• Nenhum resultado encontrado

Capítulo 5 – Conclusões, Contribuição Científicas e Trabalhos Futuros

5.2. Trabalhos Futuros

1) A obtenção das análises Raman e FTIR para as células fotovoltaicas dos conjuntos 2 e 3 para identificar as incorporações de H e a cristalinização das estruturas, para um melhor entendimento da caracterização elétrica dos dispositivos fabricados;

2) A execução de mais recozimentos térmicos em 450ºC, em ambiente de gás verde, por intervalos de 5 minutos em 5 minutos, intercalados com medidas I-V, para identificar se os parâmetros elétricos, especialmente a eficiência das células, melhoraram com a passivação das ligações incompletas;

3) A fabricação de transistores de filmes finos baseados em a-Si:H com as regiões de fonte e dreno dopadas através da difusão de Al, desenvolvida neste trabalho.

4) A obtenção de uma melhor caracterização dos próprios filmes de a-Si:H, com as extrações da energia do band gap, a concentração, o tempo de vida e a mobilidade de portadores.

Referências

1. STREET, R. A. Hydrogeneted Amorphous Silicon. [S.l.]: Cambridge University Press, 1991.

2. CHITTICK, R. ; ALEXANDER, ; STERLING , H.. The Preparation and Properties of Amorphous Silicon. Journal of The Electrochemical Society: SOLID STATE SCIENCE , 116, n. 1, Janeiro 1969. 77-81.

3. SPEAR, W.; LECOMBER, P. Solid State Comm., 17, 1975. 1193-1196.

4. WATANABE, et al. Amorphous-silicon FET array for LCD panel. Electronics Letters, v. 19, p. 506-507, 1983.

5. ALPUIM, P.; CHU, V.; CONDE, J. P. Amorphous and microcrystalline silicon films grown at low temperatures by radio-frequency and hot-wire chemical vapor deposition. JournalL of

Applied Physics, v. 86, n. 7, p. 3812-3821, 1999.

6. LIN, C.-I.; FAN, Y.-K.; KUO, C.-H. Studies of the new findings in preparing a scaled amorphous silicon thin-film transistor. Applied Physics A, v. 116, p. 1655-1660, September 2014.

7. KUO, ; NOMINANDA,. Nonvolatile hydrogenated-amorphous-silicon thin-film-transistor memory devices. Applied Physics Letters, v. 89, 2006.

8. CARLSON, D. ; WRONSKI, C.. Amorphous silicon solar cell. Applied Physics Letters, v. 28, p. 671-673 , 1976.

9. ZIMMERMAN, T. High-rate growth of hydrogenated amorphous and microcrystalline silicon for thin-film silicon solar cells using dynamic very-high frequency plasma-enhanced chemical vapor deposition. [S.l.]: Forschungszentrum Jülich GmbH, 2013. ISBN 1866-1793.

10. BAE, et al. Characteristics of amorphous and polycrystalline silicon films depositedat at 120 °C by electron cyclotron resonance plasma-enhanced chemical vapor deposition. Journal of

Vacuum Science & Technology A, v. 16, n. 3, p. 1912-1915, 1998.

11. MÖLLER, H. J. Semiconductors for Solar cells. Boston/London: Artech House, 1993. 12. NREL. Disponivel em: <https://www.nrel.gov/pv/assets/images/efficiency-chart.png>.

Acesso em: 2017 jun. 30.

14. JÄGER-WALDAU,. PV Status Report 2016. [S.l.]. 2016. (10.2790/682995).

15. IBN-MOHAMMED, et al. Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies. Renewable and Sustainable

Energy Reviews, 80, n. 12, 2017.

16. JOEL, J. et al. Pathways for solar photovoltaics. Energy Environ. Sci., 8, n. 4, 2015. 1200- 1219.

17. SMETS, A. et al. Solar Energy: The Physics and Engineering of Photovoltaic Conversion, Technologies and Systems. [S.l.]: UIT Cambridge, 2016. ISBN 1906860327, 9781906860325. 18. STAEBLER , L.; WRONSKI, C.. Reversible conductivity changes in discharge‐produced

amorphous Si. Appl. Phys. Lett., 31, 1977.

19. STUCKELBERGERA, et al. Review: Progress in solar cells from hydrogenated amorphous silicon. Renewable and Sustainable Energy Reviews, 76, 2017.

20. TAGUCHI, M.; AL, E. IEEE J Photo, v. 4, p. 96, 2014 2013. ISSN 10.1109/JPHOTOV.2013.2282737.

21. LAMBERTZ, A. et al. Preparation and measurement of highly efficient a-Si:H single junction solar cells and the advantages of μc-SiOx:H n-layers. Prog Photovolt Res Appl , 2015. 22. SAI, ; MATSUI, ; MATSUBARA,. Stabilized 14%-efficient triple-junction thin-film silicon

solar cell. Appl Phys Lett, 109, 2016.

23. ZHOU, H. P. et al. App Surf Sci, v. 396, p. 926, 2017. ISSN ISSN 0169-4332. 24. WINTERLING, G.; MÜLLER, G. Physica Scripta, T13, 1986. 45.

25. CHO, Y.-S. et al. Effect of Hydrogen Content in Intrinsic a-Si:H on Performances of Heterojunction Solar Cells. International Journal of Photoenergy, 2013.

26. SMETS, H. M.; SANDEN, M. C. M. V. D. Relation of the Si-H stretching frequency to the nanostructural Si-H bulk environment. PHYSICAL REVIEW B, 76, 2007.

27. WANK, M. A. Manipulating the Hydrogenated Amorphous Silicon Growing Surface, PhD Thesis, Delft University of Technology, Holanda, 14 de março de 2011.

28. SWART, J. W. Semicondutores Fundamentos, técnicas e aplicações. Campinas: Editora Unicamp, 2013.

29. ZHANG, et al. Sputtered hydrogenated amorphous silicon for silicon heterojunction solar cell fabrication. Energy Procedia, 55, 2014. 865 – 872.

30. WANG, et al. pMOSFETs Featuring ALD W Filling Metal Using SiH4 and B2H6 Precursors in 22 nm Node CMOS Technology. Nanoscale Research Letters, 306, n. 12, 2017.

31. FARHRENBRUCH, A. L.; BUBE, R. H. Fundamentals of Solar Cells. [S.l.]: Academic Press, 1983. ISBN 0-12-247680-8.

32. WOLF, S.; TAUBER,. Silicon Processing for the VLSI Era, Vol. 1: Process Technology. [S.l.]: Lattice Press, v. 1, 1986. ISBN ISBN-13: 978-0961672133.

33. SILVA, A. R., Texturização da Superfície de Silício Monocristalino com NH4OH e Camada Antirrefletora para Aplicações em Células Fotovoltaicas compatíveis com tecnologia CMOS, Dissertação de Mestrado, FEEC, Unicamp, Campinas, Agosto de 2012.

34. YAP,. Encyclopedia of Nanotechnology. [S.l.]: Springer Netherlands, 422-427 p.

35. GEORGE , S.. Atomic Layer Deposition: An Overview. Chemical Review, n. 1, 2010. 111- 131.

36. JIA, ; ZHOU, ; WANG,. Optimization of the Surface Structure on Black Silicon for Surface Passivation. Nanoscale Research Letters, 193, n. 12, 2017.

37. ZAERA, F. The Surface Chemistry of Atomic Layer Depositions of Solid Thin Films. The

Journal of Physical Chemistry Letters, 2012. 1301-1309.

38. LIMA, L. P. B. Metal Gate Work Function Engineering for Future Cmos Technology Nodes, Tese de Doutorado, FEEC - Unicamp - Campinas, 26 de agosto de 2015

39. Disponivel em: <http://research.chem.ucr.edu/groups/zaera/ongoingproject4.html>. Acessado em 21/07/2017

40. MALEY, N. Critical investigation of the infrared-transmission-data analysis. Physical Review

B, 46, 15 July 1992. 2078-2085.

41. SMETS, A. H. M.; KESSELS, M. M.; VAN DE SANDEN, C. M. Vacancies and voids in hydrogenated amorphous silicon. Applied Physics Letters, v. 82, n. 10, p. 1547-1549, 10 Março 2003.

42. LUCOVSKY, G.; NEMANICH, R. J.; KNIGHTS, J. C. Structural Interpretation of the Vibrational Spectra of a-Si:H Alloys, 19, n. 4, 15 February 1979. 2064-2073.

43. LANGFORD, A. A.; FLEET, M. L.; MALEY, N. Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon. Physical Review B, 45, n. 23, 15 June 1992. 367-377.

44. ASHCROFT, N. W.; MERMIN, D. N. Solid State Physics. [S.l.]: [s.n.], 1976. ISBN 0-03- 083993-9.

45. CALLISTER, W. D. Materials science and engineering: an introduction. [S.l.]: John Wiley & Sons, Inc, v. 7°, 20017. ISBN ISBN 978-0-471-73696-7.

46. MONTEIRO, D. W. L., CMOS-based integrated wavefront sensor, Tese de Doutorado, Delft University of Technology, Holanda, 4 de novembro de 2002.

47. WU, K.; YAN, X. Q.; CHEN, M. W. In situ Raman characterization of reversible phase transitionin stress-induced amorphous silicon. Applied Physics Letters, 2007.

48. SMITH, C. et al. Determining the Material Structure of Microcrystalline Silicon from Raman Spectra. Journal of Applied Physics, v. 94, n. 5, p. 3582-3588, 2003.

49. TEXEIRA, R. C. et al. Micro-Raman Stress Characterization of Polycrystalline Silicon Films Grown at High Temperature. Materials Science and Engineering B, v. 112, p. 160-164, 2004.

50. MARQUES, F. C., Células solares com estrutura Semicondutor – Isolante – Semicondutor (SIS), Dissertação de Mestrado, IFGW, Unicamp, Campinas, Março de 1984

51. SZE., M. S., Physics of Semiconductor Devices, Wiley Interscience, 2007.

52. Disponivel em: <https://cnx.org/contents/3QU3ovtd@1/An-Introduction-to-Solar-Cell->. Acessado em 23 de junho de 2017

53. GREEN, M. A. Solar cells: operating principles, technology, and system applications. NJ: Englewood Cliffs, 1982. 294 p.

54. KERN, W.; PUOTINEN, D. A. RCA Review, 1970.

55.

MESTANZA, S. N. M.; OBRADOR, M. P.; RODRIGUEZ, E. BIASOTTO, C.; DOI I.; DINIZ, J. A.; SWART J. W. Characterization and modeling of antireflective coatings of SiO2

, Si3N4 , and SiOxNy deposited by electron cyclotron resonance enhanced plasma chemical

vapor deposition; Journal of Vacuum Science & Technology B 24, 823 (2006); doi: 10.1116/1.2181577

56. FAHRENBRUCH, A. L.; BUBE, R. H. Fundamentals of Solar Cells. [S.l.]: Academic Press, 1983.

57. SALCEDO, W. ; FERNANDEZ, F. J. R.; GALEAZZO,. Structural Characterization of Photoluminescent Porous Silicon with FTIR Spectroscopy. Brazilian Journal of Physics, v. 27, p. 158-161, Dezembro 1997. ISSN 4.

58. OGATA, et al. Oxidation of Porous Silicon under Water Vapor Environment. Journal of

The Electrochemical Society, 142, n. 5, 1995. 1595-1601.

59. OGATA, Y. H. et al. Oxidation of Porous Silicon in Dry and Wet Environments under Mild Temperature Conditions. Journal of Porous Materials, n. 7, 2000. 63-66.

60. NOVAK, V.; NOVAK, R. Roughness of amorphous, polycrystalline and hemispherical- grained silicon films. Technical Physics Letters, 39, n. 10, 2013. 558-561.

61.

GARCIA, A. S., FORMAÇÃO E CARACTERIZAÇÃO DE CAMADAS DE Tin PARA ELETRODOS METÁLICOS DE PORTA DE CAPACITORES MOS, FEEC - Unicamp - Campinas, 2014.

62. MATEOS, D. et al. Thin SiO2/a-Si:H/SiO2 multilayer insulators obtained by electron cyclotron resonance chemical vapor deposition at room temperature for possible application in non-volatile memories. Thin Solid Films, 2017. 96–100.

63. MATTHIAS KARG, T. A. F. K. M. R. C. S. P. M. R. T. H. M. T. A. F. Colloidal self-assembly concepts for light management in photovoltaics. Materials Today, 18, n. 4, 2015.

Documentos relacionados