• Nenhum resultado encontrado

Como trabalhos futuros, pretende-se inicialmente, realizar mais experimentos com um maior número de voluntários, incluindo pacientes que sofrem algum tipo de lesão medular espinhal. Experimentos realizados com apenas um usuário para a validação do método podem mascarar caractéristicas que seriam observadas apenas em um caso par- ticular. Com mais experimentos também é possível realizar uma análise estatística mais apronfundada sobre os dados obtidos, sendo possível explorar melhor as evidências que indicam que trajetórias personalizadas possam contribuir para a facilidade de adaptação do usuário e estudar melhor o seu desempenho em relação ao esforço metabólico do usuá- rio. Dentro deste último contexto, também pretende-se usar ferramentas e método mais robustos para análise desta caracteristicas em questão e, com mais dados, estudar se a me- lhora observada na frequência cardíaca quando usando o método proposto é significante ou não.

Também é importante testar o rendimento de outros dispositivos ortopédicos (como o proposto no trabalho [103]) que possam usar o método proposto, uma vez que o aumento no consumo dos motores conforme a distância pode variar de acordo com o atuador usado e a velocidade imposta. Finalmente, analisar de forma mais aprofundada a complexidade computacional do método proposto, principalmente quando outras varíaveis presentes na marcha são alteradas, como velocidade por exemplo.

Referências Bibliográficas

[1] A. M. Dollar and H. Herr. Lower extremity exoskeletons and active orthoses: Chal- lenges and state-of-the-art. IEEE Transactions on Robotics, 24(1):144–158, 2008. [2] H. Herr. Exoskeletons and orthoses: classification, design challenges and future

directions. Journal of neuroengineering and rehabilitation, 6(1):21, 2009.

[3] J. L. Pons. Wearable robots: biomechatronic exoskeletons. John Wiley & Sons, 2008.

[4] K. Gilbert. Exoskeleton prototype project: Final report on phase i. General Electric Company, Schenectady, NY, GE Tech. Rep. S-67-1011, 1967.

[5] N. Mizen. Powered exoskeletal apparatus for amplifying human strength in res- ponse to normal body movements, june 1969. URL https://www.google.co. jp/patents/US3449769. US Patent 3,449,769.

[6] J. B. Makinson, D. P. Bodine, and B. R. Fick. Machine augmentation of human strength and endurance hardiman i prototype project. Technical report, General Electric Co Schenectady Ny Specialty Materials Handling Products Operation, 1969.

[7] J. Moore and L. A. N. Laboratory. PITMAN, a Powered Exoskeletal Suit for the Infantryman. Los Alamos National Laboratory, 1986.

[8] M. E. Rosheim. Man-amplifying exoskeleton. Proc SPIE Mob Robot IV, 1195: 402–411, 1989.

[9] H. K. Adam B. Zoss and A. Chu. Biomechanical design of the berkeley lower extremity exoskeleton (bleex). IEEE/ASME Transactions on Mechatronics, 11(2): 128 – 138, 2006.

[10] M. Arazpour, M. Bani, R. Kashani, F. Ghomshe, M. E. Mousavi, and S. Hutchins. Effect of powered gait orthosis on walking in individuals with paraplegia. Prosthe- tics and Orthotics International, 37(4):261–267, 2012.

68 REFERÊNCIAS BIBLIOGRÁFICAS

[11] C. Krishnan, R. Ranganathan, S. S. Kantak, Y. Y. Dhaher, and W. Z. Rymer. Ac- tive robotic training improves locomotor function in a stroke survivor. Journal of neuroengineering and rehabilitation, 9(1):57, 2012.

[12] S. K. Banala, S. K. Agrawal, and J. P. Scholz. Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In 2007 IEEE 10th International Conference on Rehabilitation Robotics, pages 401–407, June 2007.

[13] M. Girone, G. Burdea, M. Bouzit, V. Popescu, and J. Deutsch. Orthopedic rehabi- litation using the"rutgers ankle"interface. Studies in health technology and infor- matics, pages 89–95, 2000.

[14] L. J. Consoni, T. B. Pasqual, W. M. dos Santos, and A. A. G. Siqueira. A robotic telerehabilitation game system for multiplayer activities. In Biomedical Robotics and Biomechatronics (BioRob), 2016 6th IEEE International Conference on, pages 798–803. IEEE, 2016.

[15] T. B. Pasqual, G. A. Caurin, and A. A. Siqueira. Serious game development for ankle rehabilitation aiming at user experience. In Biomedical Robotics and Bio- mechatronics (BioRob), 2016 6th IEEE International Conference on, pages 1007– 1012. IEEE, 2016.

[16] T. Mukul, E. Alberto, and B. Jorge E. Differentiating ability in users of the rewalk tm powered exoskeleton: An analysis of walking kinematics. In 2013 IEEE Inter- national Conference on Rehabilitation Robotics (ICORR), pages 1–5. IEEE, 2013. [17] M. V. Araujo, P. J. Alsina, V. C. C. Roza, and N. B. Melo. Powered orthosis ortholeg: Design and development. IEEE Latin America Transactions, 13(1):90– 95, 2015.

[18] M. V. Araújo, G. N. da Silva, L. Campos, Soares, and P. J. Alsina. Ortholeg project - development of an active orthosis prototype for lower limbs. In 2012 Brazilian Robotics Symposium and Latin American Robotics Symposium, pages 239–244, Fortaleza, Brasil, October 2012.

[19] M. V. Araújo, P. J. Alsina, L. C. Soares, and A. A. D. de Medeiros. Generation of anthropomorphic movements for an active orthosis for lower limbs. In 21st International Congress of Mechanical Engineering, Natal, Brazil, October 2011.

REFERÊNCIAS BIBLIOGRÁFICAS 69

[20] M. V. Araújo, P. J. Alsina, A. A. D. de Medeiros, J. P. P. Pereira, F. M. U. de Araújo, E. C. Domingos, and J. S. Silva. Development of an active orthosis prototype for lower limbs. In 20th International Congress of Mechanical Engineering, Gramado, Brazil, November 2009.

[21] J. F. Veneman, R. Kruidhof, E. E. Hekman, R. Ekkelenkamp, E. H. Van Asseldonk, and H. Van Der Kooij. Design and evaluation of the lopes exoskeleton robot for interactive gait rehabilitation. IEEE Transactions on Neural Systems and Rehabi- litation Engineering, 15(3):379–386, 2007.

[22] H. Kawamoto and Y. Sankai. Power assist system hal-3 for gait disorder person. In Int. Conf. Comput. Helping People Special Needs (ICCHP) (LectureNotes on Computer Science), pages 196–203, Linz, Austria, July 2002.

[23] H. Kawamoto, S. Lee, S. Kanbe, and Y. Sankai. Power assist method for hal- 3 using emg-based feedback controller. In IEEE Systems, Man, and Cybernetics Society, pages 1648–1653, Washington USA, October 2003.

[24] Rex Bionics. Rex bionics homepage. In www.rexbionics.com, April 2015.

[25] G. Barbareschi, R. Richards, M. Thornton, T. Carlson, and C. Holloway. Statically vs dynamically balanced gait: Analysis of a robotic exoskeleton compared with a human. In Engineering in Medicine and Biology Society (EMBC) 2015 37th Annual International Conference of the IEEE, pages 6728–6731. IEEE, 2015. [26] M. Arazpour, S. W. Hutchins, and M. A. Bani. The efficacy of powered orthoses on

walking in persons with paraplegia. Prosthetics and orthotics international, pages 90–99, 2015.

[27] I. Mizuuchi, M. Kawamura, T. Asaoka, and S. Kumakura. Design and development of a compressor-embedded pneumatic-driven musculoskeletal humanoid. In Hu- manoid Robots (Humanoids) 2012 12th IEEE-RAS International Conference on, pages 811–816. IEEE, 2012.

[28] K. Endo, D. Paluska, and H. Herr. A quasi-passive model of human leg function in level-ground walking. In Intelligent Robots and Systems 2006 IEEE RSJ Internati- onal Conference on, pages 4935–4939. IEEE, 2006.

[29] H. Geyer and H. Herr. A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. IEEE Tran- sactions on neural systems and rehabilitation engineering, 18(3):263–273, 2010.

70 REFERÊNCIAS BIBLIOGRÁFICAS

[30] A. Zoss and H. Kazerooni. Design of an electrically actuated lower extremity exoskeleton. Advanced Robotics, 20(9):967–988, 2006.

[31] E. Guizzo and H. Goldstein. The rise of the body bots [robotic exoskeletons]. IEEE spectrum, 42(10):50–56, 2005.

[32] Y. Yun, H. Chul Kim, S. Yul Shin, J. Lee, and A. D. C. Kim. Statistical method for prediction of gait kinematics with gaussian process regression. Journal of Biome- chanics, 47:186–192, 2014.

[33] C. Krishnan, R. Ranganathan, S. S. Kantak, Y. Y. Dhaher, and W. Z. Rymer. Ac- tive robotic training improves locomotor function in a stroke survivor. Journal of neuroengineering and rehabilitation, 9(1):57, 2012.

[34] D. J. Reinkensmeyer, O. M. Akoner, D. P. Ferris, and K. E. Gordon. Slacking by the human motor system: computational models and implications for robotic orthoses. In Engineering in Medicine and Biology Society - Annual International Conference of the IEEE, pages 2129–2132. IEEE, 2009.

[35] J. M. Hausdorff, C. Peng, Z. Ladin, J. Y. Wei, and A. L. Goldberger. Is walking a random walk? evidence for long-range correlations in stride interval of human gait. Journal of Applied Physiology, 78(1):349–358, 1995.

[36] D. C. Kerrigan, M. K. Todd, and U. D. Croce. Gender differences in joint biome- chanics during walking normative study in young adults., 1998.

[37] M. P. Murray. Gait as a total pattern of movement: Including a bibliography on gait. American Journal of Physical Medicine & Rehabilitation, 46(1):290–333, 1967.

[38] M. Castelán and G. Arechavaleta. Approximating the reachable space of human walking paths: a low dimensional linear approach. In 9th IEEE-RAS International Conference on Humanoid Robots, pages 81–86, Paris, France, December 2009. [39] M. H. Schwartz and A. Rozumalski. The gait deviation index: A new comprehen-

sive index of gait pathology. Gait & Posture, 28(1):351–357, 2008.

[40] S. Zheng, J. Zhang, K. Huang, R. He, and T. Tan. Robust view transformation model for gait recognition. In 2011 18th IEEE International Conference on Image Processing (ICIP), pages 2073 – 2076, Brussels, Belgium, September 2011.

REFERÊNCIAS BIBLIOGRÁFICAS 71

[41] Y. Makihara, R. Sagawa, Y. Mukaigawa, T. Echigo, and Y. Yagu. Gait recogni- tion using a view transformation model in the frequency domain. In European Conference on Computer Vision, pages 151 – 163, Graz, Austria, May 2006. [42] R. Urtasun and P. Fua. 3d tracking for gait characterization and recognition. In

IEEE International Conference on Automatic Face and Gesture Recognition, Lau- sanne, Switzerland, June 2004.

[43] L. Wang, T. Tan, H. Ning, and W. Hu. Silhouette analysis-based gait recogni- tion for human identification. IEEE transactions on pattern analysis and machine intelligence, 25(12):1505–1518, 2003.

[44] C. A. Ramirez, M. Castelán, and G. Arechavaleta. Multilinear decomposition of human walking paths. In Humanoid Robots (Humanoids), 2010 10th IEEE-RAS International Conference on, pages 492–497. IEEE, 2010.

[45] M. Martins, A. Elias, C. Cifuentes, M. Alfonso, A. Frizera, C. Santos, and R. Ce- res. Assessment of walker-assisted gait based on principal component analysis and wireless inertial sensors. Revista Brasileira de Engenharia Biomédica, 30(3): 220–231, 2014.

[46] L. Seddiki, K. Guelton, J. Zaytoon, and H. Akdag. Trajectory generator design ba- sed on the user’s intentions for a cmc lower-limbs rehabilitation device. Robotica, 34(05):1026–1041, 2016.

[47] J. Perry and J. M. Burnfield. Gait Analysis: Normal and Pathological Function. SLACK Incorporated, 2 edition, 2010.

[48] Y. Makihara, H. Mannami, and Y. Yagi. Gait analysis of gender and age using a large-scale multi-view gait database. Computer Vision - ACCV 2010., 6493(1): 440–451, 2010.

[49] E. Watelain, F. Barbier, P. Allard, A. Thevenon, and J.-C. Angué. Gait pattern classification of healthy elderly men based on biomechanical data. Archives of physical medicine and rehabilitation, 81(5):579–586, 2000.

[50] A. Seth and M. G. Pandy. A neuromusculoskeletal tracking method for estimating individual muscle forces in human movement. Journal of biomechanics, 40(2): 356–366, 2007.

72 REFERÊNCIAS BIBLIOGRÁFICAS

[51] T. Hu, Z. Lin, M. F. Abel, and P. E. Allaire. Human gait modeling: dealing with holonomic constraints. In American Control Conference, 2004. Proceedings of the 2004, volume 3, pages 2296–2301, 2004.

[52] V. Macellari, C. Giacomozzi, and R. Saggini. Spatial-temporal parameters of gait: reference data and a statistical method for normality assessment. Gait & posture, 10(2):171–181, 1999.

[53] F. E. Zajac, R. R. Neptune, and S. A. Kautz. Biomechanics and muscle coordina- tion of human walking: part ii: lessons from dynamical simulations and clinical implications. Gait & posture, 17(1):1–17, 2003.

[54] R. Alexander. Simple models of human movement. Applied Mechanics Reviews, 48(8):461–469, 1995.

[55] D. T. Lai, R. K. Begg, and M. Palaniswami. Computational intelligence in gait research: a perspective on current applications and future challenges. IEEE Tran- sactions on Information Technology in Biomedicine, 13(5):687–702, 2009.

[56] A. D. Kuo. A simple model of bipedal walking predicts the preferred speed–step length relationship. Journal of biomechanical engineering, 123(3):264–269, 2001. [57] A. D. Kuo. Energetics of actively powered locomotion using the simplest walking

model. Journal of biomechanical engineering, 124(1):113–120, 2002.

[58] M. Simon and M. Thomas. Ballistic walking: An improved model. Mathematical Biosciences, 52(3-4):241–260, 1980.

[59] J. Cotes and F. Meade. The energy expenditure and mechanical energy demand in walking. Ergonomics, 3(2):97–119, 1960.

[60] J. S. Gottschall and R. Kram. Energy cost and muscular activity required for pro- pulsion during walking. Journal of Applied Physiology, 94(5):1766–1772, 2003. [61] C. GA and K. M. Mechanical work and efficiency in level walking and running.

The Journal of physiology, 268(2):467, 1977.

[62] A. rm. Mechanics of bipedal locomotion. Perspectives in experimental biology, 1 (1):493–504, 1976.

[63] T. McGeer. Passive dynamic walking. International Journal of Robotics Research, 9(2):62–82, 1990.

REFERÊNCIAS BIBLIOGRÁFICAS 73

[64] M. Garcia, A. Chatterjee, A. Ruina, and M. Coleman. The simplest walking model: Stability, complexity, and scaling. ASME J. Biomechan. Eng., 120(2):281–288, 1998.

[65] M. Wisse, G. Feliksdal, J. Van Frankkenhuyzen, and B. Moyer. Passive-based walking robot. Robotics and Automation Magazine, IEEE, 14(2):52 – 62, 2007. [66] K. Koganezawa and . Matsumoto. Activerassive hybrid walking by the biped robot

tokai robo-habilis 1. In Proceeatngs of the 2002 IEEE RSJ intl Conterence on Inte.tigent Robots and Systems, pages 2461–2466, EPFL. Lausanne. Switzerland, October 2002.

[67] L. Jaeryoung, M. Ryota, O. Goro, G. Eiichi, S. Dimitar, A. Hirofumi, and P. Yan- ling. Gait generation for powered hip-ankle-linkage-orthosis. In Engineering in Medicine and Biology Society (EMBC) 2015 37th Annual International Conference of the IEEE, pages 5732–5735, Milan, Italy, August 2015.

[68] M. Vukobratovic, A. Frank, and D. Juricic. On the stability of biped locomotion. IEEE Transactions on Biomedical Engineering, 1(1):25–36, 1970.

[69] A. Frank and M. Vukobratovic. On the synthesis of a biped locomotion machine. In 8th International Conference on Medical and Biological Engineering, Evanston, volume 111, 1969.

[70] V. Miomir. How to control artificial anthropomorphic systems. IEEE Transactions on Systems, Man, and Cybernetics, 3(5):497–5078, 1973.

[71] V. Miomir, B. Branislav, S. Dusan, and S. Dragan. Biped locomotion: dynamics, stability, control and application, volume 7. Springer Science & Business Media, 1 edition, 2012.

[72] L. Hunok, K. Yoshiharu, and T. Atsuo. Online walking pattern generation for biped humanoid robot with trunk. In Robotics and Automation, 2002. Proceedings. ICRA02. IEEE International Conference on, pages 3111–3116, Washington, DC, USA, May 2002.

[73] F. C. Anderson and M. G. Pandy. Dynamic optimization of human walking. Jour- nal of biomechanical engineering, 123(5):381–390, 2001.

[74] M. L. Kaplan and J. H. Heegaard. Predictive algorithms for neuromuscular control of human locomotion. Journal of Biomechanics, 34(8):1077–1083, 2001.

74 REFERÊNCIAS BIBLIOGRÁFICAS

[75] F. Anderson. A dynamic optimization solution for a complete cycle of normal gait: An analysis of muscle function and joint contact force. PhD dissenation. Univer- sity of Texas at Austin, Austin, Texas, 1999.

[76] D. G. Thelen, F. C. Anderson, and S. L. Delp. Generating dynamic simulations of movement using computed muscle control. Journal of biomechanics, 36(3): 321–328, 2003.

[77] F. E. Zajac. Muscle coordination of movement: a perspective. Journal of biome- chanics, 26:109–124, 1993.

[78] P. O. Riley and D. C. Kerrigan. Torque action of two-joint muscles in the swing period of stiff-legged gait: a forward dynamic model analysis. Journal of Biome- chanics, 31(9):835–840, 1998.

[79] S. J. Piazza and S. L. Delp. Three-dimensional dynamic simulation of total knee replacement motion during a step-up task. Journal of biomechanical engineering, 123(6):599–606, 2001.

[80] R. D. Crowninshield and R. A. Brand. A physiologically based criterion of muscle force prediction in locomotion. Journal of biomechanics, 14(11):793–801, 1981. [81] L. Schutte and C. Runge. The use of inverse dynamics solutions in direct dynamics

simulations. Journal of biomechanical engineering, 119:417, 1997.

[82] C. Runge, F. Zajac, J. Allum, D. Risher, A. Bryson, and F. Honegger. Estimating net joint torques from kinesiological data using optimal linear system theory. IEEE Transactions on Biomedical Engineering, 42(12):1158–1164, 1995.

[83] D. Davy and M. Audu. A dynamic optimization technique for predicting muscle forces in the swing phase of gait. Journal of biomechanics, 20(2):187–201, 1987. [84] R. Neptune, S. Kautz, and M. Hull. The effect of pedaling rate on coordination in

cycling. Journal of biomechanics, 30(10):1051–1058, 1997.

[85] Yamaguchi, Gary, and Z. Felix E. Restoring unassisted natural gait to paraple- gics via functional neuromuscular stimulation: a computer simulation study. IEEE Transactions on biomedical engineering, 37(9):886–902, 1990.

[86] F. Anderson, J. Siegler, M. Pandy, and R. Whalen. Application of high-performance computing to numerical simulation of human movement.

REFERÊNCIAS BIBLIOGRÁFICAS 75

Transactions-American Society Of Mechanical Engineers Journal Of Biomecha- nical Engineering, 117:155–155, 1995.

[87] D. J. CK Chow. Studies of human locomotion via optimal programming. Mathe- matical Biosciences, 10(3-4):239–306, 1971.

[88] R. Neptune and M. Hu. Evaluation of performance criteria for simulation of sub- maximal steady state cycling using a forward dynamic modeling. Transactions- American Society Of Mechanical Engineers Journal Of Biomechanical Enginee- rings, 120(1):334–341, 1998.

[89] A. Alvarez-Alvarez, G. Trivino, and O. Cordon. Human gait modeling using a genetic fuzzy finite state machine. IEEE Transactions on Fuzzy Systems, 20(2): 205–223, 2012.

[90] M. P. Kadaba, H. Ramakrishnan, and M. Wootten. Measurement of lower extremity kinematics during level walking. Journal of orthopaedic research, 8(3):383–392, 1990.

[91] Y. Blanc, C. Balmer, T. Landis, and F. Vingerhoets. Temporal parameters and patterns of the foot roll over during walking: normative data for healthy adults. Gait & posture, 10(2):97–108, 1999.

[92] S. W. Raudenbush and A. S. Bryk. Hierarchical linear models: Applications and data analysis methods, volume 1. Sage, 2002.

[93] H. Sidenbladh, M. J. Black, and L. Sigal. Implicit probabilistic models of human motion for synthesis and tracking. In European conference on computer vision, pages 784–800. Springer, 2002.

[94] J. Cohen, P. Cohen, S. G. West, and L. S. Aiken. Applied multiple regres- sion/correlation analysis for the behavioral sciences. Routledge, 2013.

[95] A. Escalante, M. J. Lichtenstein, and H. P. Hazuda. Walking velocity in aged persons: its association with lower extremity joint range of motion. Arthritis Care & Research, 45(3):287–294, 2001.

[96] C. M. Bishop. Neural networks for pattern recognition. Oxford university press, 1995.

76 REFERÊNCIAS BIBLIOGRÁFICAS

[97] C. E. Rasmussen. Gaussian processes in machine learning. In Advanced lectures on machine learning, pages 63–71. Springer, 2004.

[98] M. S. Nixon, J. N. Carter, D. Cunado, P. S. Huang, and S. Stevenage. Automatic gait recognition. In Biometrics, pages 231–249. Springer, 1996.

[99] J. B. Hayfron-Acquah, M. S. Nixon, and J. N. Carter. Automatic gait recognition by symmetry analysis. Pattern Recognition Letters, 24(13):2175–2183, 2003. [100] G. Zhao, R. Chen, G. Liu, and H. Li. Amplitude spectrum-based gait recogni-

tion. In Automatic Face and Gesture Recognition, 2004. Proceedings. Sixth IEEE International Conference on, pages 23–28. IEEE, 2004.

[101] L. Wang, H. Ning, W. Hu, and T. Tan. Gait recognition based on procrustes shape analysis. In Image Processing. 2002. Proceedings. 2002 International Conference on, volume 3. IEEE, 2002.

[102] Y. Liu, R. Collins, and Y. Tsin. Gait sequence analysis using frieze patterns. In European Conference on Computer Vision, pages 657–671. Springer, 2002. [103] N. B. Melo, C. E. Dorea, P. J. Alsina, M. V. Araujo, and M. Gloger. Ortholeg 2.0-

design of a transparent active orthosis. IEEE Latin America Transactions, 15(10): 1869–1874, 2017.

[104] P. S. Huang. Automatic gait recognition via statistical approaches for extended template features. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 31(5):818–824, 2001.

[105] R. Bjoern, T. Shiratori, S. Kudoh, Y. Sato, and K. Ikeuchi. Dance motion structure detection through a full body turning motions model for japanese and latin dances. In The 29th Annual Conference Of The Robotics Society Of Japan, Tokyo,Japan, October 2011.

[106] I. Jolliffe. Principal component analysis. Wiley Online Library, 2002.

[107] M.-S. Ju, C.-C. Lin, D.-H. Lin, I.-S. Hwang, and S.-M. Chen. A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13 (3):349–358, 2005.

REFERÊNCIAS BIBLIOGRÁFICAS 77

[108] L. Seddiki, K. Guelton, and J. Zaytoon. Concept and takagi–sugeno descriptor trac- king controller design of a closed muscular chain lower-limb rehabilitation device. IET control theory & applications, 4(8):1407–1420, 2010.

[109] W. Y.-W. Tung, M. McKinley, M. V. Pillai, J. Reid, and H. Kazerooni. Design of a minimally actuated medical exoskeleton with mechanical swing-phase gait ge- neration and sit-stand assistance. In ASME 2013 Dynamic Systems and Control Conference, pages V002T28A004–V002T28A004. American Society of Mechani- cal Engineers, 2013.

[110] N. D. B. Melo, P. J. Alsina, C. E. T. Dorea, and M. V. De Araujo. Gait cycle modeling for an active orthosis using principal component analysis. In Robotics Symposium and Competition (LARS/LARC), 2013 Latin American, pages 118–123. IEEE, 2013.

[111] T. Ribeiro, H. Britto, D. Oliveira, E. Silva, E. Galvão, and A. Lindquist. Effects of treadmill training with partial body weight support and the proprioceptive neuro- muscular facilitation method on hemiparetic gait: a randomized controlled study. European journal of physical and rehabilitation medicine, 49(4):451–461, 2013. [112] Y. Dodge. The Oxford dictionary of statistical terms. Oxford University Press on

Demand, 2006.

[113] W. Stuetzle. Cross-Validation, Encyclopedia of Statistics in Behavioral Science, volume 1. John Wiley and Sons, oct 2005.

[114] N. F. Troje. Decomposing biological motion: A framework for analysis and synthe- sis of human gait patterns. Journal of vision, 2(5):2–2, 2002.

[115] S. Haykin and B. Van Veen. Signals and systems. John Wiley & Sons, 2007. [116] M. Elgendi. Standard terminologies for photoplethysmogram signals. Current

cardiology reviews, 8(3):215–219, 2012.

[117] World Famous Electronics llc. Open hardware. In pulsesensor.com/pages/open- hardware, August 2015.

[118] American Heart Association. Target heart rates. In www.heart.org, April 2015. [119] H.Tanaka, K. Monahan, and D. Seals. Age predicted maximal heart rate revisited.

78 REFERÊNCIAS BIBLIOGRÁFICAS

[120] World Medical Association. WMA declaration of helsinki - ethical principles for medical research involving human subjects. In www.wma.net, April 2015.

[121] N. de Bastos Melo, P. J. Alsina, C. E. Dórea, and K. J. D. S. Eugenio. Metabo- lic effort based on heart rate in user of the ortholeg active orthosis. In Brazilian Symposium on Intelligent Automation, pages 1–5, 2015.

[122] N. de Bastos Melo, P. J. Alsina, C. E. Dórea, and K. J. D. S. Eugenio. Influence of different gait trajectories in an lower limb active orthosis performance based on user metabolic cost and motors usage. In Micro-NanoMechatronics and Human Science (MHS), 2015 International Symposium on, pages 1–6. IEEE, 2015.

[123] S. Fox, J. Naughton, and W. Haskell. Physical activity and the prevention of coro- nary heart disease. Ann Clin Res, 3(1):404–432, 1971.

[124] N. B. Melo, C. E. Dórea, P. J. Alsina, and M. V. Araujo. Joint trajectory generator for powered orthosis based on gait modelling using pca and fft. Robotica, 36(3): 395–407, 2018.

[125] R. R. Neptune, C. P. McGowan, and S. A. Kautz. Forward dynamics simulations provide insight into muscle mechanical work during human locomotion. Exercise and sport sciences reviews, 37(4):203, 2009.

Documentos relacionados