• Nenhum resultado encontrado

1 INTRODUÇÃO 27 1.1 MOTIVAÇÃO

6.2 TRABALHOS FUTUROS

A realização deste trabalho teve a principal função de apresentar uma revisão bi- bliográfica acerca dos métodos utilizados para a redução de cargas mecânicas em turbinas eólicas de grande porte e o projeto de um sistema IPC utilizando controlador RMRAC, para a frequência de 1p. Dada a complexidade e multidisciplinaridade dos temas abor- dados, as possibilidades de evolução são muito amplas, com destaque para os seguintes assuntos:

• Avaliar as cargas medidas conforme a norma IEC 61400-13.

• Desenvolver o projeto do sistema IPC para frequências de 2p e 3p.

• Estudar os reflexos em termos de variação de potência de geração resultantes da adição do IPC nas turbinas eólicas.

• Avaliar os resultados de eventos de Low Voltage Ride Through (LVRT), isto é, du- rante períodos curtos de falha da rede elétrica como curto-circuito ou queda de tensão, utilizando o IPC.

• Desenvolver algoritmos de desligamento e religamento da turbina eólica para uma transição suave entre as regiões de operação 3 e 4.

Outros tópicos que se mostraram viáveis compreendem a investigação da utilização de observadores de estado para melhorar a qualidade das medidas, visto que um dos problemas do IPC, principalmente nas frequências superiores a 1p, é obter a medida das cargas mecânicas de forma antecipada com vistas a compensar o atraso do sistema mecânico de variação de passo das pás.

Em termos de implementação de tecnologia, é necessário avaliar também o equi- líbrio entre o benefício promovido pelo IPC e a sua contrapartida, cujos principais itens são o desgaste dos rolamentos das raízes das pás e o consumo de energia necessário para manter a constante atividade do mecanismo atuador de passo das pás da turbina eólica. Neste contexto, há possibilidade de desenvolver algoritmos de otimização, de acordo com as condições operacionais, que controlem, online, a intensidade de atuação do IPC.

ABE. Boletim Anual de Geração Eólica 2017. [S.l.], 2017. 15 p. Disponível em: <http://abeeolica.org.br/>.

ACKERMANN, T. Wind Power in Power Systems. 2. ed. [S.l.]: John Wiley & Sons Ltd, 2012. ISBN 9780470974162.

ANDERSON, J. D. J. Fundamentals of aerodynamics. 6. ed. [S.l.]: McGraw-Hill Education, 2017.

BARLAS, T. K.; KUIK, G. A. M. van. Review of state of the art in smart rotor control research for wind turbines. Progress in Aerospace Sciences, v. 46(1), p. 1–27, 2010. BAYNE, S. B.; GIESSELMANN, M. G. Effect of blade passing on a wind turbine output. In: Collection of Technical Papers. 35th Intersociety Energy Conversion En-

gineering Conference and Exhibit (IECEC) (Cat. No.00CH37022). [S.l.: s.n.],

2000. v. 2, p. 775–781 vol.2.

BELTRAN, B.; AHMED-ALI, T.; BENBOUZID, M. E. H. High-order sliding-mode con- trol of variable-speed wind turbines. IEEE Transactions on Industrial Electronics, v. 56, n. 9, p. 3314–3321, Sep. 2009. ISSN 0278-0046.

BIANCHI, F.; BATTISTA, H. de; MANTZ, R. Wind Turbine Control Systems Prin-

ciples, Modelling and Gain Scheduling Design. [S.l.]: Springer, 2007. ISBN 978-1-

84628-492-2.

BIR, G. Multiblade coordinate transformation and its application to wind turbine analy- sis. In: 46th AIAA Aerospace Sciences Meeting and Exhibit. [S.l.: s.n.], 2008. BLAABJERG, F.; MA, K. Wind energy systems. Proceedings of the IEEE, v. 105, n. 11, p. 2116–2131, 2017. ISSN 0018-9219.

BOSSANYI, E. The design of closed loop controllers for wind turbines. Wind Energy, v. 3, p. 149–163, 2000.

. Developments in closed loop controller design for wind turbines. In: ASME Wind

Energy Symposium, Aerospace Sciences Meetings. [S.l.: s.n.], 2000.

. Individual blade pitch control for load reduction. Wind Energy, v. 6, p. 119–128, 2003.

. Wind turbine control for load reduction. Wind Energy, v. 6, p. 229–244, 2003. . Further load reductions with individual pitch control. Wind Energy, v. 8, p. 481–485, 2005.

BOSSANYI, E.; FLEMING, P.; WRIGHT, A. Field test results with individual pitch control on the nrel cart3 wind turbine. In: 50th AIAA Aerospace Sciences Meeting

and Exhibit. [S.l.: s.n.], 2012.

British Standard Institution. BS EN 61400-1:2014, Wind turbines - Design Require-

ments. 2014.

. BS EN 61400-13:2016, Wind turbines - Measurement of mechanical loads. 2016.

BURTON, T. et al. Wind Energy Handbook. 2. ed. [S.l.]: John Wiley and Sons Ltd, 2011.

COLEMAN, R. P.; FEINGOLD, A. M. Theory of self-excited mechanical os-

cillations of helicopter rotors with hinged blades. [S.l.], 1958. Disponível em:

<https://ntrs.nasa.gov/search.jsp?R=19930092339>.

CORRADINI, M. L.; IPPOLITI, G.; ORLANDO, G. Robust control of variable-speed wind turbines based on an aerodynamic torque observer. IEEE Transactions on Con-

trol Systems Technology, v. 21, n. 4, p. 1199–1206, July 2013. ISSN 1063-6536.

DATTA, A. Performance improvement in decentralized adaptive control: a modified mo- del reference scheme. IEEE Transactions on Automatic Control, v. 38, n. 11, p. 1717–1722, 1993.

DOLAN, D. S. L.; LEHN, P. W. Simulation model of wind turbine 3p torque oscillations due to wind shear and tower shadow. IEEE Transactions on Energy Conversion, v. 21, n. 3, p. 717–724, Sept 2006. ISSN 0885-8969.

DUESTERHOEFT, W. C.; SCHULZ, M. W.; CLARKE, E. Determination of instantane- ous currents and voltages by means of alpha, beta, and zero components. Transactions

of the American Institute of Electrical Engineers, v. 70, n. 2, p. 1248–1255, July

1951. ISSN 0096-3860.

EHLERS, J.; DIOP, A.; BINDNER, H. Sensor selection and state estimation for wind turbine controls. In: 45th AIAA Aerospace Sciences Meeting and Exhibit. [S.l.: s.n.], 2007.

EL-HENAOUI, S. Individual pitch control and its impact. Wind Systems magazine, July 2012.

ENGELEN, T. V. Design model and load reduction assessment for multi-rotational mode individual pitch control (higher harmonics control). In: European Wind Energy Con-

ference. Athens: [s.n.], 2006.

ENGELEN, T. van. Morphological Study of Aeroelastic Control Concepts for

ESBENSEN, T.; SLOTH, C. Fault Diagnosis and Fault-Tolerant Control of Wind

Turbines. Dissertação (Mestrado) — Aalborg University, 2009.

FISCHER, A. et al. Pitot tube designed for high frequency inflow measurements on mw wind turbine blades. In: European Wind Energy Conference (EWEC, 2009). Mar- seille, France: [s.n.], 2009.

FISCHER, B.; SHAN, M. A survey on control methods for the mitigation of tower

loads. [S.l.], 2013. 14 p. Disponível em: <http://publica.fraunhofer.de/documents/

N-272191.html>.

FLEMING, P. A. et al. Field testing a wind turbine drivetrain/tower damper using ad- vanced design and validation techniques. In: 2013 American Control Conference. [S.l.: s.n.], 2013. p. 2227–2234. ISSN 0743-1619.

GE. 1.5 MW Wind Turbine. 2009. Brochure. Disponível em: <https://geosci.uchicago. edu/~moyer/GEOS24705/Readings/GEA14954C15-MW-Broch.pdf>.

GWEC. GWEC Global Wind 2017 Report. [S.l.], 2017. 72 p. Disponível em: <http: //gwec.net>.

HAND, M. M.; WRIGHT, A. D.; FINGERSH, L. J. Advanced wind turbine control- lers attenuate loads when upwind velocity measurements are inputs. In: 44th AIAA

Aerospace Sciences Meeting and Exhibit. [S.l.: s.n.], 2006.

HANSEN, M. Aeroelastic instability problems for wind turbines. Wind Energy, Wiley, v. 10, p. 551–577, 2007.

HANSEN, M. O. L. Aerodynamics of Wind Turbines. 3. ed. [S.l.]: Routledge, 2015. ISBN 978-1-315-76998-1.

HEIER, S. Grid Integration of Wind Energy onshore and offshore conversion

systems. 3. ed. [S.l.]: John Wiley and Sons Ltd, 2014.

HOFFMANN, A. F. Load reduction based on a stochastic disturbance observer for a 5 mw ipc wind turbine. Journal of Physics: Conference Series, v. 1037, n. 3, p. 032026, 2018. Disponível em: <http://stacks.iop.org/1742-6596/1037/i=3/a=032026>.

HOOFT, E. van der; ENGELEN, T. V. Estimated wind speed feed forward control for wind turbine operation optimisation. In: Proceedings of the European Wind Energy

Conference - EWEC 2004. London, UK: [s.n.], 2004.

International Energy Agency. Key World Energy Statistics 2018. [s.n.], 2018. 51 p. Disponível em: <https://www.oecd-ilibrary.org/content/publication/key_energ_ stat-2018-en>.

IOANNOU, P. Robust Adaptive Control. Upper Saddle River, New Jersey 07458: Prentice-Hall, 1996.

IOANNOU, P.; FIDAN, B. Adaptive Control Tutorial. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2006.

JASNIEWICZ, B.; GEYLER, M. Wind turbine modelling and identification for control system applications. In: Proc. EWEA. Brussels, Belgium: [s.n.], 2011.

JELAVIC, M.; PERIC, N. Wind turbine control for highly turbulent winds. Automatika, v. 50, p. 135–151, 2009. Disponível em: <https://hrcak.srce.hr/47415>.

JELAVIC, M.; PERIC, N.; PETROVIC, I. Damping of wind turbine tower oscillations through rotor speed control. In: International Conference on Ecologic Vehicles &

Renewable Energies. [S.l.: s.n.], 2007.

JELAVIC, M.; PETROVIC, V.; PERIC, N. Individual pitch control of wind turbine based on loads estimation. In: 2008 34th Annual Conference of IEEE Industrial

Electronics. [S.l.: s.n.], 2008. p. 228–234. ISSN 1553-572X.

. Estimation based individual pitch control of wind turbine. Automatika, v. 51, p. 181–192, 2010.

JIANG, Z. et al. A review of individual pitch control for wind turbines. In: 2016 IEEE

11th Conference on Industrial Electronics and Applications (ICIEA). [S.l.: s.n.],

2016. p. 399–404. ISSN 2158-2297.

JONKMAN, B.; KELLEY, N. NWTC Information Portal (TurbSim). 2013. Dispo- nível em: <https://nwtc.nrel.gov/TurbSim>.

JONKMAN, J. et al. Definition of a 5-MW Reference Wind Turbine for Offshore

System Development. 2009.

JONKMAN, J.; JONKMAN, B. NWTC Information Portal (FAST v8). 2016. Dis- ponível em: <https://nwtc.nrel.gov/FAST8>.

KANEV, S.; ENGELEN, T. V. Exploring the limits in individual pitch control. In: Eu-

ropean Wind Energy Conference (EWEC, 2009). Marseille, France: [s.n.], 2009.

KNUDSEN, T.; BAK, T.; SOLTANI, M. Prediction models for wind speed at turbine locations in a wind farm. Wind Energy, v. 14, n. 7, p. 877–894, 2011. Disponível em: <https://onlinelibrary.wiley.com/doi/abs/10.1002/we.491>.

KRAGH, K. A. Performance Enhancement and Load Reduction on Wind Tur-

bines Using Inflow Measurements. Tese (Doutorado) — DTU Wind Energy, 2013.

KRAGH, K. A.; HANSEN, M. H.; HENRIKSEN, L. C. Sensor comparison study for load alleviating wind turbine pitch control. Wind Energy, v. 17, n. 12, p. 1891–1904, 2013. Disponível em: <https://onlinelibrary.wiley.com/doi/abs/10.1002/we.1675>.

KUIK, G. A. M. van et al. Long-term research challenges in wind energy - a

research agenda by the European Academy of Wind Energy. [S.l.], 2016. v. 1,

1-39 p.

KUMAR, D.; CHATTERJEE, K. A review of conventional and advanced mppt algorithms for wind energy systems. Renewable and Sustainable Energy Reviews, ELSEVIER, v. 55, p. 957–970, 2016.

LAKS, J.; PAO, L.; WRIGHT, A. Control of wind turbines: Past, present, and future. In: American Control Conference. [S.l.: s.n.], 2009. p. 2096–2103.

LARSEN, T. J.; MADSEN, H. A.; THOMSEN, K. Active load reduction using individual pitch, based on local blade flow measurements. Wind Energy, v. 8, n. 1, p. 67–80, 2005. Disponível em: <https://onlinelibrary.wiley.com/doi/abs/10.1002/we.141>.

LOVERA, M.; COLANERI, P. Discrete-time, closed-loop aeromechanical stability analy- sis of helicopters with higher harmonic control. Journal of Guidance, Control and

Dynamics, v. 30, 2007.

LU, Q.; BOWYER, R.; JONES, B. Analysis and design of coleman transform-based individual pitch controllers for wind turbine load reduction. Wind Energy, v. 18, p. 1451–1468, 2015.

LUO, N.; VIDAL, Y.; ACHO, L. Wind Turbine Control and Monitoring. [s.n.], 2014. Disponível em: <https://www.oecd-ilibrary.org/content/publication/key_energ_ stat-2018-en>.

MARKOU, H.; LARSEN, T. Control strategies for operation of pitch regulated turbines above cut-out wind speeds. In: EWEC 2009 Proceedings online. [S.l.]: EWEC, 2009. MATTACHINI, P. Wind speed prediction models and their use in wind turbine

control. Dissertação (Mestrado) — Lund University, 2013.

MORIARTY, P. J.; BUTTERFIELD, S. B. Wind turbine modeling overview for control engineers. In: 2009 American Control Conference. [S.l.: s.n.], 2009. p. 2090–2095. ISSN 0743-1619.

MORIM, R. B. et al. Robust model reference adaptive individual pitch control for wind turbine load reduction. In: IECON 2018 - 44th Annual Conference of the IEEE

Industrial Electronics Society. [S.l.: s.n.], 2018. p. 1934–1939. ISSN 2577-1647.

MORISSE, M. et al. Impact of individual pitch control on pitch actuators in megawatt wind turbines. In: 2017 19th European Conference on Power Electronics and

Applications (EPE’17 ECCE Europe). [S.l.: s.n.], 2017. p. P.1–P.9.

OSSMANN, D.; THEIS, J. Multivariable controller design verification for a liberty wind turbine. In: 35th Wind Energy Symposium, AIAA SciTech Forum, (AIAA 2017-

PAO, L.; JOHNSON, K. A tutorial on the control of wind turbines and wind farms. In:

American Control Conference. [S.l.: s.n.], 2009. p. 35–36.

PARK, R. Two-reaction theory of synchronous machines. 1929.

PETROVIC, V.; BOTTASSO, C. L. Wind turbine envelope riding. In: 33rd Wind

Energy Symposium, Aerospace Sciences Meetings, American Institute of Ae- ronautics and Astronautics. [S.l.: s.n.], 2015.

QUIRANTE, J. G. Control of Wind Turbines for Power Regulation and Load

Reduction. Richard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby: [s.n.], 2007.

Supervised by Assoc. Prof. Niels K. Poulsen, IMM, DTU, Prof. Henrik Madsen, IMM, DTU, and Senior Scientist Peter Hauge Madsen, Siemens Wind Power A/S. Disponível em: <http://www2.imm.dtu.dk/pubdb/p.php?5537>.

RIBRANT, J.; BERTLING, L. M. Survey of failures in wind power systems with focus on swedish wind power plants during 1997 to 2005. IEEE Transactions on Energy Conversion, v. 22, n. 1, p. 167–173, March 2007.

RITTER, B. et al. The design of nonlinear observers for wind turbine dynamic state and parameter estimation. Journal of Physics: Conference Series, v. 753, n. 5, p. 052029, 2016. Disponível em: <http://stacks.iop.org/1742-6596/753/i=5/a=052029>.

SCHIERMAN, J. D. Limitations of decentralized control. Journal of Guidance, Con-

trol, and Dynamics, v. 20, p. 384–390, 1997.

SCHIERMAN, J. D.; SCHMIDT, D. K. Limitations of decentralized control laws. In: AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS. Guidance,

Navigation, and Control Conference. [S.l.], 1995.

SELVAM, K. Individual Pitch control for large-scale wind turbines. Dissertação (Mestrado) — ECN, 2007.

SHAN, M. Load Reducing Control for Wind Turbines - Load Estimation and

Higher Level Controller Tuning based on Disturbance Spectra and Linear Models. Tese (Doutorado) — Fraunhofer-Institut für Energiewirtschaft und Energiesys-

temtechnik IEE, 2017.

SHAN, M.; JACOBSEN, J.; ADELT, S. Field testing and practical aspects of load re- ducing pitch control systems for a 5 mw offshore wind turbine. In: European Wind

Energy Conference and Exhibition (EWEC). Vienna, Austria: [s.n.], 2013. v. 3, p.

1551–1560. ISBN 978-1-63266-314-6.

SIMANI, S. Overview of modelling and advanced control strategies for wind turbine systems. Energies, v. 8, n. 12, p. 13395–13418, 2015. ISSN 1996-1073. Disponível em: <http://www.mdpi.com/1996-1073/8/12/12374>.

SONG, D. et al. Kalman filter-based wind speed estimation for wind turbine control.

International Journal of Control, Automation and Systems, v. 15, n. 3, p. 1089–

1096, 2017.

THIRINGER, T.; DAHLBERG, J. . Periodic pulsations from a three-bladed wind turbine.

IEEE Transactions on Energy Conversion, v. 16, n. 2, p. 128–133, June 2001. ISSN

0885-8969.

UNFCCC. Kyoto Protocol to the United Nations Framework Convention on

Climate Change adopted at COP3 in Kyoto, Japan. [S.l.], 1997.

Documentos relacionados