• Nenhum resultado encontrado

Este trabalho teve um foco muito grande no entendimento do problema e soluções existentes, enfatizando a capacidade da solução em detectar os tipos de padrões temporais que efetivamente podem ser encontrados em sistemas de alarmes industriais. Como continuação do trabalho, espera-se atuar nas seguintes oportunidades de melhoria:

Utilizar apenas um algoritmo na mineração das transações, modificando, se possível, o ZART para preservar a ordenação temporal;

Gerar regras de associação complexas também com ordenação temporal;

Explorar outras métricas e recursos do software de análise de redes complexas na atividade de interpretação visual;

Melhorar a capacidade de detecção dos padrões YMX;

Utilizar outros atributos da base de dados, como a criticidade do alarme e hora do reconhecimento do operador, com o objetivo de revelar relações em outros aspectos;

Realizar um trabalho de caracterização de carga em bases de dados relativas a outros tipos de processos para identificar diferenças que possam justificar uma modificação no gerador de cargas para tais tipos de processos;

Criação de um software para uso em aplicações práticas capaz de agrupar as funções estatísticas normalmente utilizadas na racionalização, com a capacidade e potenciais descritos neste trabalho.

REFERÊNCIAS

[1] EEMUA - The Engineering Equipment & Materials User‟s Association Publication 191: Alarm Systems - a Guide to Design, Management and Procurement. 2007, 2nd edition.

[2] ANSI – American National Standards Institute: ANSI/ISA-18.2-2009, Management of Alarm Systems in the Process Industries. Washington – DC, 2009.

[3] Health and Safety Executive, „The explosion and fires at the Texaco Refinery, Milford Haven, 24 July 1994: A report of the investigation by the Health and Safety Executive into the explosion and fires on the Pembroke Cracking Company Plant at the Texaco Refinery, Milford Haven on 24 July 1994‟,ISBN 0 7176 1413 1, 1997.

[4] HOLLIFIELD, Bill R., HABIBI, Eddie. Alarm Management: Seven Effective Methods for Optimum Performance. ISA – Instrumentation, Systems and Automation Society.

[5] BOYER, Stuart A. Supervisory Control and Data Acquisition, 2nd edition. ISA International Society of Automation, 1999.

[6] HARLE, A., GARDNER, Robert D.. “Fault Resolution and Alarm Correlation in High-speed Networks using Database Mining Techniques”. In: Proceedings of the 2002 Network Operations and Management Symposium (NOMS2002), pp 405-419, 2002.

[7] SRIKANT, R. AGRAWAL, R. Mining sequential patterns: generalizations and performance improvements. In: Proceeding of the 5th international conference on extending database technology (EDBT‟96), Avignon, France, pp 3–17, 1996.

[8] AGRAWAL, R. SRIKANT, R “Mining sequential patterns”. In: Proceedings of the 1995 international conference on data engineering (ICDE‟95), Taipei, Taiwan, pp 3–14, 1995.

[9] MANNILA, H. TOINONEN, H. and VERKAMO, A. I. Discovery of frequent episodes in event sequences. Data Mining and Knowledge Discovery, 1:259– 289, 1997.

[10] ZAKI, Mohamed. LESH, Neal. OGIHARA, “PLANMINE – Predicting Plan Failures Using Sequence Mining”. Mitsnunori. 1998.

[11] HAN, Jiawei. CHENG, Hong. XIN, Dong, YAN, Xifeng. “Frequent pattern mining: current status and future directions”. Springer Science+Business Media, LLC 2007.

[12] JENSEN, David, COHEN, Pault R, et al. “Family of Algorithms for Finding Temporal Structure in Data”. In: 6th Intl. Workshop on AI and Statistics, Fort Lauderdale, Florida, USA, 1997.

[13] KORDIC, Savo. LAM, Peng. XIAO, Jitian. LI, Huaizhong. “Analisys of Alarm Sequences in a Chemical Plant”. ADMA 2008, LNAI 5139, pp. 135-146. 2008. [14] LESKOVEC, Jure. KRAUSE, Andreas, FALOUTSOS, Christos, et al. “A.

Cost-effective Outbreak Detection in Networks”. ACM KDD‟07.

[15] BIKHCHANDANI, S. HIRSHLEIFER, D. and WELCH, I. “A theory of fads, fashion, custom, and cultural change as informational cascades”. J. of Polit. Econ., (5), 1992.

[16] CORMEN, Thomas H., LEISERSON, C. E., RIVEST, Ronald L., STEIN, Clifford. “Introduction to Algorithms 2nded.” The MIT Press: pp. 370-405, 2001. [17] LESKOVEC, Jure. MCGLOHON, Mary, FALOUTSOS, Christos et al.

“Cascading Behavior in Large Blog Graphs Patterns and a model”.

[18] KLEINBERG, Jon. WATTS, Duncan. KOSSINETS, Gueorgi. “The Structure of Information Pathways in a Social Communication Network”. SIGKDD 2008. [19] LAMPORT, L. “Time, clocks, and the ordering of events in a distributed

[20] LESKOVEC, Jure. HORVITZ, Eric. “Planetary-Scale Views on a Large Instant-Messaging Network”. Carnegie Mellon University. Microsoft Research 2008.

[21] AGRAWAL, R, IMIELINSKI T, SWAMI A (1993) “Mining association rules between sets of items in large databases”. In: Proceedings of the 1993ACM- SIGMODinternational conference on management of data (SIGMOD‟93), Washington, DC, pp 207–21.

[22] ALLEN, James F. FERGUSON, George. “Actions and Events in Temporal Logic”. University of Rocherster, New York. Journal of Logic and Computation, Special Issue on Actions and Processes, 1994.

[23] NING, Pang. Tan. KUMAR, Vipin. SRIVASTAVA, Jaideep. “Selecting the Right Interestingness Measure for Association Patterns”. ACM SIGKDD 2002. [24] AGRAWAL R, SRIKANT R (1994). “Fast algorithms for mining association

rules”. In: Proceedings of the 1994 international conference on very large data bases (VLDB‟94), Santiago, Chile, pp 487–499.

[25] JAIM, Raj, WILEY, John & Sons. “The Art of Computer System Performance Analysis: Techniques for Experimental Design, Simulation and Modeling”. 1991, ISBN: 0-471-50336-3.

[26] PEI J. HAN J. MORTAZAVI-Asl B. PINTO H, CHENG Q. DAYAL, U. “PrefixSpan: mining sequential patterns efficiently by prefix-projected pattern growth”. In: Proceeding of the 2001 international conference on data engineering (ICDE‟01), Heidelberg, Germany, pp 215–224, 2001.

[27] Han J, Pei J, Yin Y (2000) “Mining frequent patterns without candidate generation”. In: Proceeding of the 2000 ACM-SIGMOD international conference on management of data (SIGMOD‟00), Dallas, TX, pp 1–12. [28] KRYSZKIEWICZ, M. “Representative association rules and minimum

condition maximum consequence association rules”. In Proceedings of Second European Symposium on Principles of Data Mining and Knowledge Discovery (PKDD), 1998, LNCS, volume 1510, Springer-Verlag, Nantes, France, pages 361–369, 1998.

[29] LASZLO Szathmary. “Méthodes symboliques de fouille de données avec la plate-forme Coron”. Thése pour l'obtention Du Doctorat de l'université Henri Poincaré, Nancy. Departement de formation doctorale en informatique, UFR STMIA. Nancy, Italy. 2006.

[30] LASZLO Szathmary, Amedeo Napoli, and Sergei O. Kuznetsov . “ZART: A Multifunctional Itemset Mining Algorithm”. Fifth International Conference on Concept Lattices and Their Applications CLA 2007.

[31] BASTIDE, Y., N. Pasquier, R. Taouil, L. Lakhal, and G. Stumme. “Mining minimal non-redundant association rules using frequent closed itemsets”. In Proceedings of the International Conference DOOD‟2000, LNAI, volume 1861, Springer-Verlag, London, UK, pages 972–986, July 2000.

[32] NOOY, W. de, A. Mrvar, V. Batagelj: “Exploratory Social Network Analysis with Pajek”. CUP, January 2005; ESNA page.

[33] LESKOVEC, Jure, SINGH, Ajit, KLEINBERG, Jon. “Patterns of Influence in a Recommendation Network”. School of Computer Science Carnegie Mellon University.

[34] DUFFIN, Joseph. DEVITT, Ann. MOLONEY, Robert. “Topographical Proximity for Mining Network Alarm Data”. SIGCOMM 2005.

[35] ALMEIDA, Ludmila V. M., JOTA, Fabio G.; “Proposta de Melhorias para o Sistema de Alarmes de Uma Planta de Beneficiamento de Minério de Ferro”. Monografia de Conclusão de Curso de Graduação em Engenharia de Controle e Automação – UFMG. Belo Horizonte, MG, 2009, p. 77-91.

Documentos relacionados