• Nenhum resultado encontrado

Apesar dos resultados obtidos ao longo desta tese serem promissores, existem ainda aspetos que necessitam de ser estudados com mais atenção em trabalhos futuros. Encontradas as condições ideais conducentes à formação de C3A e C3S durante o tratamento térmico, será ainda necessário realizar um estudo detalhado e sistemático acerca do processamento dos pós, com vista à obtenção da distribuição granulométrica ideal. Deste modo, sugerem-se um conjunto de ações:

• Melhorar e otimizar o processo de moagem dos pós C3A e C3S;

• Efetuar um estudo sistemático acerca da distribuição de tamanho de partícula dos pós de partida, para identificar qual a ideal e otimizar o processo para que seja reprodutível;

• Formular novas composições de cimentos biocerâmicos, de forma a que os cimentos biocerâmicos contenham na sua composição agentes aceleradores;

• Efetuar estudos in vitro em fibroblastos de forma a avaliar a biocompatibilidade, a viabilidade da resposta pulpar e a infiltração; • Realizar estudos de cinética de hidratação usando técnicas de calorimetria

e de difração de raios-X in situ em colaboração com outros laboratórios que disponham destas facilidades.

91

Referências Bibliográficas

(1) Emmanoel, G.; Jesus, M. De; Neto, D. A. dos A. Microbiologia associada às lesões periapicais. Cad. Grad. Ciências Biológicas e da Saúde 2013, 1 (17), 125–134. (2) Chung, S. H.; Park, Y. S. Local drug delivery in endodontics: A literature review. J.

Drug Deliv. Sci. Technol. 2017, 39, 334–340 DOI: 10.1016/j.jddst.2017.04.018.

(3) Leonardi, D.; Giovanini, A.; Almeida, S.; Schramm, C.; Baratto-Filho, F. Alterações pulpares e periapicais. Tópicos Odontol. 2011, 8 (4), 47–61.

(4) Pereira, L. Uma abordagem endodôntica contemporânea com o uso de cimento

biocerâmico; 2016; pp 1–5.

(5) Asgary, S.; Shahabi, S.; Jafarzadeh, T.; Amini, S.; Kheirieh, S. The Properties of a New Endodontic Material. J. Endod. 2008, 34 (8), 990–993 DOI: 10.1016/j.joen.2008.05.006. (6) Torabinejad, M.; Parirokh, M. Mineral Trioxide Aggregate: A Comprehensive Literature

Review-Part II: Leakage and Biocompatibility Investigations. J. Endod. 2010, 36 (2), 190–202 DOI: 10.1016/j.joen.2009.09.010.

(7) Antonieta, M.; Carvalho, V.; Rodrigues, N.; Oliveira, N.; Carvalho, A. P.; Rodrigues, G.

Caso Clínico Tratamento de dentes com perfuração usando cimento reparador a base de MTA; 2006; Vol. 1998, pp 3–6.

(8) Mohamed, H.; Ahmed, A.; Luddin, N.; Kannan, T. P.; Mokhtar, K. I.; Ahmad, A.; Ki, M.; Ahmad, A. White mineral trioxide aggregate mixed with calcium chloride

dihydrate : chemical analysis and biological properties. Restor. Dent. Endod. 2017, 42 (3), 176–187.

(9) Tawil, P. Z.; Duggans, D. J.; Galicia, J. C. MTA: A Clinical Review. HHS Public Access 2017, 106 (3), 201–207 DOI: 10.1002/bdra.23483.Autoantibodies.

(10) Seeley, R. R.; Sthephens;, T. D.; Tate:, P. Anatomia e fisiologia_Seeley.pdf, 6a Edição.;

Lusociência, Ed.; 2013.

(11) Madeira, M. C.; Rizzolo, R. J. C. Anatomia Interior dos Dentes. In Anatomia Interior

dos Dentes; 2014; pp 101–102.

(12) Teixeira;, L. M. de S.; Reher;, P.; Reher;, V. G. S. ANATOMIA APLICADA A LA

MATRONERIA.pdf, 2a Edição.; LTDA, G. K., Ed.; 2008.

(13) Dentistas, O. dos M. Cárie e Dentisteria https://www.omd.pt/publico/carie-dentisteria (accessed Aug 7, 2018).

(14) Digital, C. Abcesso Dentário - Consultório Digital

http://consultoriodigital.pt/saude/saude-patologias/abcesso-dentario/ (accessed Sep 7, 2018).

(15) Valentim, R. de M.; Silva, L. M. da M.; Silva, C. C. da; Carvalho, N. K.; Vieira, V. T. L.; Silva, E. J. N. L. da. Revisão de literatura das propriedades físico-químicas e biológicas de um cimento à base de silicato de cálcio. Revistas 2016, 73 (3), 237 DOI: 10.18363/rbo.v73n3.p.237.

92 (16) Sharma, N.; Leslie Henston, S.; Nitin, S.; Subhash, C.; Shamsher, S.; Raina, S. Root

canal sealers and its role in successful endodontics- A review. Ann. Dent. Res. 2012, 2 (2), 68–78.

(17) Bernardes, R. A.; de Amorim Campelo, A.; Junior, D. S. S.; Pereira, L. O.; Duarte, M. A. H.; Moraes, I. G.; Bramante, C. M. Evaluation of the flow rate of 3 endodontic sealers: Sealer 26, AH Plus, and MTA Obtura. Oral Surgery, Oral Med. Oral Pathol.

Oral Radiol. Endodontology 2010, 109 (1), e47–e49 DOI: 10.1016/j.tripleo.2009.08.038.

(18) Suresh Chandra, B.; Gopikrishna, V. Grossman ’ s Endodontic Practice - 13th edition; 2014.

(19) Camps, J.; Pommel, L.; Bukiet, F.; About, I. Influence of the powder/liquid ratio on the properties of zinc oxide-eugenol-based root canal sealers. Dent. Mater. 2004, 20 (10), 915–923 DOI: 10.1016/j.dental.2004.02.002.

(20) Santos, C. S. da C. M. R. V. dos. Estudo in vitro da biocompatibilidade dos cimentos de obturação endodônticos, Universidade do Porto, 2012.

(21) Chhabra, A.; Teja, T. S.; Jindal, V.; Singla, M. G.; Warring, K. Fate of Extruded Sealer : A Matter of Concern. 2011, 5 (September), 168–172.

(22) Tyagi, S.; Tyagi, P.; Mishra, P. Evolution of root canal sealers: An insight story. Eur. J.

Gen. Dent. 2013, 2 (3), 199 DOI: 10.4103/2278-9626.115976.

(23) Moorer, W. R.; Genet, J. M. Antibacterial activity of gutta-percha cones attributed to the zinc oxide component. Oral Surgery, Oral Med. Oral Pathol. 1982, 53 (5), 508–517 DOI: 10.1016/0030-4220(82)90468-6.

(24) Panzarini, S. R.; Trevisan, C. L.; Brandini, D. A.; Poi, W. R.; Sonoda, C. K.; Luvizuto, E. R.; dos Santos, C. L. V. Intracanal dressing and root canal filling materials in tooth replantation: A literature review. Dent. Traumatol. 2012, 28 (1), 42–48 DOI:

10.1111/j.1600-9657.2011.01023.x.

(25) Hashieh, I. A.; Pommel, L.; Camps, J. Concentration of eugenol apically released from zinc oxide-eugenol-based sealers. J. Endod. 1999, 25 (11), 713–715 DOI:

10.1016/S0099-2399(99)80114-9.

(26) Desai, S.; Chandler, N. Calcium Hydroxide-Based Root Canal Sealers: A Review. J.

Endod. 2009, 35 (4), 475–480 DOI: 10.1016/j.joen.2008.11.026.

(27) ORSTAVIK, D. Materials used for root canal obturation: technical, biological and clinical testing. Endod. Top. 2005, 12 (1), 25–38 DOI: 10.1111/j.1601-

1546.2005.00197.x.

(28) Patel, R.; Cohenca, N. Maturogenesis of a cariously exposed immature permanent tooth using MTA for direct pulp capping: A case report. Dent. Traumatol. 2006, 22 (6), 328– 333 DOI: 10.1111/j.1600-9657.2006.00471.x.

(29) Witherspoon, D. E.; Small, J. C.; Harris, G. Z. Mineral trioxide aggregate pulpotomies- A case series outcomes assessment. J. Am. Dent. Assoc. 2006, 137 (May).

(30) Murray, P. E.; García-Godoy, F. The incidence of pulp healing defects with direct capping materials. Am. J. Dent. 2006, 19 (3), 171–177.

93 (31) Guimarães, B. M.; Amoroso-Silva, P. A.; Alcalde, M. P.; Marciano, M. A.; Bombarda

De Andrade, F.; Hungaro Duarte, M. A. Influence of ultrasonic activation of 4 root canal sealers on the filling quality. J. Endod. 2014, 40 (7), 964–968 DOI:

10.1016/j.joen.2013.11.016.

(32) Cohen, B. I.; Pagnillo, M. K.; Musikant, B. L.; Deutsch, A. S. Formaldehyde evaluation from endodontic materials. Oral Health 1998, 88 (12), 37–39.

(33) Evcil, M. S.; Kesmen, Z.; Gurbuz, T.; Keles, A. Release of formaldehyde from endodontic sealers. Asian J. Chem. 2009, 21 (3), 2091–2098.

(34) Mesquita, C.; Vieira, R. Estudo in vitro da biocompatibilidade dos cimentos de obturação endodônticos. 2012.

(35) Nicholson, J. W. Chemistry of glass-ionomer cements: A review. Biomaterials 1998, 19 (6), 485–494 DOI: 10.1016/S0142-9612(97)00128-2.

(36) Roberts, H. W.; Toth, J. M.; Berzins, D. W.; Charlton, D. G. Mineral trioxide aggregate material use in endodontic treatment: A review of the literature. Dent. Mater. 2008, 24 (2), 149–164 DOI: 10.1016/j.dental.2007.04.007.

(37) Neto, I. M.; Magnabosco, K. S. F.; Pereira, C. M.; Faitaroni, L. A.; Estrela, C. R. A.; Borges, Á. H. Utilização de cimento a base de MTA no tratamento de perfuração

radicular : relato de caso clínico MTA based cement in root perforation : case report;

2012; Vol. 21, pp 553–556.

(38) Naik, R.; Pudakalkatti, P.; Hattarki, S. Can MTA be: Miracle trioxide aggregate? J.

Indian Soc. Periodontol. 2014, 18 (1), 5 DOI: 10.4103/0972-124X.128190.

(39) Camilleri, J. Characterization of hydration products of mineral trioxide aggregate. 2008, No. Camilleri 2007, 408–417 DOI: 10.1111/j.1365-2591.2007.01370.x.

(40) Scha, E.; Dammaschke, T.; Gerth, H. U. V; Zu, H. Chemical and physical surface and bulk material characterization of white ProRoot MTA and two Portland cements. 2005, 731–738 DOI: 10.1016/j.dental.2005.01.019.

(41) Parirokh, M.; Torabinejad, M. Mineral Trioxide Aggregate: A Comprehensive Literature Review-Part I: Chemical, Physical, and Antibacterial Properties. J. Endod. 2010, 36 (1), 16–27 DOI: 10.1016/j.joen.2009.09.006.

(42) Hungaro Duarte, M. A.; Minotti, P. G.; Rodrigues, C. T.; Zapata, R. O.; Bramante, C. M.; Filho, M. T.; Vivan, R. R.; Gomes De Moraes, I.; Bombarda De Andrade, F. Effect of different radiopacifying agents on the physicochemical properties of white portland cement and white mineral trioxide aggregate. J. Endod. 2012, 38 (3), 394–397 DOI: 10.1016/j.joen.2011.11.005.

(43) Darvell, B. W.; Wu, R. C. T. MTA - An Hydraulic Silicate Cement: Review update and setting reaction. Dent. Mater. 2011, 27 (5), 407–422 DOI: 10.1016/j.dental.2011.02.001. (44) Islam, I.; Kheng Chng, H.; Jin Yap, A. U. Comparison of the physical and mechanical

properties of MTA and portland cement. J. Endod. 2006, 32 (3), 193–197 DOI: 10.1016/j.joen.2005.10.043.

(45) ASTM C191 - 18 Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle https://www.astm.org/Standards/C191 (accessed Sep 11, 2018).

94 (46) ASTM C266 - 15 Standard Test Method for Time of Setting of Hydraulic-Cement Paste

by Gillmore Needles https://www.astm.org/Standards/C266 (accessed Sep 11, 2018). (47) Onat Altan, H. the Setting Mechanism of Mineral Trioxide Aggregate. J. Istanbul Univ.

Fac. Dent. 2016, 50 (1), 65–72 DOI: 10.17096/jiufd.50128.

(48) Ber, B. S.; Hatton, J. F.; Stewart, G. P. Chemical Modification of ProRoot MTA to Improve Handling Characteristics and Decrease Setting Time. J. Endod. 2007, 33 (10), 1231–1234 DOI: 10.1016/j.joen.2007.06.012.

(49) Fridland, M.; Rosado, R. Mineral trioxide aggregate (MTA) solubility and porosity with different water-to-powder ratios. J. Endod. 2003, 29 (12), 814–817 DOI:

10.1097/00004770-200312000-00007.

(50) Dorozhkin, S. V. Amorphous calcium (ortho)phosphates. Acta Biomater. 2010, 6 (12), 4457–4475 DOI: 10.1016/j.actbio.2010.06.031.

(51) Bohner, M.; Gbureck, U.; Barralet, J. E. Technological issues for the development of more efficient calcium phosphate bone cements: A critical assessment. Biomaterials 2005, 26 (33), 6423–6429 DOI: 10.1016/j.biomaterials.2005.03.049.

(52) Shahrezaei, M.; Shahrouzi, J.; Hesaraki, S.; Zamanian, A. α-Tricalcium Phosphate Effect on the Properties of Calcium Phosphate Bone Cements. J. Arch. Mil. Med. 2014, 2 (2) DOI: 10.5812/jamm.16516.

(53) Wang, W. H.; Wang, C. Y.; Shyu, Y. C.; Liu, C. M.; Lin, F. H.; Lin, C. P.

Compositional characteristics and hydration behavior of mineral trioxide aggregates. J.

Dent. Sci. 2010, 5 (2), 53–59 DOI: 10.1016/S1991-7902(10)60009-8.

(54) Viola, N.; Filho, M. T. MTA versus Portland cement: review of literature. Rsbo 2011, 8 (4), 446–452.

(55) Komabayashi, T.; Spångberg, L. S. W. Comparative Analysis of the Particle Size and Shape of Commercially Available Mineral Trioxide Aggregates and Portland Cement: A Study with a Flow Particle Image Analyzer. J. Endod. 2008, 34 (1), 94–98 DOI:

10.1016/j.joen.2007.10.013.

(56) Belío-Reyes, I. A.; Bucio, L.; Cruz-Chavez, E. Phase Composition of ProRoot Mineral Trioxide Aggregate by X-Ray Powder Diffraction. J. Endod. 2009, 35 (6), 875–878 DOI: 10.1016/j.joen.2009.03.004.

(57) Coomaraswamy, K. S.; Lumley, P. J.; Hofmann, M. P. Effect of Bismuth Oxide Radioopacifier Content on the Material Properties of an Endodontic Portland Cement- based (MTA-like) System. J. Endod. 2007, 33 (3), 295–298 DOI:

10.1016/j.joen.2006.11.018.

(58) Goel, M.; Balla, S.; Sachdeva, G.; Shweta. Comperative evaluation of MTA, calcium hydroxide and Portland Cement as a root-end filling materials: a comprehensive review.

Ijds.in 2011, 3 (5), 83–88.

(59) Camilleri, J. Evaluation of the physical properties of an endodontic Portland cement incorporating alternative radiopacifiers used as root-end filling material. Int. Endod. J. 2010, 43 (3), 231–240 DOI: 10.1111/j.1365-2591.2009.01670.x.

(60) Hwang, Y. C.; Lee, S. H.; Hwang, I. N.; Kang, I. C.; Kim, M. S.; Kim, S. H.; Son, H. H.; Oh, W. M. Chemical composition, radiopacity, and biocompatibility of Portland cement

95 with bismuth oxide. Oral Surgery, Oral Med. Oral Pathol. Oral Radiol. Endodontology 2009, 107 (3), 96–102 DOI: 10.1016/j.tripleo.2008.11.015.

(61) Camilleri, J.; Montesin, F. E.; Brady, K.; Sweeney, R.; Curtis, R. V.; Ford, T. R. P. The constitution of mineral trioxide aggregate. Dent. Mater. 2005, 21 (4), 297–303 DOI: 10.1016/j.dental.2004.05.010.

(62) Chiang, T. Y.; Wei, C. K.; Ding, S. J. Effects of bismuth oxide on physicochemical properties and osteogenic activity of dicalcium silicate cements. J. Med. Biol. Eng. 2014,

34 (1), 30–35 DOI: 10.5405/jmbe.1386.

(63) Slompo, C.; Peres-Buzalaf, C.; Gasque, K. C. da S.; Damante, C. A.; Ordinola-Zapata, R.; Duarte, M. A. H.; de Oliveira, R. C. Experimental calcium silicate-based cement with and without zirconium oxide modulates fibroblasts viability. Braz. Dent. J. 2015, 26 (6), 587–591 DOI: 10.1590/0103-6440201300316.

(64) Húngaro Duarte, M. A.; de Oliveira El Kadre, G. D. arc; Vivan, R. R.; Guerreiro Tanomaru, J. M.; Filho, M. T.; de Moraes, I. G. Radiopacity of Portland Cement Associated With Different Radiopacifying Agents. J. Endod. 2009, 35 (5), 737–740 DOI: 10.1016/j.joen.2009.02.006.

(65) Bueno, C. E. d S.; Zeferino, E. G.; Manhaes, J. L. R. C.; Rocha, D. G. P.; Cunha, R. S.; De Martin, A. S. Study of the bismuth oxide concentration required to provide Portland cement with adequate radiopacity for endodontic use. Oral Surgery, Oral Med. Oral

Pathol. Oral Radiol. Endodontology 2009, 107 (1), e65–e69 DOI:

10.1016/j.tripleo.2008.09.016.

(66) Lee, Y.; Lee, B.; Lin, F.; Yun, A.; Lan, W.; Lin, C. Effects of physiological

environments on the hydration behavior of mineral trioxide aggregate. Biomaterials 2004, 25, 787–793 DOI: 10.1016/S0142-9612(03)00591-X.

(67) Camilleri, J. Hydration mechanisms of mineral trioxide aggregate. 2007, No. 2005, 462– 470 DOI: 10.1111/j.1365-2591.2007.01248.x.

(68) Fillapex, M. T. a; Mineral, A.; Recomenda-se, E. S.; Armazene, A.; Uso, E. S. D. E.

MTA Fillapex- Endodontic Sealer.

(69) Martins, I. Propriedades físico-químicas do MTA versus Cimento de Portland Inês Martins Orientador : Mestre Paulo Palma Co-Orientador : Engenheiro Ângelo Oliveira, Universidade de Coimbra, 2012.

(70) Rosas, D. P. F. Protecções Pulpares Directas - MTA vs Hidróxido de cálcio.pdf, Universidade Fernando Pessoa, 2008.

(71) Moretti, A. B. S.; Sakai, V. T.; Oliveira, T. M.; Fornetti, A. P. C.; Santos, C. F.;

Machado, M. A. A. M.; Abdo, R. C. C. The effectiveness of mineral trioxide aggregate, calcium hydroxide and formocresol for pulpotomies in primary teeth. Int. Endod. J. 2008, 41 (7), 547–555 DOI: 10.1111/j.1365-2591.2008.01377.x.

(72) Ginjeira, A.; Albuquerque, B.; Paulo, S.; Ferreira, M. M.; Capelas, J. A. Glossário de Termos Endodônticos. Rev. Port. Estomatol. Med. Dentária e Cir. Maxilofac. 2008, 49 (2), 119–125 DOI: 10.1016/S1646-2890(08)70045-1.

(73) Coelho, A.; Canta, J. P.; Marques, P. Pulpotomia de Dentes Decíduos com Mineral Trióxido Agregado. Caso Clínico. Rev. Port. Estomatol. Med. Dent. e Cir. Maxilofac. 2005, 46, 1–6.

96 (74) Abarajithan, M.; Velmurugan, N.; Kandaswamy, D. Management of recently

traumatized maxillary central incisors by partial pulpotomy using MTA: Case reports with two-year follow-up. J. Conserv. Dent. 2010, 13 (2), 110 DOI: 10.4103/0972- 0707.66724.

(75) Parirokh, M.; Torabinejad, M.; Dummer, P. M. H. Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview – part I: vital pulp therapy. Int.

Endod. J. 2018, 51 (3), 177–205 DOI: 10.1111/iej.12841.

(76) Ferreira, R.; Cunha, R.; Bueno, C.; Dotto, S. Tratamento endodôntico em dentes

permanentes jovens com necrose pulpar e ápice incompleto - Apexificação. Rev. da Fac.

Odontol. 2002, 7 (1), 29–32.

(77) Pinar Erdem, A.; Sepet, E. Mineral trioxide aggregate for obturation of maxillary central incisors with necrotic pulp and open apices. Dent. Traumatol. 2008, 24 (5), 38–41 DOI: 10.1111/j.1600-9657.2008.00636.x.

(78) Marquez, S. C. Agregado de Trióxido Mineral em Endodontia, Universidade de Lisboa, 2011.

(79) He, Z.; Liang, W.; Wang, L.; Wang, J. Synthesis of C3S by sol-gel technique and its features. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2010, 25 (1), 138–141 DOI: 10.1007/s11595-010-1138-0.

(80) C.L., Z.; P., S.; Q., W. Preparation of C3S by the sol-gel method. 2016, p 5.

(81) Voicu, G.; Bǎdǎnoiu, A. I.; Andronescu, E.; Chifiruc, C. M. Synthesis, characterization and bioevaluation of partially stabilized cements for medical applications. Cent. Eur. J.

Chem. 2013, 11 (10), 1657–1667 DOI: 10.2478/s11532-013-0297-1.

(82) Hou, G.; Shen, X.; Xu, Z. Composition design for high C3S cement clinker and its mineral formation. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2007, 22 (1), 56–60 DOI: 10.1007/s11595-005-1056-8.

(83) Wesselsky, A.; Jensen, O. M. Synthesis of pure Portland cement phases. Cem. Concr.

Res. 2009, 39 (11), 973–980 DOI: 10.1016/j.cemconres.2009.07.013.

(84) Chang, K.; Chang, C.; Huang, Y.; Chen, M.; Lin, F.; Lin, C. Effect of Tricalcium Aluminate on the Physicochemical Properties , Bioactivity , and Biocompatibility of Partially Stabilized Cements. 2014, 9 (9) DOI: 10.1371/journal.pone.0106754. (85) Voicu, G.; Daniela, C.; Andronescu, E. Modified Pechini synthesis of tricalcium

aluminate powder. 2012, 3, 3–9 DOI: 10.1016/j.matchar.2012.08.002.

(86) Garcia-godoy, F.; Sciences, V.; Surgery, R.; Sciences, V. Calcium silicate-based

cements and functional impacts of various constituents. HHS Public Access 2018, 36 (1), 8–18 DOI: 10.4012/dmj.2015-425.Calcium.

(87) Li, X.; Ouzia, A.; Scrivener, K. Laboratory synthesis of C3S on the kilogram scale. Cem.

Concr. Res. 2018, 108 (April), 201–207 DOI: 10.1016/j.cemconres.2018.03.019.

(88) Baura, G. D. Iron Oxide Nanoparticles for Cancer Diagnosis and Therapy; Elsevier Inc., 2012.

97 morphology of radiopaque tricalcium silicate cement exposed to different curing

conditions. Dent. Mater. 2012, 28 (5), 584–595 DOI: 10.1016/j.dental.2012.02.006. (90) Watson, T. F.; Atmeh, A. R.; Sajini, S.; Cook, R. J.; Festy, F. Present and future of glass-

ionomers and calcium-silicate cements as bioactive materials in dentistry: Biophotonics- based interfacial analyses in health and disease. Dent. Mater. 2014, 30 (1), 50–61 DOI: 10.1016/j.dental.2013.08.202.

(91) Bergold, S. T.; Goetz-Neunhoeffer, F.; Neubauer, J. Interaction of silicate and aluminate reaction in a synthetic cement system: Implications for the process of alite hydration.

Cem. Concr. Res. 2017, 93, 32–44 DOI: 10.1016/j.cemconres.2016.12.006.

(92) Yi, H. C.; Moore, J. J.; Schowengerdt, F. D.; Robinson, L. A.; Manerbino, A. R. Preparation of calcium aluminate matrix composites by combustion synthesis. 2002, 7, 4537–4543.

(93) Ghoroi, C.; Suresh, A. K. Solid–Solid Reaction Kinetics: Formation of Tricalcium Aluminate. 2007, 53 (2) DOI: 10.1002/aic.

(94) Danner, T.; Justnes, H.; Geiker, M.; Andreas, R. Early hydration of C3A–gypsum pastes with Ca- and Na-lignosulfonate. Cem. Concr. Res. 2016, 79, 333–343 DOI:

10.1016/j.cemconres.2015.10.008.

(95) Restrepo, J. C.; Chavarriaga, A.; Restrepo, O. J.; Tobon, J. I. Synthesis of hydraulically active calcium silicates produced by combustion methods. Mater. Res. Soc. Symp. Proc. 2015, 1768, 40–50 DOI: 10.1557/opl.2015.321.

(96) Æ, P. J. M. M. Æ. D. C. C. D. M.; Casanova, I. Analysis of cubic and orthorhombic C 3 A hydration in presence of gypsum and lime. 2009, 2038–2045 DOI: 10.1007/s10853- 009-3292-3.

(97) Zivica, V.; Palou, M. T.; Bagel, L.; Krizma, M. Low-porosity tricalcium aluminate hardened paste. Constr. Build. Mater. 2013, 38, 1191–1198 DOI:

10.1016/j.conbuildmat.2012.09.025.

(98) Quennoz, A.; Scrivener, K. L. Hydration of C3A–gypsum systems. Cem. Concr. Res. 2012, 42 (7), 1032–1041 DOI: 10.1016/j.cemconres.2012.04.005.

(99) Jupe, A.; Turrillas, X. M.; Barnes, P. Fast In Situ X-Ray-diffraction Studies of Chemical Reactions: A Synchrotron View of the Hydration of Tricalcium Aluminate. 1996, No. January 2016 DOI: 10.1103/PhysRevB.53.R14697.

(100) Naber, C.; Goetz-Neunhoeffer, F.; Göbbels, M.; Rößler, C.; Neubauer, J. Synthesis of monocrystalline Ca3SiO5 using the optical floating zone method. Cem. Concr. Res. 2016, 85, 156–162 DOI: 10.1016/j.cemconres.2016.04.008.

(101) Tas, a C. Chemical Preparation of the Binary Compounds in the Calcia–Alumina System by Self-Propagating Combustion Synthesis. J. Am. Ceram. Soc. 1998, 81 (11), 2853–2863 DOI: 10.1111/j.1151-2916.1998.tb02706.x.

(102) Urban, M.; Neogrady, P.; Kello, V.; Sadlej, A. J. Combustion Synthesis of Calcium Aluminates. Potentials 1996, 31 (10), 557–565 DOI: 10.1016/j.jmgm.2005.11.005. (103) Silva, H. M. A. R. Espectroscopia no infravermelho por transformada de Fourier

98 (104) Zaki, M. I.; Knözinger, H.; Tesche, B.; Mekhemer, G. A. H. Influence of phosphonation

and phosphation on surface acid-base and morphological properties of CaO as

investigated by in situ FTIR spectroscopy and electron microscopy. J. Colloid Interface

Sci. 2006, 303 (1), 9–17 DOI: 10.1016/j.jcis.2006.07.011.

(105) Horgnies, M.; Chen, J. J.; Bouillon, C. Overview about the use of fourier transform infrared spectroscopy to study cementitious materials. WIT Trans. Eng. Sci. 2013, 77, 251–262 DOI: 10.2495/MC130221.

(106) Bortoluzzi, E. A.; Broon, N. J.; Bramante, C. M.; Felippe, W. T.; Tanomaru Filho, M.; Esberard, R. M. The Influence of Calcium Chloride on the Setting Time, Solubility, Disintegration, and pH of Mineral Trioxide Aggregate and White Portland Cement with a Radiopacifier. J. Endod. 2009, 35 (4), 550–554 DOI: 10.1016/j.joen.2008.12.018. (107) Aranha, I. B.; Lucas, E. F. Poly(vinyl alcohol) modified with carboxy chains: evaluation

of the hydrophilic-lipophilic balance. Polímeros Ciência e Tecnol. 2001, 11 (4), 174–181 DOI: 10.1590/S0104-14282001000400007.

(108) Noh, Y. S.; Chung, S. H.; Bae, K. S.; Baek, S. H.; Kum, K. Y.; Lee, W. C.; Shon, W. J.; Rhee, S. H. Mechanical properties and microstructure analysis of mineral trioxide aggregate mixed with hydrophilic synthetic polymer. J. Biomed. Mater. Res. - Part B

Appl. Biomater. 2015, 103 (4), 777–782 DOI: 10.1002/jbm.b.33257.

(109) TAYLOR, H. F. W. Proposed Structure for Calcium Silicate Hydrate Gel. J. Am. Ceram.

Soc. 1986, 69 (6), 464–467 DOI: 10.1111/j.1151-2916.1986.tb07446.x.

(110) Sakalli, Y.; Trettin, R. Investigation of C3S hydration by environmental scanning electron microscope. J. Microsc. 2015, 259 (1), 53–58 DOI: 10.1111/jmi.12247. (111) Cannillo, V.; Chiellini, F.; Fabbri, P.; Sola, A. Production of Bioglass 45S5 -

Polycaprolactone composite scaffolds via salt-leaching. Compos. Struct. 2010, 92 (8), 1823–1832 DOI: 10.1016/j.compstruct.2010.01.017.

(112) Alqedairi, A.; Muñoz-Viveros, C. A.; Pantera, E. A.; Campillo-Funollet, M.; Alfawaz, H.; Abou Neel, E. A.; Abuhaimed, T. S. Superfast Set, Strong and Less Degradable Mineral Trioxide Aggregate Cement. Int. J. Dent. 2017, 2017 DOI:

Documentos relacionados