]: Kluwer, 1998. v. 3, p. 241Ű337.

BURKARD, R. E.; KARISCH, S. E.; RENDL, F. QAPLIB Ű a quadratic assignment problem library. Journal of Global Optimization, Springer, v. 10, n. 4, p. 391Ű403, 1997. BURKE, E.; KENDALL, G.; NEWALL, J.; HART, E.; ROSS, P.; SCHULENBURG, S. Hyper-heuristics: An emerging direction in modern search technology. Handbook of

metaheuristics, Springer, p. 457Ű474, 2003.

CELA, E. The quadratic assignment problem: theory and algorithms. Dordrecht: Kluwer Academic Publishers, 1998.

CERNY, V. Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. Journal of Optimization Theory and Applications, Springer Netherlands, v. 45, n. 1, p. 41Ű51, 1985.

CHAUNY, F.; HAURIE, A.; WAGNEUR, E.; LOULOU, R. Punch operations in a flexible manufacturing cell a three-dimensional space-Ąlling curve approach. INFOR, v. 25, n. 1, p. 26Ű45, 1987.

CHEN, S.-M.; CHIEN, C.-Y. Solving the traveling salesman problem based on the genetic simulated annealing ant colony system with particle swarm optimization techniques. Expert Systems with Applications, v. 38, n. 12, p. 14439 Ű 14450, 2011. CLERC, M. Discrete particle swarm optimization, illustrated by the traveling salesman problem. In: New optimization techniques in engineering. [S.l.]: Springer, 2004. p. 219Ű239.

COMMANDER, C. W. A survey of the quadratic assignment problem, with applications.

Morehead Electronic Journal of Applicable Mathematics, v. 4, p. 1Ű15, 2005.

CONNOLLY, D. T. An improved annealing scheme for the qap. European Journal of

Operational Research, Elsevier, v. 46, n. 1, p. 93Ű100, 1990.

CONOVER, W. J. Practical Nonparametric Statistics. New York: Wiley, 1999.

COOK, W. VLSI Data Sets. 2003. Disponível em: <http://www.tsp.gatech.edu/vlsi>.

COPPIN, B. ArtiĄcial Intelligence Illuminated. Sudbury, MA: Jones & Bartlett Learning, 2004.

COSTA, E.; SIMÕES, A. Inteligência ArtiĄcial: Fundamentos e Aplicações. 2. ed. [S.l.]: FCA, 2008. ISBN 978-972-722-340-4.

COSTA, W. E.; GOLDBARG, M. C.; GOLDBARG, E. G. Hybridizing VNS and path-relinking on a particle swarm framework to minimize total flowtime. Expert Systems

Referências 115

DANTZIG, G.; FULKERSON, R.; JOHNSON, S. Solution of a large-scale traveling- salesman problem. Journal of the operations research society of America, JSTOR, v. 12, p. 393Ű410, 1954.

DICKEY, J.; HOPKINS, J. Campus building arrangement using topaz. Transportation

Research, Pergamon, v. 6, n. 1, p. 59Ű68, 1972.

DINUR, I.; SAFRA, S. On the hardness of approximating minimum vertex cover. Annals

of Mathematics, JSTOR, p. 439Ű485, 2005.

DORIGO, M. Optimization, Learning and Natural Algorithms. Tese (Doutorado) Ů Politecnico di Milano, Italy, 1992.

DREZNER, Z. The extended concentric tabu for the quadratic assignment problem.

European Journal of Operational Research, v. 160, p. 416Ű422, 2005.

DREZNER, Z.; MISEVIČIUS, A. Enhancing the performance of hybrid genetic algorithms by differential improvement. Computers & Operations Research, Elsevier, v. 40, p. 1038Ű1046, 2013.

EBERHART, R.; SIMPSON, P.; DOBBINS, R. Computational intelligence PC tools. [S.l.]: Academic Press Professional, Inc., 1996.

EBERHART, R. C.; HU, X. Human tremor analysis using particle swarm optimization. In: Proceedings of the Congress on Evolutionary Computation. Piscataway: IEEE Service Center, 1999. p. 1927Ű1930.

EBERHART, R. C.; SHI, Y. Evolving artiĄcial neural networks. In: Proceedings of the

International Conference on Neural Networks and Brain. Beijing: [s.n.], 1998. p. 84Ű89.

EBERHART, R. C.; SHI, Y. Particle swarm optimization: developments, applications and resources. In: IEEE. Proceedings of the 2001 Congress on Evolutionary Computation,

2001. [S.l.], 2001. v. 1, p. 81Ű86.

EHRGOTT, M.; GANDIBLEUX, X. Hybrid metaheuristics for multi-objective combinatorial optimization. In: BLUM, C.; AGUILERA, M.; ROLI, A.; SAMPELS, M. (Ed.). Hybrid Metaheuristics. [S.l.]: Springer Berlin / Heidelberg, 2008, (Studies in Computational Intelligence, v. 114). p. 221Ű259.

ELSHAFEI, A. N. Hospital layout as a quadratic assignment problem. Operational

Research Quarterly, JSTOR, p. 167Ű179, 1977.

FEO, T. A.; RESENDE, M. G. C. A probabilistic heuristic for a computationally difficult set covering problem. Operations Research Letters, Elsevier, v. 8, n. 2, p. 67Ű71, 1989. FERNANDES, F. C. Arquitetura Multiagente Metaheurísticos Cooperativos para

Resolução de Problemas de Otimização Combinatória. Dissertação (Mestrado) Ů Centro

Federal de Educação Tecnológica de Minas Gerais, 2009.

FERNANDES, F. C.; SOUZA, S. R. de; SILVA, M.; BORGES, H. E.; RIBEIRO, F. F. A multiagent architecture for solving combinatorial optimization problems through metaheuristics. In: IEEE International Conference on Systems, Man and Cybernetics,

116 Referências

FINKE, G.; KUSIAK, A. Models for the process planning problem in flexible manufacturing systems. The International Journal of Advanced Manufacturing

Technology, Springer, v. 2, n. 2, p. 3Ű12, 1987.

FLOOD, M. M. The traveling-salesman problem. Operations Research, JSTOR, v. 4, n. 1, p. 61Ű75, 1956.

FRANCIS, R. L.; WHITE, J. A.; MCGINNIS, L. F. Facility layout and location: an

analytical approach. [S.l.]: Prentice-Hall Englewood Cliffs, NJ, 1974.

GALEF, B. G. Why behaviour patterns that animals learn socially are locally adaptive.

Animal Behaviour, Elsevier Science, 1995.

GENDREAU, M.; HERTZ, A.; LAPORTE, G. New insertion and postoptimization procedures for the traveling salesman problem. Operations Research, INFORMS, v. 40, n. 6, p. 1086Ű1094, 1992.

GIRALDEAU, L. A.; CARACO, T.; VALONE, T. J. Social foraging: individual learning and cultural transmission of innovations. Behavioral Ecology, ISBE, v. 5, n. 1, p. 35Ű43, 1994.

GLOVER, F. Future paths for integer programming and links to artiĄcial intelligence.

Comput. Oper. Res., Elsevier Science Ltd., Oxford, UK, UK, v. 13, n. 5, p. 533Ű549,

1986.

GLOVER, F. Tabu search: A tutorial. Interfaces, INFORMS, v. 20, n. 4, p. 74Ű94, 1990. GLOVER, F.; LAGUNA, M.; MARTI, R. Fundamentals of scatter search and path relinking. Control and Cybernetics, v. 29, n. 3, p. 653Ű684, 2000.

GLOVER, F. W.; KOCHENBERGER, G. A. Handbook of metaheuristics. [S.l.]: Springer Berlin, 2003.

GOLDBARG, E. F. G.; GOLDBARG, M. C. Transgenetic algorithm: a new

endosymbiotic approach for evolutionary algorithms. In: ABRAHAM, A.; HASSANIEN, A.-E.; SIARRY, P.; ENGELBRECHT, A. (Ed.). Foundations of Computational

Intelligence Volume 3. [S.l.]: Springer Berlin / Heidelberg, 2009, (Studies in

Computational Intelligence, v. 203). p. 425Ű460.

GOLDBARG, E. F. G.; GOLDBARG, M. C. An experimental study of variable depth search algorithms for the quadratic assignment problem. Pesquisa Operacional, SciELO Brasil, v. 32, n. 1, p. 165Ű196, 2012.

GOLDBARG, E. F. G.; SOUZA, G. R.; GOLDBARG, M. C. Otimização por nuvem de partículas para o problema do caixeiro viajante. In: XXXVII Simpósio Brasileiro de

Pesquisa Operacional, 2005. SBPO 2005. [S.l.: s.n.], 2005.

GOLDBARG, E. F. G.; SOUZA, G. R.; GOLDBARG, M. C. Particle swarm for the traveling salesman problem. In: GOTTLIEB, J.; RAIDL, G. (Ed.). Evolutionary

Computation in Combinatorial Optimization. [S.l.]: Springer Berlin / Heidelberg, 2006,

Referências 117

GOLDBARG, E. F. G.; SOUZA, G. R.; GOLDBARG, M. C. Particle swarm optimization for the bi-objective degree constrained minimum spanning tree. In: IEEE Congress

onEvolutionary Computation, 2006. CEC 2006. [S.l.: s.n.], 2006. p. 420Ű427.

GOLDBARG, E. F. G.; SOUZA, G. R.; GOLDBARG, M. C. Particle swarm otimization algorithm for the traveling salesman problem. In: GRECO, F. (Ed.). Traveling Salesman

Problem. Vienna: InTech, 2008. p. 75Ű96.

GOLDBARG, M. C.; LUNA, H. P. L. Otimização combinatória e programação linear:

modelos e algoritmos. 2. ed. [S.l.]: Elsevier, 2005.

GONG, T.; TUSON, A. L. Particle swarm optimization for quadratic assignment problems-a forma analysis approach. Computational Intelligence Research, v. 4, n. 2, p. 177Ű185, 2008.

GUNAWAN, A.; NG, K. M.; POH, K. L. Solving the quadratic assignment problem by a hybrid algorithm. International Journal on Advanced Science, Engineering and

Information Technology, v. 1, n. 1, p. 36Ű41, 2011.

GUTIN, G.; PUNNEN, A. P. The traveling salesman problem and its variations. [S.l.]: Kluwer Academic Pub, 2002.

HAHN, P. M.; HIGHTOWER, W. L.; ANNEJOHNSON, T.; GUIGNARD-SPIELBERG, M.; ROUCAIROL, C. et al. Tree elaboration strategies in branch-and-bound algorithms for solving the quadratic assignment problem. The Yugoslav Journal of Operations

Research ISSN: 0354-0243 EISSN: 2334-6043, v. 11, p. 41Ű60, 2001.

HELSGAUN, K. An effective implementation of the lin-kernighan traveling salesman heuristic. European Journal of Operational Research, Elsevier, v. 126, n. 1, p. 106Ű130, 2000.

HENDERSON-SELLERS, B.; GIORGINI, P. Agent-oriented methodologies. Hershey, PA, EUA: Idea Group Publishing, 2005.

HOLLAND, J. H. Outline for a logical theory of adaptive systems. Journal of the ACM, ACM, New York, NY, USA, v. 9, n. 3, p. 297Ű314, 1962.

HOLLAND, J. H. Adaptation in natural and artiĄcial systems. Ann Arbor, MI: University of Michigan Press, 1975.

HU, X.; SHI, Y.; EBERHART, R. C. Recent advances in particle swarm. In: Proceedings

of the IEEE Congress on Evolutionary Computation. [S.l.: s.n.], 2004. v. 1, p. 90Ű97.

JOHNSON, D.; MCGEOCH, L. Experimental analysis of heuristics for the TSP. In: GUTIN, G.; PUNNEN, A. (Ed.). The Traveling Salesman Problem and its Variations. Dordrecht: Kluwer Academic Publishers, 2002. p. 369Ű444.

KARABOGA, D.; AKAY, B. A survey: algorithms simulating bee swarm intelligence.

ArtiĄcial Intelligence Review, Springer Netherlands, v. 31, n. 1, p. 61Ű85, 2009.

KARP, R. M. On the computational complexity of combinatorial problems. Networks, v. 5, p. 45Ű68, 1975.

118 Referências

KENNEDY, J.; EBERHART, R. Particle swarm optimization. In: Proceedings of the

IEEE International Conference on Neural Networks. [S.l.: s.n.], 1995. v. 4, p. 1942Ű1948.

KIRKPATRICK, S.; GELATT, C. D.; VECCHI, M. P. Optimization by simulated annealing. Science, v. 220, n. 4598, p. 671Ű680, 1983.

KOOPMANS, T. C.; BECKMANN, M. Assignment problems and the location of economic activities. Econometrica: Journal of the Econometric Society, JSTOR, p. 53Ű76, 1957.

LAPORTE, G. The vehicle routing problem: An overview of exact and approximate algorithms. European Journal of Operational Research, Elsevier, v. 59, n. 3, p. 345Ű358, 1992.

LENSTRA, J. K.; KAN, A. Complexity of vehicle routing and scheduling problems.

Networks, Wiley Online Library, v. 11, n. 2, p. 221Ű227, 1981.

LESSER, V. R. Cooperative multiagent systems: a personal view of the state of the art.

IEEE Transactions on Knowledge and Data Engineering, v. 11, n. 1, p. 133Ű142, 1999.

LIM, M. H.; YUAN, Y.; OMATU, S. Efficient genetic algorithms using simple genes exchange local search policy for the quadratic assignment problem. Computational

Optimization and Applications, v. 15, p. 249Ű268, 2000.

LIN, S.; KERNIGHAN, B. W. An effective heuristic algorithm for the traveling-salesman problem. Operations Research, JSTOR, v. 21, p. 498Ű516, 1973.

LIU, H.; ABRAHAM, A.; ZHANG, J. A particle swarm approach to quadratic assignment problems. In: Soft Computing in Industrial Applications. [S.l.]: Springer, 2007. p. 213Ű222.

LOIOLA, E. M.; ABREU, N. M. M. d.; BOAVENTURA-NETTO, P. O.; HAHN, P.; QUERIDO, T. A survey for the quadratic assignment problem. European Journal of

Operational Research, Elsevier, v. 176, n. 2, p. 657Ű690, 2007.

MACHADO, T. R.; LOPES, H. S. A hybrid particle swarm optimization model for the traveling salesman problem. In: Adaptive and Natural Computing Algorithms. [S.l.]: Springer, 2005. p. 255Ű258.

MACULAN, N.; CAMPELLO, R. E. Algoritmos e Heurísticas: Desenvolvimento e

Avaliação de Performance. [S.l.]: Niterói, EDUFF, 1994.

MALEK, R. Collaboration of metaheuristic algorithms through a multi-agent system. In: MARíK, V.; STRASSER, T.; ZOITL, A. (Ed.). Holonic and Multi-Agent Systems for

Manufacturing. [S.l.]: Springer Berlin / Heidelberg, 2009, (Lecture Notes in Computer

Science, v. 5696). p. 72Ű81.

MALEK, R. An agent-based hyper-heuristic approach to combinatorial optimization problems. In: IEEE International Conference on Intelligent Computing and Intelligent

Systems (ICIS). [S.l.: s.n.], 2010. v. 3, p. 428Ű434.

MANIEZZO, V.; COLORNI, A. Algodesk: An experimental comparison of eight evolutionary heuristics applied to the quadratic assignment problem. European Journal

Referências 119

MANIEZZO, V.; COLORNI, A. The ant system applied to the quadratic assignment problem. IEEE Transactions on Knowledge and Data Engineering, v. 11, n. 5, p. 769Ű778, 1999.

MANIEZZO, V.; STÜTZLE, T.; VOSS, S. Matheuristics, volume 10 of annals of

information systems. Berlin: Springer-Verlag, 2010.

MARINAKIS, Y.; MARINAKI, M.; DOUNIAS, G. Honey bees mating optimization algorithm for the euclidean traveling salesman problem. Information Sciences, v. 181, n. 20, p. 4684Ű4698, 2011.

MARTIN, O.; OTTO, S. W.; FELTEN, E. W. Large-step markov chains for the traveling salesman problem. Complex Systems, v. 5, p. 299Ű326, 1991.

MARTINS, M.; FUCHS, S.; PANDO, L.; LüDERS, R.; DELGADO, M. PSO with path relinking for resource allocation using simulation optimization. Computers & Industrial

Engineering, v. 65, n. 2, p. 322Ű330, 2013.

MCGILL, R.; TUKEY, J. W.; LARSEN, W. A. Variations of box plots. The American

Statistician, Taylor & Francis Group, v. 32, n. 1, p. 12Ű16, 1978.

MILANO, M.; ROLI, A. MAGMA: a multiagent architecture for metaheuristics. IEEE

Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, v. 34, n. 2, p.

925Ű941, 2004.

MLADENOVIĆ, N. A variable neighborhood algorithm: a new metaheuristics for combinatorial optimization. In: Abstracts of Papers Presented at Optimization Days. [S.l.: s.n.], 1995.

NGUYEN, H.; YOSHIHARA, I.; YAMAMORI, K.; YASUNAGA, M. Implementation of an effective hybrid GA for large-scale traveling salesman problems. Systems, Man, and

Cybernetics, Part B: Cybernetics, IEEE Transactions on, IEEE, v. 37, n. 1, p. 92Ű99,

2007.

OLIVEIRA, C. A.; PARDALOS, P. M.; RESENDE, M. G. GRASP with path-relinking for the quadratic assignment problem. In: Experimental and efficient algorithms. [S.l.]: Springer, 2004. p. 356Ű368.

PANG, W.; WANG, K.-P.; ZHOU, C.-G.; DONG, L.-J.; LIU, M.; ZHANG, H.-Y.; WANG, J.-Y. ModiĄed particle swarm optimization based on space transformation for solving traveling salesman problem. In: IEEE. Machine Learning and Cybernetics, 2004.

Proceedings of 2004 International Conference on. [S.l.], 2004. v. 4, p. 2342Ű2346.

PARDALOS, L.; RESENDE, M. A greedy randomized adaptive search procedure for the quadratic assignment problem. Quadratic Assignment and Related Problems, DIMACS

Series on Discrete Mathematics and Theoretical Computer Science, v. 16, p. 237Ű261,

1994.

PARDALOS, P. P. M.; WOLKOWICZ, H. Quadratic Assignment and Related Problems:

Dimacs Workshop May 20-21, 1993. [S.l.]: American Mathematical Soc., 1994.

R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria, 2012. ISBN 3-900051-07-0. Disponível em: <http://www.R-project.org/>.

120 Referências

RAIDL, G. A uniĄed view on hybrid metaheuristics. In: ALMEIDA, F.; AGUILERA, M. B.; BLUM, C.; VEGA, J. M.; PéREZ, M. P.; ROLI, A.; SAMPELS, M. (Ed.). Hybrid

Metaheuristics. [S.l.]: Springer Berlin / Heidelberg, 2006, (Lecture Notes in Computer

Science, v. 4030). p. 1Ű12.

RAIDL, G. R.; PUCHINGER, J.; BLUM, C. Metaheuristic hybrids. In: GENDREAU, M.; POTVIN, J.-Y. (Ed.). Handbook of Metaheuristics. [S.l.]: Springer US, 2010, (International Series in Operations Research & Management Science, v. 146). p. 469Ű496. REINELT, G. TSPLIB Ű a traveling salesman problem library. ORSA Journal on

Computing, INFORMS, v. 3, n. 4, p. 376Ű384, 1991.

REINELT, G. The traveling salesman: computational solutions for TSP applications. Berlim: Springer-Verlag, 1994.

RESENDE, M. G. C.; RIBEIRO, C. C. GRASP with path-relinking: Recent advances and applications. Metaheuristics: progress as real problem solvers, Kluwer Academic Publishers, p. 29Ű63, 2005.

REYNOLDS, R. G. An introduction to cultural algorithms. In: SEBALK, A. V.; FOGEL, L. J. (Ed.). Proceedings of the Third Annual conference on Evolutionary

Programming. River Edge NJ: World ScientiĄc Publishing, 1994. p. 131Ű139.

RIBEIRO, C. C.; UCHOA, E.; WERNECK, R. F. A hybrid GRASP with perturbations for the Steiner problem in graphs. Journal on Computing, INFORMS, n. 14, p. 228Ű246, 2002.

ROSENDO, M.; POZO, A. A hybrid particle swarm optimization algorithm for

combinatorial optimization problems. In: IEEE. Evolutionary Computation (CEC), 2010

IEEE Congress on. [S.l.], 2010. p. 1Ű8.

RUSSELL, S.; NORVIG, P. ArtiĄcial intelligence: a modern approach. [S.l.]: Prentice hall, 2010.

SALOMON, M.; SOLOMON, M. M.; WASSENHOVE, L. N. V.; DUMAS, Y.; DAUZÈRE-PÉRÈS, S. Solving the discrete lotsizing and scheduling problem with sequence dependent set-up costs and set-up times using the travelling salesman problem with time windows. European Journal of Operational Research, Elsevier, v. 100, n. 3, p. 494Ű513, 1997.

SILVA, M. A. L. Modelagem de uma Arquitetura Multiagente para a Solução, via

Metaheurísticas, de Problemas de Otimização Combinatória. Dissertação (Mestrado) Ů

Centro Federal de Educação Tecnológica de Minas Gerais, 2007.

SOUZA, G.; GOLDBARG, E.; GOLDBARG, M. An agent based PSO approach for metaheuristics hybridization to tackle discrete optimization problems. In: ALIO-

INFORMS Joint International Meeting. Buenos Aires: REPROGRAFIAS J.M.A. - S.A.,

2010. p. 108.

SOUZA, G.; GOLDBARG, E.; GOLDBARG, M. Multi-agent PSO-based approach for metaheuristics hybridization applied to the traveling salesman problem. In: Proceedings

of IADIS International Conference Applied Computing. Lisboa: IADIS Press, 2011. p.

Referências 121

SOUZA, G.; GOLDBARG, E.; GOLDBARG, M.; CANUTO, A. A multiagent approach for metaheuristics hybridization applied to the traveling salesman problem. In: Neural

Networks (SBRN), 2012 Brazilian Symposium on. Washington: IEEE Computer Society,

2012. p. 208Ű213. ISSN 1522-4899.

SOUZA, G. R. Uma Abordagem por Nuvem de Partículas para Problemas de Otimização

Combinatória. Dissertação (Mestrado) Ů Universidade Federal do Rio Grande do Norte,

2006.

STEINBERG, L. The blackboard wiring problem: a placement algorithm. SIAM Review, v. 3, p. 37Ű50, 1961.

STÜTZLE, T. Iterated local search for the quadratic assignment problem. European

Journal of Operational Research, Elsevier, v. 174, n. 3, p. 1519Ű1539, 2006.

TAILLARD, E. Robust taboo search for the quadratic assignment problem. Parallel

computing, Elsevier, v. 17, n. 4, p. 443Ű455, 1991.

TAILLARD, E. D. Comparison of iterative searches for the quadratic assignment problem. Location science, Elsevier, v. 3, n. 2, p. 87Ű105, 1995.

TALBI, E.-G. A taxonomy of hybrid metaheuristics. Journal of Heuristics, Springer Netherlands, v. 8, n. 5, p. 541Ű564, 2002.

TALBI, E.-G. Metaheuristics: from design to implementation. [S.l.]: Wiley Publishing, 2009.

TALUKDAR, S.; BAERENTZEN, L.; GOVE, A.; SOUZA, P. D. Asynchronous teams: Cooperation schemes for autonomous agents. Journal of Heuristics, Springer, v. 4, n. 4, p. 295Ű321, 1998.

TIAN, P.; WANG, H. C.; ZHANG, D. M. Simulated annealing for the quadratic assignment problem: a further study. Computers and Industrial Engineering, v. 31, p. 925Ű928, 1996.

TIEJUN, Z.; YIHONG, T.; LINING, X. A multi-agent approach for solving traveling salesman problem. Wuhan University Journal of Natural Sciences, Wuhan University, co-published with Springer, v. 11, n. 5, p. 1104Ű1108, 2006.

TOTH, P.; VIGO, D. The vehicle routing problem. [S.l.]: Society for Industrial Mathematics, 2002.

TSENG, L.-Y.; LIANG, S.-C. A hybrid metaheuristic for the quadratic assignment problem. Computational Optimization and Applications, Springer, v. 34, p. 85Ű113, 2006. VOUDOURIS, C.; TSANG, E. Guided local search. [S.l.], 1995.

WANG, K.-P.; HUANG, L.; ZHOU, C.-G.; PANG, W. Particle swarm optimization for traveling salesman problem. In: IEEE. Machine Learning and Cybernetics, 2003

International Conference on. [S.l.], 2003. v. 3, p. 1583Ű1585.

WHITLEY, D.; STARKWEATHER, T.; SHANER, D. The traveling salesman and

sequence scheduling: Quality solutions using genetic edge recombination. [S.l.]: Colorado

122 Referências

WILBAUT, C.; HANAFI, S.; SALHI, S. A survey of effective heuristics and their application to a variety of knapsack problems. IMA Journal of Management Mathematics, IMA, v. 19, n. 3, p. 227Ű244, 2008.

WOLPERT, D. H.; MACREADY, W. G. No free lunch theorems for optimization. IEEE

Transactions on Evolutionary Computation, v. 1, n. 1, p. 67Ű82, 1997.

WOOLDRIDGE, J. M. Introductory econometrics: a modern approach. [S.l.]: Cengage Learning, 2012.

WOOLDRIDGE, M. An Introduction to Multiagent Systems. 2. ed. Chichester, UK: Wiley, 2009.

WOOLDRIDGE, M.; JENNINGS, N. R. Intelligent agents: theory and practice. The

Knowledge Engineering Review, Cambridge University Press, v. 10, n. 2, p. 115Ű152,

1995.

XIE, X.-F.; LIU, J. How autonomy oriented computing (AOC) tackles a computationally hard optimization problem. In: Proceedings of the Ąfth international joint conference on

Autonomous agents and multiagent systems. New York, NY, USA: ACM, 2006. (AAMAS

Š06), p. 646Ű653.

XIE, X.-F.; LIU, J. Multiagent optimization system for solving the traveling salesman problem (TSP). IEEE Transactions on Systems, Man, and Cybernetics, Part B:

Cybernetics, v. 39, n. 2, p. 489Ű502, 2009.

ZHANG, H.; BELTRAN-ROYO, C.; CONSTANTINO, M. Effective formulation reductions for the quadratic assignment problem. Computers & Operations Research, Elsevier, v. 37, n. 11, p. 2007Ű2016, 2010.

ZHAO, B.; GUO, C. X.; CAO, Y. J. A multiagent-based particle swarm optimization approach for optimal reactive power dispatch. IEEE Transactions on Power Systems, v. 20, n. 2, p. 1070Ű1078, 2005.

123

APÊNDICE A Ű O Problema do Caixeiro Vi-

ajante

O Problema do Caixeiro Viajante (PCV) é um dos mais tradicionais e conhecidos problemas de otimização combinatória (MACULAN; CAMPELLO, 1994; GOLDBARG; LUNA, 2005). Os problemas de roteamento lidam em sua maior parte com passeios (ou

tours) sobre pontos de demanda ou oferta. Dentre os tipos de passeio, um dos mais

importantes é o denominado hamiltoniano. Seu nome é devido a William Rowan Hamilton que em 1857 propôs um jogo chamado Around the World, mostrado na Ągura 19.

Figura 19 Ű Jogo Around the World, proposto por Hamilton

O jogo era feito sobre um dodecaedro em que cada vértice estava associado a uma cidade importante da época. O desaĄo consistia em encontrar uma rota através dos vértices do dodecaedro que iniciasse e terminasse em uma mesma cidade passando uma única vez em cada cidade. Em homenagem a Hamilton, uma solução do seu jogo passou a ser chamada de ciclo hamiltoniano, conforme é mostrada na Ągura 20.

124 APÊNDICE A. O Problema do Caixeiro Viajante

Devido à sua ampla aplicabilidade e diĄculdade de resolução por métodos exatos, uma grande quantidade de heurísticas são propostas por diversos pesquisadores. Uma revisão do PCV e alguns métodos utilizados para sua resolução são apresentados por Gutin e Punnen (2002) e um histórico do problema, com algumas aplicações no mundo real, é apresentado porApplegate et al. (2006).

Um grafo, numa deĄnição bem simples, é um conjunto de vértices e arestas. Os vértices são pontos que podem representar cidades, depósitos, postos de trabalho ou atendimento, por exemplo. As arestas são linhas que conectam os vértices, representando relações entre os vértices. Por exemplo, as arestas podem representar ruas ou estradas entre duas cidades. Um circuito hamiltoniano é um passeio por todos os vértices de um grafo retornando ao vértice origem, passando por cada um dos outros vértices apenas uma vez.

O PCV é um problema de otimização associado ao da determinação dos caminhos hamiltonianos em um grafo qualquer, cujo objetivo é encontrar, em um grafo 𝐺 = (𝑉, 𝐸), em que 𝑉 é o conjunto de vértices do grafo e 𝐸 consiste nas arestas que ligam esses vértices, com |𝑉 | = 𝑛 ≥ 3 e 𝑐ij0 associado a cada uma das arestas (𝑖, 𝑗), o caminho

hamiltoniano de menor custo. Este problema de otimização, formalmente, é considerado intratável, pertencendo à classe NP-Árdua (KARP,1975).

O PCV é importante devido a pelo menos três de suas características: grande aplicação prática, grande relação com outros modelos e grande diĄculdade de solução exata. Em suas diversas variações, o PCV está presente em inúmeros problemas práticos, como por exemplo:

• Programação de operações de máquinas em manufatura (FINKE; KUSIAK, 1987). • Otimização do movimento de ferramentas de corte (CHAUNY et al., 1987).

Documentos relacionados