• Nenhum resultado encontrado

Trabalhos futuros podem explorar a integração do módulo proposto com um sistema HTTP com infraestrutura Ethernet para controlar a posição da câmera enquanto é feito o rastreamento.

A arquitetura proposta também pode ser integrada com outras arquiteturas de processa- mento de vídeo no mesmo FPGA, como a arquitetura de segmentação de vídeos proposta por (BARBOSA et al., 2015). Uma plataforma como essa poderia executar algoritmos de rastreamento baseados em movimento como o proposto por (NAYAK; PUJARI, 2015), de forma mais eficiente e precisa.

Aplicações com Deep learning (LECUN; BENGIO; HINTON, 2015) (SCHMIDHUBER, 2015), também podem se beneficiar de execuções paralelas de múltiplas correlações, em cada camada. Um trabalho futuro interessante seria reutilizar os módulos da arquitetura que calculam

REFERÊNCIAS

ALBUQUERQUE, E. S. et al. An FPGA-based accelerator for multiple real-time template matching. In: INTEGRATED CIRCUITS AND SYSTEMS DESIGN (SBCCI), 2016 29TH SYMPOSIUM ON. Anais. . . [S.l.: s.n.], 2016. p.1–6.

ALTERA. Stratix IV Device Handbook Altera. Accessed: 2015-12-21,

https://www.altera.com/content/dam/altera-www/global/en_US/ pdfs/literature/hb/stratix-iv/stratix4_handbook.pd.

ALTERA. Industry Solutions. Disponivel em:

<https://www.altera.com/solutions/industry.html>. Acesso em: 09 de julho de 2016.

AWAD, M. FPGA supercomputing platforms: a survey. In: INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE LOGIC AND APPLICATIONS, 2009. Anais. . . [S.l.: s.n.], 2009. p.564–568.

BARBOSA, J. P. et al. A high performance hardware accelerator for dynamic texture segmentation. Journal of Systems Architecture, [S.l.], v.61, n.10, p.639–645, 2015.

BENNAMOUN, M.; MAMIC, G. J. Object recognition: fundamentals and case studies. [S.l.]: Springer Science & Business Media, 2012.

BRENT, R. P.; KUNG, H. Systolic VLSI arrays for polynomial GCD computation. IEEE Transactions on Computers, [S.l.], v.33, n.8, p.731–736, 1984.

BRISTEAU, P.-J. et al. The navigation and control technology inside the ar. drone micro uav. IFAC Proceedings Volumes, [S.l.], v.44, n.1, p.1477–1484, 2011.

BRUNELLI, R.; POGGIO, T. Face recognition: features versus templates. IEEE Transactions on Pattern Analysis & Machine Intelligence, [S.l.], n.10, p.1042–1052, 1993.

CHEN, C.-h. Computer vision in medical imaging. [S.l.]: World scientific, 2014. v.2. CHEN, J.-Y. et al. Real-time FPGA-based template matching module for visual inspection application. In: IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2012. Anais. . . [S.l.: s.n.], 2012. p.1072–1076. CORMEN, T. H. Introduction to algorithms. [S.l.]: MIT press, 2009.

CROW, F. C. Summed-area tables for texture mapping. ACM SIGGRAPH computer graphics, [S.l.], v.18, n.3, p.207–212, 1984.

CUI, Y. et al. Multiple template-based fluoroscopic tracking of lung tumor mass without implanted fiducial markers. Physics in medicine and biology, [S.l.], v.52, n.20, p.6229, 2007. DI STEFANO, L.; MATTOCCIA, S.; TOMBARI, F. ZNCC-based template matching using bounded partial correlation. Pattern recognition letters, [S.l.], v.26, n.14, p.2129–2134, 2005. DIMOND, R.; RACANIERE, S.; PELL, O. Accelerating large-scale HPC Applications using FPGAs. In: COMPUTER ARITHMETIC (ARITH), 2011 20TH IEEE SYMPOSIUM ON. Anais. . . [S.l.: s.n.], 2011. p.191–192.

GHARAVI-ALKHANSARI, M. A fast globally optimal algorithm for template matching using low-resolution pruning. IEEE Transactions on Image Processing, [S.l.], v.10, n.4, p.526–533, 2001.

GIDEL. PROCmegaFIFO. Disponivel em: <http://www.maxxvision.com/fileadmin/content/ Produkte/FPGA_Plattformen/Downloads/Gidel_FPGA_Plattformen_PROCMegaFIFOIP.pdf>. Acesso em: 29 de junho de 2016.

GIDEL. ProcWizard. Disponivel em: <http://http://www.gidel.com/procwizard.htm>. Acesso em: 29 de junho de 2016.

GROUT, I. Digital systems design with FPGAs and CPLDs. [S.l.]: Newnes, 2011. GUPTA, N.; GUPTA, N. A VLSI architecture for image registration in real time. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, [S.l.], v.15, n.9, p.981–989, 2007.

HASHIMOTO, K.; ITO, Y.; NAKANO, K. Template Matching using DSP slices on the FPGA. In: COMPUTING AND NETWORKING (CANDAR), 2013 FIRST INTERNATIONAL SYMPOSIUM ON. Anais. . . [S.l.: s.n.], 2013. p.338–344.

HUMENBERGER, M. et al. A fast stereo matching algorithm suitable for embedded real-time systems. Computer Vision and Image Understanding, [S.l.], v.114, n.11, p.1180–1202, 2010. JONES, G. A.; PARAGIOS, N.; REGAZZONI, C. S. Video-based surveillance systems: computer vision and distributed processing. [S.l.]: Springer Science & Business Media, 2012. JUNG, J.-H. et al. A novel template matching scheme for fast full-search boosted by an integral image. IEEE Signal Processing Letters, [S.l.], v.17, n.1, p.107–110, 2010.

KLUMPERINK, E. A. et al. Reducing MOSFET 1/f noise and power consumption by switched biasing. IEEE Journal of Solid-State Circuits, [S.l.], v.35, n.7, p.994–1001, 2000.

KUON, I.; TESSIER, R.; ROSE, J. FPGA architecture: survey and challenges. Foundations and Trends in Electronic Design Automation, [S.l.], v.2, n.2, p.135–253, 2008.

KURUPPU, G. et al. Comparison of different template matching algorithms in high speed sports motion tracking. In: INDUSTRIAL AND INFORMATION SYSTEMS (ICIIS), 2013 8TH IEEE INTERNATIONAL CONFERENCE ON. Anais. . . [S.l.: s.n.], 2013. p.445–448.

LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. Nature, [S.l.], v.521, n.7553, p.436–444, 2015.

LEWIS, J. Fast normalized cross-correlation. In: VISION INTERFACE. Anais. . . [S.l.: s.n.], 1995. v.10, n.1, p.120–123.

LINDOSO, A.; ENTRENA, L. High performance FPGA-based image correlation. J. Real-Time Image Processing, [S.l.], v.2, n.4, p.223–233, 2007.

MAHMOOD, A.; KHAN, S. Exploiting transitivity of correlation for fast template matching. IEEE Transactions on Image Processing, [S.l.], v.19, n.8, p.2190–2200, 2010.

MART, D. A computational investigation into the human representation and processing of visual information. Free-man, San Francisco, CA, [S.l.], 1982.

MISHRA, P. et al. Robust template matching based obstacle tracking for autonomous rovers. In: ELECTRONICS, COMPUTING AND COMMUNICATION TECHNOLOGIES (CONECCT), 2013 IEEE INTERNATIONAL CONFERENCE ON. Anais. . . [S.l.: s.n.], 2013. p.1–5.

NARASIMHAN, S. G.; NAYAR, S. K. Contrast restoration of weather degraded images. IEEE transactions on pattern analysis and machine intelligence, [S.l.], v.25, n.6, p.713–724, 2003. NAYAK, S.; PUJARI, S. S. Moving Object Tracking Application: fpga and model based implementation using image processing algorithms. In: COMPUTING COMMUNICATION CONTROL AND AUTOMATION (ICCUBEA), 2015 INTERNATIONAL CONFERENCE ON. Anais. . . [S.l.: s.n.], 2015. p.932–936.

QAYYUMA, A. et al. Vegetation height estimation near power transmission poles via satellite stereo images using 3d depth estimation algorithms. International Archives of the

Photogrammetry, Remote Sensing & Spatial Information Sciences, [S.l.], 2015.

SANG, H.; LIAO, D.; YUAN, Y. VLSI implementation of multiple large template-based image matching for automatic target recognition. In: SEVENTH INTERNATIONAL SYMPOSIUM ON MULTISPECTRAL IMAGE PROCESSING AND PATTERN RECOGNITION

(MIPPR2011). Anais. . . [S.l.: s.n.], 2011. p.80050A–80050A.

SCHMIDHUBER, J. Deep learning in neural networks: an overview. Neural Networks, [S.l.], v.61, p.85–117, 2015.

TATE, R.; NORTHERN III, J. Fast template matching system using VHDL. In: REGION 5 CONFERENCE, 2008 IEEE. Anais. . . [S.l.: s.n.], 2008. p.1–5.

TSAI, D.-M.; LIN, C.-T. Fast normalized cross correlation for defect detection. Pattern Recognition Letters, [S.l.], v.24, n.15, p.2625–2631, 2003.

UCHIDA, A.; ITO, Y.; NAKANO, K. Fast and accurate template matching using pixel

rearrangement on the GPU. In: NETWORKING AND COMPUTING (ICNC), 2011 SECOND INTERNATIONAL CONFERENCE ON. Anais. . . [S.l.: s.n.], 2011. p.153–159.

WU, Y.; LIM, J.; YANG, M.-H. Online Object Tracking: a benchmark. In: IEEE

CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR). Anais. . . [S.l.: s.n.], 2013.

WU, Y.; LIM, J.; YANG, M.-H. Visual Tracker Benchmark. Disponivel em: <http://www.visual-tracking.net>. Acesso em: 02 de junho de 2017.

XILINX. Aplications. Disponivel em: <http://www.xilinx.com/applications.html>. Acesso em: 09 de julho de 2016.

YANG, C.; DURAISWAMI, R.; DAVIS, L. Fast multiple object tracking via a hierarchical particle filter. In: COMPUTER VISION, 2005. ICCV 2005. TENTH IEEE INTERNATIONAL CONFERENCE ON. Anais. . . [S.l.: s.n.], 2005. v.1, p.212–219.

YILMAZ, A.; JAVED, O.; SHAH, M. Object tracking: a survey. Acm computing surveys (CSUR), [S.l.], v.38, n.4, p.13, 2006.

Documentos relacionados