• Nenhum resultado encontrado

Como a função da ARENA é possibilitar o desenvolvimento de soluções, a quantidade de trabalhos possíveis a partir de sua implementação é enorme. Em relação à estrutura de experimentação a implementação de alguns recursos poderiam facilitar o desenvolvimento de sistemas mais complexos. (QI; LIU, 2018) (REINA et al., 2017.) (MILLARD et al., 2018.) (WHEELER et al., 2019), apresentaram soluções que utilizavam a AR para gerar gráficos e painéis que apresentavam diversas informações úteis (dados de sensores, variáveis de controle, etc.) para a execução dos experimentos, por isso seria extremamente valioso dotar a ARENA com funções semelhantes.

O sistema de rastreamento utiliza dados de câmeras para fornecer as posições de robôs. Portanto um armazém comum, além de possuir dimensões elevada, apresentam estruturas como prateleiras, ou até mesmo produtos, que impedem que as câmeras tenham acesso a certos pontos. Deste modo, é necessário que seja utilizada uma grande quantidade de aparelhos para cobrir toda a área do armazém. Como a carga computacional para executar as operações de rastreamento é elevada, seria inviável utilizar o servidor para executar todas essas operações. Assim, um trabalho extremamente útil para MRS, seria o desenvolvimento de um dispositivo que tivesse a capacidade de processar as imagens obtidas e alimentar o servidor com as coordenadas dos robôs em operação. Este sistema poderia ainda executar as operações de controle dos robôs, aliviando assim a carga computacional executada pelos servidores.

Em certos casos, os sistemas que dependem da análise de imagem, poderiam ser inviabilizados por questões técnicas ou operacionais, por exemplo: ambientes com condições de iluminação deficitária ou com características que inviabilizem a cobertura total por câmeras. O desenvolvimento de um sistema de rastreamento mais flexível como o RFID (Radio Frequency Identification) que utiliza ondas de rádio, poderia ser uma solução viável para atender a estas condições.

Em relação à operação específica dos armazéns inteligentes, uma série de soluções poderiam ser desenvolvidas. Sendo assim, o escalonamento e gerenciamento de tarefas com análise de prioridade, otimização de rotas, entre outros, poderiam ser fruto de diversos trabalhos

que utilizem diferentes abordagens. Algoritmos genéticos, programação linear e redes neurais são técnicas que podem ser utilizadas para implementar soluções de escalonamento.

REFERÊNCIAS

ABBAS, S. M.; Hassan, S.; Yun, J. Augmented reality based teaching pendant for industrial robot. In: 2012 12th International Conference on Control, Automation and Systems. 2012. p. 2210–2213.

ANTOUN et al. Kilogrid: A modular virtualization environment for the kilobot robot. pp. 3809–3814, ieee. : IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016.

ARKIN, R. C. Behavior-Based Robotics. : MIT Press, 1998.

BALA, D. ESP8266: Step by Step Tutorial for ESP8266 IOT, Arduino Nodemcu Dev Kit. : Independently published, 2018. ISBN 1730990258, 9781730990250.

BANZI, M. Getting Started with Arduino. Ill. Sebastopol, CA: Make Books - Imprint of: O’Reilly Media, 2008. ISBN 0596155514, 9780596155513.

BENI, G. From swarm intelligence to swarm robotics. Swarm Robotics, p. 1–9, 2005.

BURSTEIN, M. GitHub - mburst/dijkstras-algorithm: Implementations of Dijkstra’s shortest path algorithm in different languages. 2019. https://github.com/mburst/dijkstras- algorithm. (Accessed on 09/12/2019).

CHEN, L. J. et al. A contactless charging platform for swarm robots. In: IEEE. 37th Annual Conference of the IEEE Industrial Electronics Society - IECON. 2011. p. 4088–4093. CORRELL; NIKOLAUS; MARTINOLI, A. Towards multi-robot inspection of industrial machinery - from distributed coverage algorithms to experiments with miniature robotic swarms. IEEE Robotics and Automation Magazine, v. 16, 01 2009.

DESHPANDE, A. M. Robot Swarm based on Ant Foraging Hypothesis with Adaptive Lèvy Flights. Dissertação (Mestrado) — University of Cincinnati, 2017.

DORIGO, M.; BIRATTARI, M.; BRAMBILLA, M. Swarm robotics. Scholarpedia, v. 9, n. 1, p. 1463, 2014.

ECHEVERRIA, G. et al. Simulating complex robotic scenarios with morse. In: SIMPAR. 2012. p. 197–208. Disponível em: <http://morse.openrobots.org>.

EIJI, N.; SEI, N. Leg-wheel robot: a futuristic mobile platform for forestry industry. In: Proceedings of 1993 IEEE/Tsukuba International Workshop on Advanced Robotics. 1993. p. 109–112.

FERNANDEZ-CARAMES, T. M. et al. Towards an autonomous industry 4.0 warehouse: A uav and blockchain-based system for inventory and traceability applications in big data-driven supply chain management. Sensors, v. 19, n. 10, 2019. ISSN 1424-8220.

GATTULLO, M. et al. Towards augmented reality manuals for industry 4.0: A methodology. Robotics and Computer-Integrated Manufacturing, v. 56, p. 276 – 286, 2019. ISSN 0736- 5845.

GCTRONIC. Elisa-3 GCTronic Wiki. 2019. http://www.gctronic.com/doc/index.php/Elisa-3. Last accessed 12 July 2019.

GIANNI, M.; FERRI, F.; PIRRI, F. Are: Augmented reality environment for mobile robots. In: SPRINGER. Conference Towards Autonomous Robotic Systems. 2013. p. 470–483.

GILMARTIN , M. Introduction to autonomous mobile robots, by roland siegwart and illah r. nourbakhsh. Robotica, v. 23, p. 271 – 272, 03 2005.

HU, C.; FU, Q.; YUE, S. Colias iv: The affordable micro robot platform with bio-inspired vision. In: SPRINGER. Annual Conference Towards Autonomous Robotic Systems. 2018. p. 197–208.

JDEED, M. et al. Spiderino-a low-cost robot for swarm research and educational purposes. In: IEEE. 13th Workshop on intelligent solutions in embedded systems (WISES). 2017. p. 35–39.

JIN, P.; MATIKAINEN, P.; SRINIVASA, S. S. Sensor fusion for fiducial tags: Highly robust pose estimation from single frame rgbd. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2017. p. 5770–5776.

JURADO, G. et al. Automatic generation and detection of highly reliable fiducial markers under occlusion. 47, 2280–2292. doi: 10.1016/j.patcog.2014.01.005. ed. : Pattern Recogn, 2014.

KAGERMANN, H.; WAHLSTER, W.; HELBIG, J. Securing the future of german manufacturing industry. Recommendations for implementing the strategic initiative INDUSTRIE, acatech–National Academy of Science and Engineering, 2013.

KERNBACH, S. et al. Re-embodiment of honeybee aggregation behavior in an artificial micro- robotic system. Adaptive Behavior, Sage Publications Sage UK: London, England, v. 17, n. 3, p. 237–259, 2009.

KOENIG, N.; HOWARD, A. Design and use paradigms for gazebo, an open-source multi-robot simulator. In: IEEE. 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566). 2004. v. 3, p. 2149–2154.

KROLL, A.; SOLDAN, S. Survey results on status, needs and perspectives for using mobile service robots in industrial applications. In: 11th International Conference on Control, Automation, Robotics and Vision (ICARCV 2010). Singapore: , 2010. p. 621–626.

LEE, C. Development of an industrial internet of things (iiot) based smart robotic warehouse management system. In: CONF-IRM 2018 Proceedings. 43. 2018.

LEE, W.; KIM, D. Autonomous shepherding behaviors of multiple target steering robots. Sensors, v. 17, n. 12, 2017.

LI, J.-t.; LIU, H.-j. Design optimization of amazon robotics. Automation, Control and Intelligent Systems, v. 4, n. 2, p. 48–52, 2016.

MASON, R. Developing a profitable online grocery logistics business: Exploring innovations in ordering, fulfilment, and distribution at ocado. In: . 2019. p. 365–383.

MCLURKIN, J. Experiment design for large multi-robot systems. 01 2009.

MICHEL, O. Webots: Symbiosis between virtual and real mobile robots. In: SPRINGER. International Conference on Virtual Worlds. 1998. p. 254–263.

MILLARD et al. ARDebug: An Augmented Reality Tool for Analysing and Debugging Swarm Robotic Systems. Ai 5:87. doi: 10.3389/frobt.2018.00087. : Front. Robot., 2018. MONDADA, F. et al. The e-puck, a robot designed for education in engineering. In: IPCB: INSTITUTO POLITÉCNICO DE CASTELO BRANCO. Proceedings of the 9th conference on autonomous robot systems and competitions. 2009. v. 1, p. 59–65.

NAVARRO, I.; MATIA, F. An introduction to swarm robotics. ISRN Robotics, p. 10 pages, 2013.

NEE, A. Y. et al. Augmented reality applications in design and manufacturing. CIRP annals, Elsevier, v. 61, n. 2, p. 657–679, 2012.

PICKEM, D. et al. The robotarium: A remotely accessible swarm robotics research testbed. IEEE International Conference on Robotics and Automation, v. 16, 2017.

POULIN, M. LEDs and sensing technology enable new ranging applications. 2014. Disponível em: <https://www.ledsmagazine.com/articles/print/volume- 11/issue-6/features/developer-forum/leds-and-sensing-technology-enable-new-ranging-

applications.html>.

QI, J.; LIU, G.-P. Phro: a novel and low-cost multi-robot experiment system. In: 13th World Congress on Intelligent Control and Automation (WCICA). 2018. p. 1097–1103.

RADIOLUX. PID Without a PhD. 2016. Disponível em:

<https://radiolux.com.ua/files/pdf/TP4056-manual.pdf>.

REINA et al. Ark: Augmented reality for kilobots. vol. 2, no. 3, pp. 1755–1761. : IEEE Robotics and Automation letters, 2017.

REINA, A. et al. Augmented reality for robots: virtual sensing technology applied to a swarm of e-pucks. 15417936. ed. Montreal, QC, Canada: NASA/ESA Conference on Adaptive Hardware and Systems (AHS), 2015.

ROBOTICS, R. Elisa-3 RoadNarrows Robotics. 2019.

https://roadnarrows.com/products/elisa-bot. Last accessed 15 July 2019.

ROBOTICS, R. kilobot RoadNarrows Robotics. 2019.

https://roadnarrows.com/collections/types?q=Kilobot. Last accessed 9 July 2019.

ROHMER, E.; SINGH, S. P.; FREESE, M. V-REP: A versatile and scalable robot simulation framework. In: IEEE. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2013. p. 1321–1326.

ROS. ar_track_alvar ROS Wiki. 2019. http://wiki.ros.org/ar_track_alvar. Last accessed 9 May 2019.

ROS. ROS.org. 2019. https://www.ros.org/aboutros. Last accessed 8 May 2019. ROS. rviz ROS Wiki. 2019. http://wiki.ros.org/rviz. Last accessed 9 May 2019.

ROS. USB_CAM ROS Wiki. 2019. http://wiki.ros.org/usbcam.Lastaccessed9May2019.

RUBENSTEIN, M.; AHLER, C.; NAGPAL, R. Kilobot: A low cost scalable robot system for collective behaviors. In: IEEE. 2012 IEEE International Conference on Robotics and Automation. 2012. p. 3293–3298.

RUSSELL, S. J.; NORVIG, P. Artificial Intelligence: A Modern Approach. 07632. ed. New Jersey: Prentice Hall, Englewood Cliffs, 1995.

SALHAOUI, M. et al. Smart industrial iot monitoring and control system based on uav and cloud computing applied to a concrete plant. Sensors, v. 19, n. 15, 2019. ISSN 1424-8220. SALVARO, M. Virtual sensing technology applied to a swarm of autonomous robots. Tese (Doutorado) — UNIVERSITA DI BOLOGNA, 2014. Disponível em: <http://amslaurea.unibo.it/8508/>.

SHARKEY, A. J. C. Robots, insects and swarm intelligence. Artificial Intelligence Review, v. 26, n. 4, p. 255–268, 2006.

SHARKEY, A. J. C.; SHARKEY, N. The application of swarm intelligence to collective robots. Advances in Applied Artificial Intelligence, 2006.

SHIRAZI, A. R. Bio-Inspired Self-Organizing Swarm Robotics. Tese (Doutorado) — University of Surrey, 2017.

SOARES, J. M.; NAVARRO, I.; MARTINOLI, A. The khepera iv mobile robot: performance evaluation, sensory data and software toolbox. In: SPRINGER. Robot 2015: Second Iberian Robotics Conference. 2016. p. 767–781.

WESCOTT, T. PID Without a PhD. 2000. Disponível em:

<http://fabacademy.org/archives/2014/students/shooshtari.ali/week16/images/PID-Without-a- PhD.pdf>.

WHEELER, A. et al. Diagnosing Robotic Swarms (Dr. Swarm). 2019. Disponível em: <https://digitalcommons.wpi.edu/mqp-all/7110>. Acesso em: 11 de Junho de 2019.

WURMAN, P. R.; D’ANDREA, R.; MOUNTZ, M. Coordinating hundreds of cooperative, autonomous vehicles in warehouses. In: Proceedings of the 19th National Conference on Innovative Applications of Artificial Intelligence - Volume 2. : AAAI Press, 2007. (IAAI’07), p. 1752–1759. ISBN 978-1-57735-323-2.

YOGESWARAN, M.; PONNAMBALAM, S. G. Swarm robotics: An extensive research review. Advanced Knowledge Application in Practice, Igor Fuerstner (Ed.), InTech, 2010. ZAEH, M. F.; VOGL, W. Interactive laser-projection for programming industrial robots. In: 2006 IEEE/ACM International Symposium on Mixed and Augmented Reality. 2006. p. 125–128.

ZELENKA, J.; KASANICKÝ, T.; BUDINSKá, I. A self-adapting method for 3d environment exploration inspired by swarm behaviour. In: FERRARESI, C.; QUAGLIA, G. (Ed.). Advances in Service and Industrial Robotics. Cham: Springer International Publishing, 2018. p. 493– 502.

ZHANG, X.; FRONZ, S.; NAVAB, N. Visual marker detection and decoding in ar systems: A comparative study. In: Proceedings of the 1st International Symposium on Mixed and Augmented Reality. Washington, DC, USA: IEEE Computer Society, 2002. (ISMAR ’02), p. 97–. ISBN 0-7695-1781-1. Disponível em: <http://dl.acm.org/citation.cfm?id=850976.854955>.

Documentos relacionados