• Nenhum resultado encontrado

De acordo com a dissertação realizada verifica-se que esta área encontra-se com muitos trabalhos desenvolvidos no entanto encontra-se em constante evolução e de necessidade, principalmente a níveis quantitativos e qualitativos não só da marcha mas das diversas actividades que se realizam no dia-a-dia que de forma geral são tão simples mas que para este grupo patológico e outros, pode-se tornar muito complexo e por vezes difíceis de se realizar.

Segundo as áreas abordadas e referenciadas anteriormente, verifica-se a necessidade do desenvolvimento de um protocolo que sistematize valores biomecânicos quantitativamente integrando os níveis de actividade dos amputados com os devidos componentes protésicos e desta forma caracterizar a marcha do amputado para além do seu género ou desvios posturais que os amputados apresentem. Desta forma poderá auxiliar os ortoprotésicos não só na selecção dos dispositivos mais apropriados segundo um documento fidedigno, tal como no treino da marcha e a própria reabilitação feita por fisioterapeutas.

Realização de estudos o mais completos possíveis que observem variáveis e espácio- temporais, cinemáticos, cinéticos e electromiográficos, mas que tenham em conta o nível de actividade dos pacientes e não relacionando valores de diferentes níveis de actividade mesmo que existam componentes protésicos idênticos.

Relativamente aos componentes protésicos, a necessidade maior foco de investigação será ao nível dos encaixes protésicos e a sua interacção com o coto dos amputados, principalmente nos níveis de maiores amputação como os amputados transfemorais. Os estudos deveram incidir no desenvolvimento de encaixes que respeitem a anatomia do coto, o

108

contacto total com o membro remanescente e por último que permitam maior mobilidade articular ao amputado, com a devida segurança.

Ainda nos componentes protésicos existem diversos pés protésicos, nos quais actualmente os mais utilizados são os pés de resposta dinâmica. Estes pés possuem diversos designs e apesar de já existirem estudos sobre desenvolvimento deste tipo de componente quanto à capacidade de retorno de energia, maior amortecimento, resistência e rigidez de cada pé ainda precisa de se realizar mais estudos e que consigam captar o máximo de pés existentes no mercado e não apenas aqueles com maior potencial de comercialização.

109

Referências Bibliográficas

[1] Witranstibiaisle, M. (2007). Gait Analysis an Introduction (4a Edição). Philadelphia:

ELSEVIER.

[2] Vaughan, C. L., Davis, B. L., & C., O. J. (1999). DYNAMICS OF HUMAN GAIT (2a

Edição). Cape Town: Kiboho Publishers.

[3] Carvalho, J. (2003). Amputações de Membros Inferiores. Em Busca da Plena

Reabilitação (2a Edição). São Paulo: MANOLE.

[4] Pedrinelli, A. (2004). Tratamento do Paciente com Amputação (1a Edição). São Paulo: ROCA.

[5] Periago, R. Z. (2009). Protesis, Ortesis y Ayudas técnicas. Barcelona: ELSEVIER. [6] Herrero, E. V., Barberà i Guillem, R., Maya, M. F. P., Gracia, C. S., Pastor, J. M. P.,

Fabregat, A. C., … Bartolomeu, J. M. (2004). Guía de uso y prescripción de productos ortoprotésicos a medida. Valência: Instituto de Biomecánica de Valência.

[7] Davis, R. B., & Deluca, P. A. (2006). Analysis of Gait. In Biomedical Engineering Fundamentals.

[8] Completo, A., & Fonseca, F. (2011). Fundamentos de Biomecânica: Musculo- Esquelética e Ortopédica. Publindústrias, Edições Técnicas.

[9] Gafaniz, A., Lopes, G., & Pires, P. (2005). “Análise Biomecânica da marcha”. Relatório de Biomecânica do Movimento.

[10] Mann, L., Teixeira, C. S., & Mota, C. B. (2008). “A marcha humana: interferências de cargas e de diferentes situações.” Arq. Ciênc. Saúde Unipar, 12(3).

[11] Winter, D. A. (1990). “Biomechanics and motor control of human movement.” (W.-I. Publication, Ed.) (2o ed.).

[12] Collado. (2002). Análisis de la Marcha Humana con Plantaformas Dinamométricas, Influencia en el Transporte de Cargas. Universidad Complutense de Madrid.

[13] Seeley, Rod; Stephens, Trent; Tate, P. (2003). Anatomia & Fisiologia (6a Edição). Loures: LUSOCIÊNCIA.

[14] Correia, P. P. (2012). Aparelho Locomotor: Função Neuromuscular e Adaptações à Actividade Física. Cruz Quebrada: Edições FMH.

[15] Muscolino, J. (2006). Cinesiologia: O Sistema Esquelético e a Função Muscular. Loures: LUSODIDACTA.

110

[16] Pina, E. (1999). Anatomia Humana da Locomoção (3a Edição). Lousã: LIDEL.

[17] Calhau, A., Pisco, A., Valente, L., & Santos, N. (2007). ”Análise cinemática da marcha”. Relatório de Biomecânica do movimento.

[18] Ribeiro, R. C. S. (2006). “Analise computadorizada da marcha em adultos jovens saudáveis.” Universidade Católica de Góias.

[19] Sebastião, R. (2009). “Análise Cinética da Marcha: Estudo Comparativo entre Membros Amputado e Membro Remanescente de Amputados Transfemorais.” Universidade do Porto.

[20] Perry. (1992). Gait Analysis. Normal and Pathological Funciton. USA: Slack Incorporated.

[21] Riley, P. O., Paolini, G., Della, U., Paylo, K. W., & Kerrigan, D. C. (2007). A kinematic and kinetic comparison of overground and treadmill walking in healthy subjects, 26, 17– 24.

[22] Parvataneni, K., Ploeg, L., Olney, S. J., & Brouwer, B. (2009). Clinical Biomechanics Kinematic , kinetic and metabolic parameters of treadmill versus overground walking in healthy older adults. Clinical Biomechanics, 24(1), 95–100.

[23] Watranstibiais, J. R., Franz, J. R., Jackson, K., Dicharry, J., Riley, P. O., & Kerrigan, D. C. (2010). Clinical Biomechanics A three-dimensional kinematic and kinetic comparison of overground and treadmill walking in healthy elderly subjects. Clinical Biomechanics, 25(5), 444–449.

[24] Cavagna, G; Margaria, R - Mechanics of Walking. Journal of Applied Physiology. Vol. 21. n.º 1 (1966). p. 271-278.

[25] Komura, T; Nagano, A; Leung, H; Sinagawa, Y - Simulating Pathological Gait Using the Enhanced Linear Inverted Pendulum Model. IEEE Transactions on Biomedical Engineering. Vol. 52. n.º 9 (2005).

[26] Griffin, T; Roberts, T; Kam, R - Metabolic of Generation Muscular Force in Human Walking: Insights from Load-Carring and Speed Experiments. Journal of Applied Physiology. Vol.95. (2003). p. 172-183.

[27] Waters, L; Mulroy, S - The Energy Expenditure of Normal and Pathological Gait: Relation to Mechanical Energy Cost. Journal of Neurophysiology. Vol. 9. n.º 3 (1999). p. 207-231.

[28] Rico, C. L. (2014). Marcha Normal e Patológica: Estudo Teórico e Experimental de uma Ortótese de Tornozelo e Pé. Faculdade de Engenharia da Universidade do Porto. [29] Norkin, C; Levangie, K - Joint Structure and Function. A Comprehensive Analysis. 2nd.

EUA: Library of Congress, 1992.

[30] Saunders, M; Inman, T; Heberhart, D - The Major Determinants in Normal and Pathological Gait. The Journal of Bone and Joint Surgery. Vol. 53. (1953). p. 543-558. [31] Sousa. (2009). Análise da Marcha Baseada em Correlação Multifactorial. Faculdade de

111

[32] Kuo, D; Doneland, M; Ruina, A - The Six Determinants of gait in the Inverted Pendulum Analogy: A Dynamic Walking Perspective. Human Movement Science. Vol. 26. n.º 4 (2007). p. 617-656.

[33] Ertl, J. P. (2016). Lower Extremity Amputations. Retrieved December 10, 2016, from htranstibiaisp://emedicine.medscape.com/article/1232102-overview

[34] Muilenburg, A. L., & A. Bennetranstibiais Wilson, J. (1996). A Manual for Above-Knee

Amputees Shanks. Retrieved December 12, 2016, from

htranstibiaisp://www.oandp.com/resources/patientinfo/manuals/ak9.htm

[35] Rajt’úkova, V., Michalíková, M., Bednarcíkova, L., Balogová, A., & Zivcák, J. (2014). Biomechanics of Lower Limb Prostheses. Procedia Engineering, 96, 382–391.

[36] Eshraghi, A., Azuan, N., Osman, A., Gholizadeh, H., Ali, S., Karl, S., … Wan, B. (2013). Clinical Biomechanics An experimental study of the interface pressure pro fi le during level walking of a new suspension system for lower limb amputees. Journal Clinical Biomechanics, 28(1), 55–60.

[37] Klute, G. K., Berge, J. S., Biggs, W., & Pongnumkul, S. (2011). Vacuum-Assisted Socket Suspension Compared With Pin Suspension for Lower Extremity Amputees : Effect on Fit , Activity , and Limb Volume. APMR, 92(10), 1570–1575.

[38] Hafner, B. J., Willingham, L. L., Buell, N. C., Allyn, K. J., & Smith, D. G. (2007). Evaluation of Function , Performance , and Preference as Transfemoral Amputees Transition From Mechanical to Microprocessor Control of the Prosthetic Knee, 207–217. [39] Kaufman, K. R., Fritranstibiaisoli, S., & Frigo, C. A. (2012). Clinical Biomechanics Gait

asymmetry of transfemoral amputees using mechanical and microprocessor-controlled prosthetic knees. JCLB, 27(5), 460–465.

[40] Kaufman, K. R., Levine, J. A., Brey, R. H., Iverson, B. K., Mccrady, S. K., Padgetranstibiais, D. J., & Joyner, M. J. (2007). Gait and balance of transfemoral amputees using passive mechanical and microprocessor-controlled prosthetic knees, 26, 489–493.

[41] Endolite. (2016b). Knees. Retrieved December 14, 2016, from htranstibiaisp://www.endolite.com/products/category/knees

[42] Ossur. (2016). Dinamic Solucions. Retrieved December 14, 2016, from htranstibiaisps://www.ossur.com/prosthetic-solutions/products/dynamic-solutions [43] Endolite. (2016). Feet. Retrieved December 14, 2016, from

htranstibiaisp://www.endolite.com/products/category/feet

[44] Schmalz, T., Blumentritranstibiais, S., & Jarasch, R. (2002). Energy expenditure and biomechanical characteristics of lower limb amputee gait : The influence of prosthetic alignment and different prosthetic components. Gait & Posture, 16.

[44] Esquenazi, A. (2014). Gait Analysis in Lower Limb Amputation and Prosthetic Rehabilitation. Physical Medicine and Rehabilitation Clinics of NA, 25(1), 153–167. [45] Nelson, V. S., Flood, K. M., Bryant, P. R., Huang, M. E., Pasquina, P. F., & Roberts, T.

L. (2005). Limb Deficiency and Prosthetic Management . 1 . Decision Making in Prosthetic Prescription and Management.

112

[46] Greve, J. (2007). Tratado de Medicina de Reabilitação. (ROCA, Ed.) (1a Edição). São Paulo.

[47] Houdijk, H., Pollmann, E., Groenewold, M., Wiggerts, H., & Polomski, W. (2009). Gait & Posture The energy cost for the step-to-step transition in amputee walking, 30, 35–40. [48] Detrembleur, C., Vanmarsenille, J., Cuyper, F. De, & Dierick, F. (2005). Relationship between energy cost , gait speed , vertical displacement of centre of body mass and efficiency of pendulum-like mechanism in unilateral amputee gait. Gait & Posture, 21, 333–340.

[49] Kobayashi, T., Arabian, A. K., Orendurff, M. S., Rosenbaum-chou, T. G., & Boone, D. A. (2014). Effect of alignment changes on socket reaction moments while walking in transtibial prostheses with energy storage and return feet. Journal Clinical Biomechanics, 29(1), 47–56.

[50] Kobayashi, T., Orendurff, M. S., & Boone, D. A. (2013). Effect of alignment changes on socket reaction moments during gait in transfemoral and knee-disarticulation prostheses : Case series. Journal of Biomechanics, 46(14), 2539–2545.

[51] Czerniecki, J., & Gitranstibiaiser, A. (1996). Gait analysis in the amputee: Has it helped the amputee or contributed to the development of improved prosthetic components? Gait & Posture, 4, 258–268.

[52] Sjödahl, C., Jarnlo, G., Söderberg, B., & Persson, B. M. (2002). Kinematic and kinetic gait analysis in the sagitranstibiaisal plane of trans-femoral amputees before and after special gait re-education. Prosthetics and Orthotics International, 26, 101–112.

[53] Klotz, R., Colobert, B., Botino, M., & Permentiers, I. (2011). Influence of different types of sockets on the range of motion of the hip joint by the transfemoral amputee. Annals of Physical and Rehabilitation Medicine, 54(7), 399–410.

[54] Traballesi, M., Sofia, A., Averna, T., Pellegrini, R., Paradisi, F., & Brunelli, S. (2011). Energy cost of walking in transfemoral amputees : Comparison between Marlo Anatomical Socket and Ischial Containment Socket. Gait & Posture, 34(2), 270–274. [55] Rabuffetranstibiaisi, M., Recalcati, M., & Ferrarin, M. (2005). Transfemoral amputee

gait : Socket – pelvis constraints and compensation strategies. Prosthetics and Orthotics International, 29(August 2005), 183–192.

[56] Hachisuka, K., Dozono, K., Ogata, H., & Ohmine, S. (1998). Total Surface Bearing Below-Knee Prosthesis : Advantages , Disadvantages , and Clinical Implications. APMR, 79, 783–789.

[57] Bellmann, M., Schmalz, T., & Blumentritranstibiais, S. (2010). Comparative Biomechanical Analysis of Current Microprocessor-Controlled Prosthetic Knee Joints. YAPMR, 91(4), 644–652.

[58] Curtze, C., Hof, A. L., Keeken, H. G. Van, Halbertsma, J. P. K., Postema, K., & Otranstibiaisen, B. (2009). Comparative roll-over analysis of prosthetic feet, 42, 1746– 1753.

[59] Underwood, H. A., Tokuno, C. D., & Eng, J. J. (2004). A comparison of two prosthetic feet on the multi-joint and multi-plane kinetic gait compensations in individuals with a unilateral trans-tibial amputation, 19, 609–616.

113

[60] Gabriel, P., Roland, M., & Hahn, M. E. (2017). Human Movement Science Sensitivity of biomechanical outcomes to independent variations of hindfoot and forefoot sti ff ness in foot prostheses. Human Movement Science, 54(August 2014), 154–171.

[61] Sawers, A., & Hahn, M. E. (2011). Trajectory of the center of rotation in non- articulated energy storage and return prosthetic feet. Journal of Biomechanics, 44(9), 1673–1677. Gabriel, P., Roland, M., & Hahn, M. E. (2017). Human Movement Science [62] Klenow, T. D., Kahle, J. T., & Highsmith, M. J. (2016). Clinical Biomechanics The

dead spot phenomenon in prosthetic gait : Quantified with an analysis of center of pressure progression and its velocity in the sagitranstibiaisal plane ☆. JCLB, 38, 56–62. [63] Vanicek, N., Strike, S., Mcnaughton, L., & Polman, R. (2009). Gait & Posture Gait

patranstibiaiserns in transtibial amputee fallers vs. non-fallers : Biomechanical differences during level walking, 29, 415–420.

[64] Jaegers, S. M. H. J., Arendzen, J. H., & Jongh, H. J. De. (1995). Prosthetic Gait of Unilateral Transfemoral Amputees : A Kinematic Study, 76(August), 736–743.

[65] Parker, K., Hanada, E., & Adderson, J. (2013). Gait variability and regularity of people with transtibial amputations. Gait & Posture, 37(2), 269–273.

[66] Schaarschmidt, M., Lipfert, S. W., Meier-gratz, C., Scholle, H., & Seyfarth, A. (2012). Human Movement Science Functional gait asymmetry of unilateral transfemoral amputees. Human Movement Science, 31(4), 907–917.

[67] Yeung, L. F., Leung, A. K. L., Zhang, M., & Lee, W. C. C. (2012). Gait & Posture Long- distance walking effects on trans-tibial amputees compensatory gait patranstibiaiserns and implications on prosthetic designs and training. Gait & Posture, 35(2), 328–333. [68] Linden, M. L. Van Der, Solomonidis, S. E., Spence, W. D., Li, N., & Paul, J. P. (1999).

A methodology for studying the e ! ects of various types of prosthetic feet on the biomechanics of trans-femoral amputee gait, 32.

[69] Nolan, L., Wit, A., Dudzin, K., Lees, A., Lake, M., & Wychowan, M. (2003). Adjustments in gait symmetry with walking speed in trans-femoral and trans-tibial amputees. Gait & Posture, 17, 142–151.

[70] Lythgo, N., Marmaras, B., Hons, B. O., Connor, H., Physiother, B., N, A. L., … Physical, C. H. (2010). Physical Function , Gait , and Dynamic Balance of Transfemoral Devices. YAPMR, 91(10), 1565–1570.

[71] Doyle, S. S., Lemaire, E. D., Besemann, M., & Dudek, N. L. (2015). Clinical Biomechanics Changes to transtibial amputee gait with a weighted backpack on multiple surfaces ☆. JCLB, 30(10), 1119–1124.

[72] Castro, M. P. De, Soares, D., & Mendes, E. (2014). Plantar Pressures and Ground Reaction Forces During Walking of Individuals With Unilateral Transfemoral Amputation. PM&R, 6(8), 698–707.e1. htranstibiaisp://doi.org/10.1016/j.pmrj.2014.01.019

[73] Richards, J. (2008). Biomechanics in Clinic and Research (1a Edição). Philadelphia: ELSEVIER.

[74] A.C. Amadio, P.H. Lobo da Costa, I.C.N. Sacco, J.C. Serrão, R.C. Araujo, L. M. e M. D. (2013). Introducao a Biomecanica Analise Movimento Humano: Descrição Aplicação dos

114

htranstibiaisp://www.ebah.com.br/content/ABAAAAuPwAF/introducao-a-biomecanica- analise-movimento-humano-descricao-aplicacao-dos-metodos-medicao#

[75] Ewins, D., & Collins, T. (2014). Clinical Gait Analysis. Clinical Engineering. Elsevier Ltd. htranstibiaisp://doi.org/10.1016/B978-0-12-396961-3.00025-1

[76] Tesio, L., Monzani, M., Gatranstibiaisi, R., & Franchignoni, F. (1995). Flexible electrogoniometers: kinesiological advantages with respect to potentiometric goniometers. Journal Clinical Biomechanics, 10(5), 2–4.

[77] Boutaayamou, M., Schwartz, C., Stamatakis, J., Denoël, V., Maquet, D., Forthomme, B., … Brüls, O. (2015). Development and validation of an accelerometer-based method for quantifying gait events. Medical Engineering and Physics, 37, 226–232.

[78] Tong, K., & Granat, M. H. (1999). A practical gait analysis system using gyroscopes. Medical Engineering and Physics, 21, 87–94.

[79] Davis III, R., Ounpuu, S., Tyburski, D., & Gage, J. R. (1991). A gait analysis data collection and reduction technique. Human Moviment Science, 10, 575–587.

[80] Heisenberg, W. (2016). Gait Analysis Models in Common Use. Retrieved December 17, 2016, from htranstibiaisp://www.clinicalgaitanalysis.com/faq/sets/

[81] Martínez-Nova, A., Cuevas-García, J. C., Pascual-Huerta, J., & Sánchez-Rodríguez, R. (2007). BioFoot® in-shoe system: Normal values and assessment of the reliability and repeatability. The Foot, 17(4), 190–196.

[82] Instituto de Biomecánica de Valencia. (2002). Dossier técnico Biofoot/IBV. (I. B. de Valencia, Ed.) (pp. 1–14). Valencia.

[83] Rosa, P. (2014). A review of the utilization of baropodometry in postural assessment. Journal of Bodywork & Movement Therapies, 18, 215–219.

[84] Whitranstibiaisle, M. W. (1996). Clinical gait analysis : A review. Human Moviment Science, 15, 369–387.

[85] Urry, S - Plantar Pressure Measurement Sensors. Measurements Science Technology. Vol. 10.(1999). p. 16-32.

[86] Villeger, D., Costes, A., Watier, B., & Moretranstibiaiso, P. (2014). An algorithm to decompose ground reaction forces and moments from a single force platransfemoraisorm in walking gait. Medical Engineering and Physics, 36(11), 1530– 1535.

[87] Orlin, N; Mcpoil, G - Plantar Pressure Assessment. Physical Therapy. Vol. 80. (2000). p. 399-409.

[88] Correia, J. H., & Carmo, J. P. (2013). Introdução à Instrumentação Médica (1a Edição). Lisboa: LIDEL.

[89] Soderberg, GL - Selected Topics in Surface Electromiography for Use in the Occupational Setranstibiaising: Expert Perspectives. Department of Health and Human Services. (1992).

[90] DeLuca, C - The Use of Surface Electromiography in Biomechanics. Journal of Applied Biomechanics. Vol. 13. n.º 2 (1993). p. 135-163.

115

[91] Basmajian, J; De Luca, C - Muscles Alive, Their Function Revealed by Electromyography. 5th. USA: Williams e Wilkins, 1985.

[92] Wentink, E. C., Schut, V. G. H., Prinsen, E. C., Rietman, J. S., & Veltink, P. H. (2014). Gait & Posture Detection of the onset of gait initiation using kinematic sensors and ELECTROMIOGRAFIA in transfemoral amputees. Gait & Posture, 39(1), 391–396. [93] Silverman, A. K., & Neptune, R. R. (2012). Muscle and prosthesis contributions to

amputee walking mechanics : A modeling study. Journal of Biomechanics, 45(13), 2271– 2278.

[94] endolite. (2017). Epirus. Retrieved September 1, 2017, from htranstibiaisp://www.endolite.com/products/epirus

[95] endolite. (2017). KX06. Retrieved September 1, 2017, from htranstibiaisp://www.endolite.com/products/kx06

[96] INNOVATIONS, F. (2017). Kinterra Foot/Ankle System. Retrieved September 1, 2017, from htranstibiaisp://www.freedom-innovations.com/kinterra/

[97] Qualisys AB. (2011). QTM Qualisys Track Manager. Gothenburg. [98] Bertec Corporations. (2012). Bertec Force Plates. Leeds.

[99] Sousa, A. S. P., Santos, R., Oliveira, F. P. M., & Tavares, J. M. R. S. (2012). Analysis of ground reaction force and electromyographic activity of the gastrocnemius muscle during double support. Journal of ENGINEERING IN MEDICINE, 226(5).

[100] Sousa, A. S. P., & Tavares, J. M. R. S. (2012). Effect of Gait Speed on Muscle Activity Patranstibiaiserns and Magnitude During Stance. Motor Control, 16, 480–492.

[101] Sousa, A. S. P., Silva, A., & Tavares, J. M. R. S. (2013). Interlimb relation during the double support phase of gait : An electromyographic , mechanical and energy-based analysis. Journal of ENGINEERING IN MEDICINE, 0(0), 1–7.

[102] Sousa, A. S. P., & Tavares, J. M. R. S. (2015). Interlimb Coordination During Step-to- Step Transition and Gait Performance. Journal of Motor Behavior, 0(April), 1–12.

[103] Sousa, A. S. P., & Tavares, J. M. R. S. (2012). Surface Electromyographic Amplitude Normalization Methods: A review. In Electromyography: New Developments, Procedures and Applications (pp. 85–102). Porto: Nova Science Publichers.

[104] Pitkin, M. R. (2010). Biomechanics of Lower Limb Prosthetics. Boston: Springer. [105] PLUX Wireless Biosignals S.A. (n.d.). biosignalsplux User Manual. Arruda dos Vinhos.

117

Anexos