• Nenhum resultado encontrado

Performance GPU x CPU

B. Atualização de cena /

6.2 Trabalhos Futuros

Com o intuito de evoluir o trabalho realizado nesta dissertação, alguns trabalhos futuros são destacados:

 Estudo de técnicas para a redução do ruído gerado pelo sensor de profundidade do Kinect. A remoção deste ruído é essencial para que as técnicas funcionem corretamente e perfeitamente, gerando resultados ainda mais realistas;

 Desenvolver uma técnica que, em tempo real, capture as informações da cena real com o Kinect e automaticamente gere uma malha de polígonos que represente esta cena. Esta malha seria carregada no ray tracing, para que a travessia considerasse os objetos reais, o que geraria resultados mais precisos do que com a utilização do Screen Traversal;

Aperfeiçoamento do ray tracing, para que ele trabalhe com objetos deformáveis e a adição de bibliotecas que simulem a física, aumentando ainda mais o grau de interação entre os objetos reais e virtuais;

Referências

[ALS11a] SANTOS, A. L. ; Teixeira, João Marcelo ; Farias, Thiago ; Teichrieb, Veronica ; Kelner, Judith . Understanding the Efficiency of kD-tree Ray-Traversal Techniques over a GPGPU Architecture. International Journal of Parallel Programming, p. 6, 2011.

[ALS11b] SANTOS, A. L. Estruturas de Aceleração para Ray Tracing em Tempo Real: um Estudo Comparativo. Universidade Federal de Pernambuco, Dissertação de Mestrado, 2011.

[APPEL68] Appel, A. “Some techniques for shading machine renderings of solids”. AFIPS.

Spring Joint Computer Conference, 1968. New York. p. 37-45.

[ARB11] Roberto, Rafael Alves ; Freitas, Daniel ; LIMA, João Paulo Silva Do Monte ; TEICHRIEB, Veronica ; KELNER, Judith . ARBlocks: A Concept for a Dynamic Blocks Platform for Educational Activities. In: Symposium on Virtual and Augmented Reality, 2011, Uberlândia. XIII Symposium on Virtual and Augmented Reality - SVR 2011. New York : IEEE, 2011. p. 28-37.

[ART10a] ARTOOLKIT. ARToolKit Home Page.

http://www.hitl.washington.edu/artoolkit/, acessado em fevereiro de 2010. [ART10b] ARTOOLKITPLUS. ARToolKitPlus Home Page. http://studierstube.icg.tu-

graz.ac.at/handheld_ar/artoolkitplus.php, acessado em fevereiro de 2010. [ART10c] ARTOOLWORKS. ARToolworks Home Page.

http://www.artoolworks.com/Home.html, acessado em fevereiro de 2010. [AZU01] AZUMA, R. et al. Recent Advances in Augmented Reality, IEEE Computer

Graphics and Applications, vol. 21, n. 6, p. 34-47. 2001.

[BEP96] BASU, Sumit; ESSA, Irfan; PENTLAND, Alex. Motion Regularization for Model- based Head Tracking. Proceedings of the 13th International Conference on Pattern Recognition (ICPR '96), vol. 3, p. 611-616. 1996.

[BLLN07] BENHIMANE, Selim; LADIKOS, Alexander; LEPETIT, Vincent; NAVAB, Nassir. Linear and Quadratic Subsets for Template-Based Tracking. IEEE Conference on Computer Vision and Pattern Recognition (CVPR '07), p. 1-6, Junho de 2007. [BRE65] Jack E. Bresenham. "Algorithm for computer control of a digital plotter", IBM

Systems Journal, Vol. 4, No.1, January 1965, pp. 25–30

[CUDA10] NVIDIA CUDA. NVIDIA CUDA Zone.

http://developer.nvidia.com/category/zone/cuda-zone, acessado em dezembro de 2010.

[CUI11] Cui, Y.; Stricker, D. 3D shape scanning with a Kinect. ACM Transactions on Graphics (Proc. of SIGGRAPH 2011 poster)

[DC02] DRUMMOND, Tom; CIPOLLA, Roberto. Real-Time Visual Tracking of Complex Structures. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, n. 7, p. 932-946. Julho de 2002.

[DSKG06] DÜNSER, A.; STEINBÜGL, K.; KAUFMANN, H.; GLÜCK, J. Virtual and Augmented Reality as Spatial Ability Training Tools. Proceedings of the 7th ACM SIGCHI New Zealand chapter's international conference on Computer-human interaction (CHINZ '06), p. 125-132. 2006.

[EYE11] EyePet. EyePetTM. http://www.eyepet.com, acessado em novembro de 2011. [FER03] FERWERDA, James. Three Varieties of Realism in Computer Graphics.

Proceedings SPIE Human Vision and Electronic Imaging '03, p. 290-297. 2003.

[FGR93] FOURNIER, Alain; GUNAWAN, Atjeng S.; ROMANZIN, Chris. Common

Illumination between Real and Computer Generated Scenes. Graphics Interface, p. 254-262. Maio de 1993.

[FPH94] FOLEY J. D., PHILLIPS R. L., HUGHES J. F., DAM A. V., FEINER S. K.: Introduction to Computer Graphics. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1994.

[FRAN11] Tobias Franke, Svenja Kahn, Manuel Olbrich, and Yvonne Jung. 2011. Enhancing realism of mixed reality applications through real-time depth-

imaging devices in X3D. In Proceedings of the 16th International Conference on 3D Web Technology (Web3D '11). ACM, New York, NY, USA, 71-79.

[GAMA12] GAMA, A. E. F. da ; CHAVES, T. M. ; FIGUEIREDO, Lucas Silva ; TEICHRIEB, Veronica . Improving Motor Rehabilitation Process through a Natural Interaction Based System Using Kinect Sensor. In: IEEE Symposium on 3D User Interfaces, 2012, Orange County. Proceedings of the 3DUI 2012. New York : IEEE Explore, 2012.

[GLAS89] GLASSNER, A.S. An Introduction to Ray Tracing. 1989. Academic Press. San Diego, Estados Unidos.

[GTGB84] GORAL, Cindy; TORRANCE, Kenneth; GREENBERG, Donald; BATTAILE, Bennett. Modeling the Interaction of Light Between Diffuse Surfaces. SIGGRAPH Computer Graphics, vol. 18, n. 3, p. 213-222. 1984.[HAVR01] V. Havran, “Heuristic Ray Shooting Algorithms”, Phd thesis, Faculty of Electrical Engineering, Czech Technical University, Prague, 2001.

[HORN07] D. R. Horn, J. Sugerman, M. Houston, and P. Hanrahan, “Interactive k-d tree GPU raytracing”, Proceedings of the Symposium on I3D Graphics and Games, ACM, New York, USA, 2007, pp 167-174.

[INT10] Intel. Intel Corporation homepage. http://www.intel.com, acessado em dezembro de 2010.

[JEN96] JENSEN, Henrik. Global Illumination Using Photon Maps. Proceedings of the Eurographics Workshop on Rendering Techniques '96, p. 21-30. Dezembro de 1996.

[JMXNT10] J. M. Teixeira, E. Albuquerque, A. L. dos Santos, V. Teichrieb, J. Kelner, “Improving ray tracing anti-aliasing performance through image gradient analysis”, Simpósio de Sistemas Computacionais, 2010. Petrópolis. p. 144-151. [KAK05] Kakimoto, M.; Matsuoka, K.; Nishita, T.; Naemura, T.; Harashima, H. Glare

Generation Based on Wave Optics, Computer Graphics Forum, vol. 24, no. 22, 2005, pp. 185-193.

[KAW11] KAWASE M.: rthdribl - real-time high dynamic range image-based lighting. 2011.

[KAY79] KAY, D. Transparency, Refraction, and Ray Tracing for Computer Synthesized Images. Thesis, Cornell University, Ithaca, N.Y. Janeiro de 1979.

[KF11] Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard Newcombe, Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, Andrew Davison, and Andrew Fitzgibbon, KinectFusion: Real-time 3D Reconstruction and Interaction Using a Moving Depth Camera, ACM Symposium on User Interface Software and Technology, October 2011.

[KIN11] Kinect. Kinect – Xbox.com. http://www.xbox.com/en-US/Kinect, acessado em julho de 2011.

[KSPO12] Kinect Sports. Kinect Sports Segunda Temporada – Xbox.com. http://marketplace.xbox.com/pt-BR/Product/Kinect-Sports-Season-

Two/66acd000-77fe-1000-9115-d8024d5309d6, acessado em janeiro de 2012. [KSW12] Kinect Star Wars. Kinect Star Wars – Xbox.com. http://www.xbox.com/en-

US/Marketplace/Product/Kinect-Star-Wars, acessado em janeiro 2012. [KUHN11] T Kühn, "The Kinect Sensor Platform", Advances In Media Technology, 2011. [KY04] KANBARA, Masayuki; YOKOYA, Naokazu. Real-time Estimation of Light Source

Environment for Photorealistic Augmented Reality. Proceedings of the 17th International Conference on Pattern Recognition (ICPR '04), Cambridge, United Kingdom, p. 911-914. 2004.

[LAN09] LANMAN, D.; TAUBIN, G. Build Your Own 3D Scanner: Optical Triangulation for Beginners. ACM SIGGRAPH ASIA 2009.

[LSFK10] LIMA, J. P. S. M. ; SIMÕES, Francisco Paulo Magalhães ; FIGUEIREDO, L. S. ; KELNER, Judith . Model Based Markerless 3D Tracking applied to Augmented Reality. SBC Journal on 3D Interactive Systems, v. 1, p. 2-15, 2010.

[LUM09] LUMINETX. Luminetx VeinViewer. http://www.luminetx.com/Medical Products/VeinViewerforClinicians/tabid/60/Default.aspx, acessado em setembro de 2009.

[MET10] METAIO. Metaio Home Page. http://www.metaio.com/, acessado em fevereiro de 2010.

[MIN93] Minnaert, M.G.J. (Translated and revised by Seymour L.). Light and Color in the Outdoors. New York: Springer-Verlag, 1993. 417p.

[MSDK11] Microsoft. Kinect for windows sdk, 2011. http://research.microsoft.com/en- us/um/redmond/projects/kinectsdk/, acessado em agosto de 2011.

[NI86] Niblack, W. An introduction to digital image processing. Englewood Cliffs, N. J., Prentice Hall, pp. 115–116, 1986.

[NVID10] NVIDIA. Nvidia Corporation homepage. http://www.nvidia.com, acessado em dezembro de 2010.

[OGL05] David Shreiner, Mason Woo, Jackie Neider, Tom Davis, OpenGL Programming Guide, 5th Edition, Addison Wesley, 2006. [ONI11] OpenNI.

http://75.98.78.94/default.aspx, acessado em novembro de 2011.

[OPCL10] OpenCL. OpenCL – The Industry Standard for Parallel Programming of Heterogeneous Systems. http://www.khronos.org/opencl/, acessado em dezembro de 2010.

[OPT10] Optix. NVIDIA optix ray tracing engine. http://developer.nvidia.com/object/optix-home.html, acessado em dezembro de 2010.

[OYN07] ONG, S.; YUAN, M.; NEE, A. Augmented Reality Applications in Manufacturing: a survey. International Journal of Production Research, vol. 46, n. 10, p. 2707- 2742. 2007.

[PES10] PESSOA, Saulo. Um Pipeline para Renderização Fotorrealística em Aplicações de Realidade Aumentada. Universidade Federal de Pernambuco, Dissertação de Mestrado, 2010.

[RLCW04] RADEMACHER, Paul; LENGYEL, Jed; CUTRELL, Edward; WHITTED, Turner. Measuring the Perception of Visual Realism in Images. Proceedings of the 12th Eurographics Workshop on Rendering Techniques, p. 235-248. 2004.

[RPR12] PESSOA, Saulo ; MOURA, Guilherme de Sousa ; LIMA, João Paulo Silva Do Monte ; TEICHRIEB, Veronica ; KELNER, Judith. RPR-SORS: Real-Time Photorealistic Rendering of Synthetic Objects into Real Scenes. Computers & Graphics, v. 36, p. 50-69, 2012.

[SAM07] SCHEER, Fabian; ABERT, Oliver; MÜLLER, Stefan. Towards Using Realistic Ray Tracing in Augmented Reality Applications with Natural Lighting. Proceedings of the 4th Workshop Virtual and Augmented Reality of the GI-Group (VR/AR). 2007.

[SAU00] Sauvola, J., Pietikainen, M. Adaptive document image binarization. Pattern Recognition, 33, p. 225–236, 2000.

[SKT03] SUGANO, Natsuki; KATO, Hirokazu; TACHIBANA, Keihachiro. The Effects of Shadow Representation of Virtual Objects in Augmented Reality. Proceedings of the 2nd IEEE/ACM International Symposium on Mixed and Augmented Reality (ISMAR '03), p. 76. 2003.

[SL03] SCHWALD, Bernd; LAVAL, Blandine. An Augmented Reality System for Training and Assistance to Maintenance in the Industrial Context. Proceedings of the 11th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision '2003, p. 425-432. 2003.

[STA99] STAUDER, Jürgen. Augmented Reality with Automatic Illumination Control Incorporating Ellipsoidal Models. IEEE transactions on multimedia, vol. 1, n. 2. 1999.

[TLRG08] TEIXEIRA, Lucas; LOAIZA, Manuel; RAPOSO, Alberto; GATTASS, Marcelo. Um Sistema Híbrido para Rastreamento Baseado em Esferas Retrorreflexivas e Características do Objeto Rastreado. X Symposium on Virtual and Augmented Reality, p. 28-35. 2008.

[TOT10] TOTAL IMMERSION. Augmented Reality Software and Solutions by Total Immersion. http://www.t-immersion.com/, acessado em dezembro de 2010. [TKTS98] TANG, San-Lik; KWOH, Chee-Keong; TEO, Ming-Yeong; SING, Ng Wan; LING,

Engineering in Medicine and Biology Magazine, vol. 17, n. 3, p. 49-58. Maio/Junho de 1998.

[WATT00] A. Watt, 3D Computer Graphics, Pearson – Addison Wesley, New York, 2000. [WBLM96] WELCH, R.; BLACKMON, T.; LIU, A.; MELLERS, B.; STARK, L. The Effects of

Pictorial Realism, Delay of Visual Feedback, and Observer Interactivity on the Subject Sense of Presence. Presence: Teleoperators And Virtual Environments, vol. 5, n. 3, p. 263-273. 1996.

[WCHT06] C. Wachter e A. Keller, “Instant ray tracing: The bounding interval hierarchy”, Eurographics Workshop/Symposium on Rendering, Eurographics Assoc., 2006, pp. 139–149.

[WHI80] Whitted, “An improved illumination model for shaded display”, Communications of ACM, v. 23, no. 6, ACM, New York, USA, 1980, pp. 343- 349.

[WIL78] William K. Pratt, Digital image processing, John Wiley & Sons, Inc., New York, NY, 1978.

[WONG06] T. T. Wong, L. Wan, C. S. Leung, and P. M. Lam. “Real-time Environment Mapping with Equal Solid-Angle Spherical Quad-Map”, Shader X4: Lighting & Rendering, Charles River Media, 2006.

[WPF90] A. Woo, P. Poulin, A. Fournier. A Survey on Shadow Algorithms. IEEE Computer Graphics and Applications, 10(6): 13-32, Novembro 1990.

Apêndice A

Documentos relacionados