• Nenhum resultado encontrado

Considerando o interesse de imagens por ultra-som para aplicação em ensaios não destrutivos, como trabalhos futuros destaca-se a concentração das pesquisas para viabilizar a inspeção de phantoms em outros materiais sólidos incluindo os metálicos, deixando os experimentos com phantoms submersos em água em segundo plano, assim como, estudo da resolução de contraste que é mais apropriado para imagens médicas. Deve-se propor também, a confecção de outros transdutores arrays com mais elementos, bem como a eletrônica para a multiplexação dos canais analógicos que possibilite uma aquisição de sinais mais segura e rápida. Além disso, aplicação de técnicas de interpolação que criem pontos em regiões com maior profundidade no campo acústico onde nenhum setor cobre.

REFERÊNCIAS BIBLIOGRÁFICAS

BASOGLU, C.; KIM, Y.; CHALANA, V. A Real-Time Scan Conversion Algorithm on

Commercially Available Microprocessors. Ultrasonic Imaging, v.18, n.14, p.241-260,

1996.

BERKHOFF, P. et al. Fast scan conversion algorithms for displaying ultrasound sector

images. Ultrasonic Imaging, v.16, p.87-108, 1994.

BURCH, S.F.; BURTON, J.T. Ultrasonic Synthetic Aperture Focusing Using Planar

Pulse-echo Transducer. Ultrasonics, p.275-281,1984.

CANNATA, J.M. et al. Design of Efficient, Broadband Single-Element (20-80 MHz)

Ultrasonic Transducers for Medical Imaging Applications. IEEE Transactions On

Ultrasonics, Ferroelectrics, And Frequency Control, v.50, n.11, 2003.

CAPINERI, L. A 3D Airborne Ultrasound Scanner. Meas. Sci. Technol, v.9, p.967–975, 1998.

CHENG, K.C. et al. Composites for Ultrasonic Transducer applications. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, v.50, n.9, p.1177- 1183, 2003.

FRANCO, E. et al. Modelagem de Campo Ultra-sônico de Transdutores Arrays Com

Focalização Utilizando o Método da Representação Discreta. Congress on

Computational Methods in Engineering – XXVI CILAMCE, Guarapari/ES, 2005. Abstract. Vitória: UFES-CT, 2005. 419p.

FRITSCH, C., et al. A Pipelined Architecture for High Speed Ultrasonic NDE. IEEE International Ultrasonic Symposium, Nov. Seattle (Washington), 1995.

FRITSCH, C. Técnicas Electrónicas de Focalización de Haces Ultrasónicos. Red Iberoamericana de Tecnología Ultrasónicas – RITUL, Madrid, 2001.

FARR, R.F.; ALLISY-ROBERTS, P.J. Physics for Medical Imaging. WB Saunders, 1999. FISH, P. Physics and Instrumentation of Diagnostic Medical Ultrasound. Editora: John

Wiley & Sons, 1998.

GANAPATHY, S. et al. Analysis and Design Considerations for Real-Time System for

Non-Destructive in the Nuclear Industry. Ultrasonics, p.249-256, 1982.

JOHNSON, R. Contrast Response Analysis for Medical Ultrasound Imaging, IEEE

Transactions on Ultrasonics. Ferroelectrics and Frequency Control, v.44, n.4, p.805-

809, 1997.

KARAMAN, M.; LI, P.; O’DONNELL, M. Synhetic Aperture Imaging for Small Scale

Systems. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,

KIMOTO, K. et al. Image-based sizing of surface-breaking cracks by SH-wave array

ultrasonic testing. Ultrasonics (2006) doi:10.1016/j.ultras.2006.08.006.

KINO, G. Acoustic Waves:Devices, Imaging, and Analog Signal Processing. Prentice Hall, Englewood Cliffs, NJ, 1987.

LUDWIG, R.; ROBERTI, D. A Nondestructive Ultrasonic Imaging System for Detection of

Flaws in Metal Blocks. IEEE Transactions on Instrumentation and Measurement, v.38,

n.1, p.113-117, 1989.

MARTÍNEZ, O. et al. Application of Digital Signal Processing Techniques to Synthetic

Aperture Focusing Technique Images. Sensors and Actuators, v.76, p.448-456, 1999.

MARTÍNEZ, O. et al. A small 2D ultrasonic array for NDT applications. NDT&E International 36:57-63, 2003.

MILLS, D.M., SMITH, S.W. Multi-Layered PZT/Polymer Composites to Increase Signal to

Noise Ratio and Resolution for Medical Ultrasound Transducer. IEEE Ultrasonics

Symposium, v.2, p.1873-1876, 1998.

O’DONNELL, M.; THOMAS, L. J. Efficient synthetic aperture imaging from a circular

aperture with possible application to catheter-base imaging. IEEE Transactions on. Ultrasonics, Ferroelectrics, and Frequency Control, vol.39, n.3, p.366-380, 1992.

OPPENHEIM, A.V.; SHAFER, R.W. Discrete-time Signal Processing. Prentice Hall, Englewood Cliffs, NJ, 1989.

OSAKI, Y. et al. A New System for Real-Time Synthetic Aperture Ultrasonic Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, v.35, n.6, p.828-838, 1988.

PARRILLA, M. Conformación De Haces Ultrasónicos Mediante Muestreo Selectivo Con

Codificación Delta. Tese de Doutorado. Universidade Politécnica de Madri, Facultade e

Informática, 2004.

PETERSON, D.K.; KINO, G.S. Real-Time Digital Image Reconstruction: A Description of

Imaging Hardware and an Analysis of Quantization Errors. IEEE Transactions On

Sonics and Ultrasonics, v.31, n.4, 1984.

PIWAKOWSKI, B.; SBAI, K. A New Approach to Calculate the Field Radiated from

Arbitrarily Structured Transducer Arrays. IEEE Transactions on Ultrasonics,

Ferroelectrics and Frequency Control, v.46, n.2, p.422-440, 1999.

PUJOL, R.L. Imagens Ultra-Sônicas em Modo-B com Focalização na Recepção. Dissertação de Mestrado. Coppe/UFRJ, 1997.

Rhim, S. et al. A 6.0MHz 0.15mm pitch phased array ultrasonic probe using PMN-PT single

RHIM, S.; KIM, H.; LEE, S. A 128 Channel 7.5Mhz Linear Array Ultrasonic Probe Using

PMN-PT Single Crystal. Ultrasonics, v.1, p.782-785, 2003.

RICHARD, W.D.; ARTHUR, R.M. Real-time Ultrasonic Scan Conversion Via Linear

Interpolation of Oversampled Vectors. Ultrasonic Imaging, v.16, p.109-123, 1994.

SAITOH, S.; TAKEUCHI, T.; KOBAYASHI, T. A 3.7Mhz Phased Array Probe Using PZN-

9%PT Single Crystal. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency

Control, v.46, n.2, p.414-420, 1999.

SALOMONSSON, G.; MANDERSSON, B. On Ultrasound Transducer with Curved Surface

for Improvement of Lateral Resolution. IEEE Transactions on Ultrasonics, Ferroelectrics

and Frequency Control, v.33, n.6, p.740-746, 1986.

SMITH, S.W. et al. Low Contrast Detectability and Contrast/Detail Analysis in Medical

Ultrasound. IEEE Transactions on Sonics and Ultrasonics, v.30, n.3, p.164-173, 1983.

THOMSON, R.N. Transverse and Longitudinal Resolution of the Synthetic Aperture

Focusing Technique. Ultrasonics, p.9-15, 1984.

TRAHEY, G. E.; NOCK, L.F. Synthetic Receive Aperture Imaging with Phase Correction for

Motion and for Tissue Inhomogeneities – part I: Basic principles. IEEE Transactions on

Ultrasonics, Ferroelectrics, and Frequency Control, v.39, n.4, p.489-495, 1992.

TURNBULL, D.H.; FOSTER, F.S. Beam Steering with Pulsed Two-Dimensional Transducer

Arrays. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, v.38,

n.4, p.320-333, 1991.

VILKOMERSON, D.; GREENLEAF, J.; DUTT, V. Towards a resolution metric for medical

ultrasonic imaging. IEEE Ultrasonics symposium, p.1405-1410, 1995.

YAO, H. Synthetic Aperture Methods for Medical Ultrasonic Imaging. Tese de Doutorado. Disponível em:

<heim.ifi.uio.no/~ftp/publications/cand-scient-theses/HYao.pdf> Acessado em : 02 fevereiro de 2007.

YLITALO, J. A Fast Ultrasonic Synthetic Aperture Imaging Method: Aplication to NDT. Ultrasonics, v.34, n.2-5, p.331-333, 1996.

YLITALO, J. P. Ultrasound Synthetic Aperture Imaging: Monostatic Aprproach. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, v.41, n.3, p.333-339, 1994.

Documentos relacionados