• Nenhum resultado encontrado

Para complementar este trabalho será necessário a otimização da produção do biocompósito A. O processo de incubação é elevado, e pelo que a redução do tempo vai fazer com o substrato esteja menos tempo exposto a contaminações. É necessário o estudo de novos aditivos que incorporem as matrizes de resíduos, estes aditivos deverão proporcionar um rápido desenvolvimento do micélio. Em relação à produção do biocompósito B terá também de ser desenvolvida uma técnica que permita mecanizar o processo.

Na parte térmica será necessário um estudo mais aprofundado para determinar as propriedades térmicas, utilizando técnicas como a TG para complementar os dados obtidos na DSC.

Verificou-se que a porosidade influência de forma relevante as propriedades dos materiais. Ainda que o processo utilizado para determinar esta propriedade traga algumas dúvidas, torna-se necessário determinar a porosidade por outro processo, para complementar os resultados.

Será também necessário recorrer a ensaios de biodegradabilidade, que serão essenciais em aplicações na área de isolamento.

Análise por difração de Raios-X (DRX) para avaliar a cristalinidade destes materiais e a sua influência nas propriedades obtidas.

77

REFERÊNCIAS BIBLIGRÁFICAS

ACMA. (2016). What are composites? Retrieved 19 de dezembro de 2017

Aditya, L., Mahlia, T. M. I., Rismanchi, B., Ng, H. M., Hasan, M. H., Metselaar, H. S. C., Aditiya, H. B. (2017). A review on insulation materials for energy conservation in buildings. Renewable and Sustainable Energy

Reviews, 73(Supplement C), 1352-1365.

Agency, E. E. (2017). Mitigação dos Efeitos das Alterações Climáticas. Retrieved 6 de dezembro 2017, from https://www.eea.europa.eu/pt/themes/climate/intro

Airpop. (2016). Airpop - um novo nome para um material bem estabelecido. Retrieved 17 de dezembro de 2017, from http://www.airpop.pt/downloads/airpop-press-release-pt.pdf

Al-Homoud, D. M. S. (2005). Performance characteristics and practical applications of common building thermal insulation materials. Building and Environment, 40(3), 353-366.

Alawar, A., Hamed, A. M., e Al-Kaabi, K. (2009). Characterization of treated date palm tree fiber as composite reinforcement. Composites Part B: Engineering, 40(7), 601-606.

Amianti, M. (2005). Uso e aplicação do poliestireno expandido (EPS) reciclado para impermeabilização por

impregnação de superfícies de concreto pré-fabricado., Universidade Federal de Ouro Preto, Ouro Preto.

Ashby, M. F., e Gibson, L. J. (1997). Cellular solids: structure and properties. Cambridge, UK: Press Syndicate of

the University of Cambridge, 183-231.

Ashori, A. (2008). Wood–plastic composites as promising green-composites for automotive industries!

Bioresource Technology, 99(11), 4661-4667.

ASTM. (1998). 303 - Standard Test Method for Dimensions and Density of Preformed Block and Board–Type Thermal Insulation (pp. 4).

ASTM. (2000). 1621 - Standard Test Method for Compressive Properties Of Rigid Cellular Plastics (pp. 4). ASTM. (2004). 578 - Standard Specification for Rigid, Cellular Polystyrene Thermal Insulation (pp. 7).

Avalle, M., Belingardi, G., e Montanini, R. (2001). Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram. International Journal of Impact

Engineering, 25(5), 455-472.

Avio, C. G., Gorbi, S., e Regoli, F. (2017). Plastics and microplastics in the oceans: From emerging pollutants to emerged threat. Marine Environmental Research, 128(Supplement C), 2-11.

Azwa, Z. N., Yousif, B. F., Manalo, A. C., e Karunasena, W. (2013). A review on the degradability of polymeric composites based on natural fibres. Materials & Design, 47(Supplement C), 424-442.

Badotti, F. (2005). Caracterização de populações de leveduras associadas à produção de cachaça artesanal e

estudos bioquímicos de metabolismo de sacarose por linhagens de Saccharomyces cerevisiae.,

Florianópolis.

Baillie, C. (2005). Green composites: polymer composites and the environment: CRC Press. BASF. (2006). Packaging with Styropor.

Berovič, M., Habijanič, J., Zore, I., Wraber, B., Hodžar, D., Boh, B., e Pohleven, F. (2003). Submerged cultivation of Ganoderma lucidum biomass and immunostimulatory effects of fungal polysaccharides. Journal of

78

Bicer, A., e Kar, F. (2017). Thermal and mechanical properties of gypsum plaster mixed with expanded polystyrene and tragacanth. Thermal Science and Engineering Progress, 1(Supplement C), 59-65. Bishop, K. S., Kao, C. H. J., Xu, Y., Glucina, M. P., Paterson, R. R. M., e Ferguson, L. R. (2015). From 2000years

of Ganoderma lucidum to recent developments in nutraceuticals. Phytochemistry, 114, 56-65.

Boa, E. R. (2004). Wild edible fungi: a global overview of their use and importance to people: Food & Agriculture Org.

Bozsaky, D. (2010). The historical development of thermal insulation materials. Periodica Polytechnica.

Architecture, 41(2), 49.

Brands, D. (1996). Development and validation of a finite element model of a motorcycle helmet. Master’s Thesis, Eindhoven University of Technology, The Netherlands.

Bryś, A., Bryś, J., Ostrowska-Ligęza, E., Kaleta, A., Górnicki, K., Głowacki, S., e Koczoń, P. (2016). Wood biomass characterization by DSC or FT-IR spectroscopy. Journal of Thermal Analysis and Calorimetry,

126(1), 27-35.

Campana-Filho, S. P., Britto, D. d., Curti, E., Abreu, F. R., Cardoso, M. B., Battisti, M. V., Lavall, R. L. (2007). Extraction, structures and properties of alpha-AND beta-chitin. Química Nova, 30(3), 644-650.

Cheba, B. A. (2011). Chitin and chitosan: marine biopolymers with unique properties and versatile applications.

Global Journal of Biotechnology & Biochemistry, 6(3), 149-153.

Cronin, D. S., e Ouellet, S. (2016). Low density polyethylene, expanded polystyrene and expanded polypropylene: Strain rate and size effects on mechanical properties. Polymer Testing, 53(Supplement C), 40-50. de Mattos-Shipley, K. M. J., Ford, K. L., Alberti, F., Banks, A. M., Bailey, A. M., e Foster, G. D. (2016). The

good, the bad and the tasty: The many roles of mushrooms. Studies in Mycology, 85, 125-157.

Di Landro, L., Sala, G., e Olivieri, D. (2002). Deformation mechanisms and energy absorption of polystyrene foams for protective helmets. Polymer Testing, 21(2), 217-228.

Duškov, M. (1997). Materials research on EPS20 and EPS15 under representative conditions in pavement structures. Geotextiles and Geomembranes, 15(1), 147-181.

EcoDesenvolvimento. (2014). Para substituir plástico, empresa utiliza cogumelos como matéria-prima Retrieved 30 de dezembro de 2017, from http://www.ecodesenvolvimento.org/posts/2014/para-substituir-plastico- empresa-utiliza-cogumelos?tag=ecodesign

Ecovative2016b. (2016). “Grow it Yourself Myko Make – Material specifications”. . Retrieved 26 de outubro de 2017, from https://giy.ecovativedesign.com/material-specifications/

EcovativeDesign. (2017). Ecovative packaging Retrieved 27 de dezembro de 2017, from https://shop.ecovativedesign.com/collections/packaging

Eeydzah, A., Mohd, F., Zurina, M., Zainura, N., e I., K. (2011). A Review on Recycled Expanded Polystyrene Waste as Potential Thermal Reduction in Building Materials. International Conference on Environment

and Industrial Innovation, 12, 113-118.

Emadian, S. M., Onay, T. T., e Demirel, B. (2017). Biodegradation of bioplastics in natural environments. Waste

Management, 59(Supplement C), 526-536.

79

Erdogdu, E. (2010). Turkish support to Kyoto Protocol: A reality or just an illusion. Renewable and Sustainable

Energy Reviews, 14(3), 1111-1117.

EuropeanStandard. (2001). EN 13163 - Thermal insulation products for buildings — Factory made products of expanded polystyrene (EPS) — Specification.

EuropeanStandard. (2013). EN 826 - Thermal insulating products for building applications - Determination of compression behaviour.

Europeu, C. (2017). Acordos internacionais em matéria de ação climática Retrieved 5 de dezembro 2017, from http://www.consilium.europa.eu/pt/policies/climate-change/international-agreements-climate-action/ Ferreira, A. C. P., Brazaca, S. G. C., e Arthur, V. (2006). Alterações químicas e nutricionais do grão-de-bico (Cicer

arietinum L.) cru irradiado e submetido à cocção. Food Science and Technology, 26, 80-88.

Ferreira, O., Alves, O., de Souza Macedo, J., de Fátima Gimenez, I., e Barreto, L. (2007). Ecomateriais:

desenvolvimento e aplicação de materiais porosos funcionais para proteção ambiental (Vol. 30).

Forum, W. E. (2016). The New Plastics Economy Rethinking the future of plastics. Retrieved 5 de dezembro 2017, from http://www3.weforum.org/docs/WEF_The_New_Plastics_Economy.pdf

FuturEng. EPS - Poliestireno Expandido Retrieved 6 de junho de 2017, from http://www.futureng.pt/eps Gil, L. A cortiça como material de construção - Manual Técnico.

Grote;, Z. V., e Silveira., J. L. (2010). Análise Energética e Exergética de um processo de reciclagem de Poliestireno Expandido (Isopor). Revista Mackenzie de Engenharia e Computação, 9-27.

Gurunathan, T., Mohanty, S., e Nayak, S. K. (2015). A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and

Manufacturing, 77(Supplement C), 1-25.

Hariharan, S., e Nambisan, P. (2012). Optimization of lignin peroxidase, manganese peroxidase, and Lac production from Ganoderma lucidum under solid state fermentation of pineapple leaf. BioResources,

8(1), 250-271.

Harris, S. D. (2008). Branching of fungal hyphae: regulation, mechanisms and comparison with other branching systems. Mycologia, 100(6), 823-832.

Hatakeyama, T., e Quinn, F. (1999). Thermal analysis: fundamentals and applications to polymer science: [sl]. Hennicke, F., Cheikh-Ali, Z., Liebisch, T., Maciá-Vicente, J. G., Bode, H. B., e Piepenbring, M. (2016).

Distinguishing commercially grown Ganoderma lucidum from Ganoderma lingzhi from Europe and East Asia on the basis of morphology, molecular phylogeny, and triterpenic acid profiles. Phytochemistry,

127, 29-37.

HITACHI. (1980). Measurements of Gelatinization of Starch by DSC. Retrieved 5 de março de 2018, from https://www.hitachi-

hightech.com/file/global/pdf/products/science/appli/ana/thermal/application_TA_006e.pdf

Holt, G., McIntyre, G., Flagg, D., Bayer, E., Wanjura, J., e Pelletier, M. (2012). Fungal Mycelium and Cotton

Plant Materials in the Manufacture of Biodegradable Molded Packaging Material: Evaluation Study of Select Blends of Cotton Byproducts (Vol. J. Biobased Mater. Bioenergy).

Hoover, R. (2001). Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydrate Polymers, 45(3), 253-267.

80

Horvath, J. (1994). Expanded polystyrene (EPS) geofoam: an introduction to material behavior. Geotextiles and

Geomembranes, 13(4), 263-280.

INPI. (2006). Sistema de absorção de energia para sistemas de protecção para a cabeça que incorporam cortiça como elemento activo. Retrieved 03 de abril de 2018

Jelle, B. P. (2011). Traditional, state-of-the-art and future thermal building insulation materials and solutions – Properties, requirements and possibilities. Energy and Buildings, 43(10), 2549-2563.

Jenkins, P. J., e Donald, A. M. (1998). Gelatinisation of starch: a combined SAXS/WAXS/DSC and SANS study.

Carbohydrate Research, 308(1), 133-147.

John, M. J., e Thomas, S. (2008). Biofibres and biocomposites. Carbohydrate Polymers, 71(3), 343-364.

Johney, J., Eagappan, K., e Ragunathan, R. (2016). MICROBIAL EXTRACTION OF CHITIN AND CHITOSAN

FROM PLEUROTUS SPP, ITS CHARACTERIZATION AND ANTIMICROBIAL ACTIVITY (Vol. 9).

Joshi, S. V., Drzal, L. T., Mohanty, A. K., e Arora, S. (2004). Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A: Applied Science and Manufacturing,

35(3), 371-376.

Kalač, P. (2009). Chemical composition and nutritional value of European species of wild growing mushrooms: A review. Food Chemistry, 113(1), 9-16.

Kalia, S., Kaith, B., e Kaur, I. (2011). Cellulose fibers: bio-and nano-polymer composites: green chemistry and

technology: Springer Science & Business Media.

Kan, A., e Demirboğa, R. (2009). A new technique of processing for waste-expanded polystyrene foams as aggregates. Journal of Materials Processing Technology, 209(6), 2994-3000.

Kaya, A., e Kar, F. (2016). Properties of concrete containing waste expanded polystyrene and natural resin.

Construction and Building Materials, 105, 572-578.

KhanAcademy. (2017). Retrieved 2 de novembro de 2017, from

https://pt.khanacademy.org/science/physics/thermodynamics/specific-heat-and-heat-transfer/a/what-is- thermal-conductivity

Khlystov, N., Lizardo, D., Matsushita, K., e Zheng, J. (2013). Uniaxial Tension and Compression Testing of Materials.

Koronis, G., Silva, A., e Fontul, M. (2013). Green composites: A review of adequate materials for automotive applications. Composites Part B: Engineering, 44(1), 120-127.

Lee, H., Song, M., Yu, Y., e Hwang, S. (2003). Production of Ganoderma lucidum mycelium using cheese whey as an alternative substrate: response surface analysis and biokinetics. Biochemical Engineering Journal,

15(2), 93-99.

Luz, S. M., Del Tio, J., Rocha, G. J. M., Gonçalves, A. R., e Del’Arco, A. P. (2008). Cellulose and cellulignin from sugarcane bagasse reinforced polypropylene composites: Effect of acetylation on mechanical and thermal properties. Composites Part A: Applied Science and Manufacturing, 39(9), 1362-1369.

Matos, M. J., e Simplício, M. H. (2006). Innovation and sustainability in mechanical design through materials selection. Materials & Design, 27(1), 74-78.

81

Mıhlayanlar, E., Dilmaç, Ş., e Güner, A. (2008). Analysis of the effect of production process parameters and density of expanded polystyrene insulation boards on mechanical properties and thermal conductivity.

Materials & Design, 29(2), 344-352.

Mohanty, A. K., Misra, M., e Drzal, L. T. (2005). Natural fibers, biopolymers, and biocomposites: CRC press. Money, N. P. (2016). Are mushrooms medicinal? Fungal Biology, 120(4), 449-453.

Moon, R. J., Martini, A., Nairn, J., Simonsen, J., e Youngblood, J. (2011). Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 3941-3994.

Neto, J. (2008). Caraterização do comportamento geotécnico do EPS através de ensaios mecânicos e hidráulicos. São Carlos.

Notícias, D. d. (2016). Oceanos em 2050 vão ter mais plástico do que peixes. Retrieved 2 de janeiro de 2018, from https://www.dn.pt/dinheiro/interior/oceanos-em-2050-vao-ter-mais-plastico-do-que-peixes- 4990703.html

Pagga, U. (1998). Biodegradability and compostability of polymeric materials in the context of the European packaging regulation. Polymer Degradation and Stability, 59(1), 371-376.

Pala, H. (2007). Constituição e mecanismos de degradação biológica de um material orgânico: a madeira, 20, 54- 62.

Paterson, R. R. M. (2006). Ganoderma – A therapeutic fungal biofactory. Phytochemistry, 67(18), 1985-2001. Público. (2016). Acordo de Paris sobre alterações climáticas entra em vigor – os seis pontos essenciais Retrieved

5 de dezembro 2017, from https://www.publico.pt/2016/11/03/mundo/noticia/acordo-de-paris-sobre- alteracoes-climaticas-entra-em-vigor--os-seis-pontos-essenciais-1749873

Rebelo, A. (2015). Caracterização e desenvolvimento da produção de um compósito de origem natural. UTAD, Vila Real.

Reh, U., Kraepelin, G., e Lamprecht, I. (1987). Differential scanning calorimetry as a complementary tool in wood biodegradation studies. Thermochimica Acta, 119(1), 143-150.

Reviplast. (2015). Revista da indrústria de plásticos. Retrieved 22 de abril de 2017, from https://reviplast.wordpress.com/2015/05/10/airpop-o-novo-nome-do-eps/

Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31(7), 603- 632.

Samper, M., Garcia-Sanoguera, D., Parres, F., e Lopez, J. (2010). Recycling of expanded polystyrene from packaging. Progress in Rubber, Plastics and Recycling Technology, 26(2), 83.

Sanchez-Saez, S., García-Castillo, S. K., Barbero, E., e Cirne, J. (2015). Dynamic crushing behaviour of agglomerated cork. Materials & Design (1980-2015), 65, 743-748.

Sánchez, C. (2009). Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnology

Advances, 27(2), 185-194.

Sérgio Miguel Mazaro, Sabrina Santos Guimarães, Valdecir Szepanhuk, Marcio Barreto Rodrigues, e Paladini., M. V. (2007). AVALIAÇÃO DO TEMPO DE AUTOCLAVAGEM SOBRE O POTENCIAL DE CONTAMINAÇÃO DE SUBSTRATO NA TÉCNICA DE PRODUÇÃO EM SERRAGEM DE COGUMELOS GANODERMA LUCIDUM. Synergismus scyentifica UTFPR, 2, 1-4.

82

Silva, R., Dominguez, D., Alvim, R., e Iglesias, S. (2013). Análise da resistência mecânica e porosidade de um compósito cimentício leve com EVA e reforçado com fibras de piaçava. Revista Eletrônica de Materiais

e Processos, 8, 44-50.

Silva, S., P ;, Sabino, M., A; , Fernandes, E., M; , Correlo, V., M;, Boesel, L., F,;, e R, L., Reis. (2005). Cork: properties, capabilities and applications,. International Materials Reviews, 50(6), 345-565.

Simonić, J., Vukojević, J., Stajić, M., e Glamočlija, J. (2010). Intraspecific diversity within Ganoderma lucidum in the production of laccase and Mn-oxidizing peroxidases during plant residues fermentation. Applied

biochemistry and biotechnology, 162(2), 408-415.

Souza Filho, J. R. d. (2015). Obtenção e caracterização de um eco-compósito à base de látex e bainha da palha

do coqueiro para isolamento térmico e acústico. . (Doutoramento), Universidade Federal do Rio Grande

do Norte.

Stamford, T. C. M., Stamford, T. L. M., Stamford, N. P., Barros Neto, B. d., e Campos-Takaki, G. M. d. (2007). Growth of Cunninghamella elegans UCP 542 and production of chitin and chitosan using yam bean medium. Electronic Journal of Biotechnology, 10(1), 61-68.

Stark, T., Arellano, D., Horvath, J., e Leshchinsky, D. (2004). Geofoam applications in the design and construction of highway embankments.

Tsujiyama, S.-i. (1999). Differential scanning calorimetric analysis of fruit-body and mycelium of Lentinula edodes. Mycoscience, 40(1), 69-72.

Tuomela, M. (2002). Degradation of lignin and other 14C-labelled compounds in compost and soil with an emphasis on white-rot fungi.

Tuomela, M., Vikman, M., Hatakka, A., e Itävaara, M. (2000). Biodegradation of lignin in a compost environment: a review. Bioresource Technology, 72(2), 169-183.

UniversalConstructionFoam. (2011). Typical Physical Properties of Expanded Polystyrene. Retrieved 22 de abril de 2017, from http://www.universalconstructionfoam.com/downloads/eps-data-sheet.pdf

Väisänen, T., Das, O., e Tomppo, L. (2017). A review on new bio-based constituents for natural fiber-polymer composites. Journal of Cleaner Production, 149(Supplement C), 582-596.

Veiga-Santos, P., Oliveira, L., Cereda, M., Alves, A., e Scamparini, A. (2005). Mechanical properties, hydrophilicity and water activity of starch-gum films: effect of additives and deacetylated xanthan gum.

Food Hydrocolloids, 19(2), 341-349.

Vilaplana, F., Strömberg, E., e Karlsson, S. (2010). Environmental and resource aspects of sustainable biocomposites. Polymer Degradation and Stability, 95(11), 2147-2161.

Wambua, P., Ivens, J., e Verpoest, I. (2003). Natural fibres: can they replace glass in fibre reinforced plastics?

Composites Science and Technology, 63(9), 1259-1264.

Weber, F. H., Collares-Queiroz, F. P., e Chang, Y. K. (2009). Caracterização físico-química, reológica, morfológica e térmica dos amidos de milho normal, ceroso e com alto teor de amilose. Food Science and

Technology, 29, 748-753.

Wötzel, K., Wirth, R., e Flake, M. (1999). Life cycle studies on hemp fibre reinforced components and ABS for automotive parts. Macromolecular Materials and Engineering, 272(1), 121-127.

83

Wu, Y.-m., Zhao, Z.-l., Li, H.-b., e He, F. (2009). Low temperature pyrolysis characteristics of major components of biomass. Journal of Fuel Chemistry and Technology, 37(4), 427-432.

Wyasu, G., Gimba, C., Agbaji, E., e Ndukwe, G. (2016). Thermo-gravimetry (TGA) and DSC of thermal analysis techniques in production of active carbon from lignocellulosic materials. Adv. Appl. Sci. Res., 7, 109-115. Xanthos, D., e Walker, T. R. (2017). International policies to reduce plastic marine pollution from single-use

plastics (plastic bags and microbeads): A review. Marine Pollution Bulletin, 118(1), 17-26.

Zhou, L.-W., Cao, Y., Wu, S.-H., Vlasák, J., Li, D.-W., Li, M.-J., e Dai, Y.-C. (2015). Global diversity of the Ganoderma lucidum complex (Ganodermataceae, Polyporales) inferred from morphology and multilocus phylogeny. Phytochemistry, 114, 7-15.

Documentos relacionados