• Nenhum resultado encontrado

SUMÁRIO 1 INTRODUÇÃO

4 RESULTADOS E DISCUSSÃO

5.2 TRABALHOS FUTUROS

Os resultados obtidos para 50 e 80 bins de frequências mostram que vale a pena investigar mais opções para essas quantidades. Também, nada impede de se tentar uma fusão de ODFs oriundas de espectrogramas com 30 bins com ODFs oriundas de espectrogramas com outras quantidades de bins de frequências. Com isso, se obtém ainda mais heterogeneidade, e há potencial para ganhos de desempenho. Outros tipos de escalas podem ser experimentados no eixo y do espectrograma, tal como a escala Bark ou, até mesmo, um híbrido entre ela e a escala Mel. Seguindo com a experimentação no eixo y, também podem ser criadas novas faixas para o filtro de frequências, principalmente se a quantidade de bins de frequências for aumentada. Desse modo, o parâmetro  terá mais alternativas a serem exploradas, inclusive para estudar parâmetros para classes ou tipos de instrumentos diferentes. A submissão à MIREX mostrou que é importante acrescentar mais corpo à base de dados, adicionando mais tipos de trilhas de áudio e mais onsets dentro de cada tipo. Os caminhos para isso são, do mais simples para o mais difícil: obter mais bases com outros autores de trabalhos no mesmo tema, obter mais bases de dados públicas e trabalhar nelas para corrigir as anotações e criar novas bases inteiramente do zero. Dessa forma, podem-se ajustar mais genericamente as configurações, que de outra forma, ficam muito condicionadas em determinados tipos de trilhas sonoras.

Finalmente, é importante submeter o algoritmo novamente na MIREX, contemplando quaisquer modificações que forem realizadas no algoritmo, para validar se elas estão caminhando positivamente ou não. O baixo desempenho em trilhas cantadas e em outras classes de trilhas sonoras mostra que ainda há espaço para mais análises e melhorias na modelagem do algoritmo KFlux.

REFERÊNCIAS

ABDALLAH, S. A.; PLUMBLEY, M. D. Probability as metadata: event detection in music using ICA as a conditional density model. Proc. 4th Int. Symp. Independent Component Analysis and Signal Separation (ICA). Nara, Japan: [s.n.]. 2003. p. 233- 238.

ALONSO, M.; RICHARD, G.; DAVID, B. Extracting note onsets from musical

recordings. Proc. IEEE Int. Conf. on Multimedia and Expo (ICME). Amsterdam, The

Netherlands: [s.n.]. 2005. p. 4 p.

BAINS, M.; KUMAR, R. Detection of missing ball in bearing using decomposition of acoustic signal. Asian Journal of Chemistry, 21, 2009. p. S143-S147.

BELLO, J. P. et al. A tutorial on onset detection in music signals. IEEE Transactions

on Speech and Audio Processing, [S.l.: s.n.], 13, n. 5, sep. 2005. p. 1035-1047.

BELLO, J. P.; SANDLER, M. Phase-based note onset detection for music

signals. Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing

(ICASSP). [S.l.]: [s.n.]. 2003. p. 441-444.

BÖCK, S. et al. Online real-time onset detection with recurrent neural networks. Proc. Int. Conf. on Digital Audio Effects (DAFx). [S.l.]: [s.n.]. 2012.

BÖCK, S.; SCHLÜTER, J.; WIDMER, G. Enhanced peak picking for onset

detection with recurrent neural networks. Proc. Int. Workshop on Machine

Learning and Music, ECML/PKDD. Prague, Czech Republic: [s.n.]. 2013. p. 1-4. BÖCK, S.; WIDMER, G. Local group delay based vibrato and tremolo

suppression for onset detection. Proc. 14th Int. Society for Music Information

Retrieval Conf. (ISMIR). [S.l.]: [s.n.]. 2013a. p. 361-366.

BÖCK, S.; WIDMER, G. Maximum filter vibrato suppression for onset detection. Proc. 16th Int. Conf. on Digital Audio Effects (DAFx). Maynooth, Ireland: [s.n.].

2013b. p. 1-7.

BOOGAART, C. G.; LIENHART, R. Note onset detection for the transcription of

polyphonic piano music. Proc. IEEE Int. Conf. on Multimedia and Expo (ICME).

Cancun, Mexico: [s.n.]. 2009. p. 446-449.

CHANG, S.; LEE, K. A pairwise approach to simultaneous onset/offset detection

for singing voice using correntropy. Proc. IEEE Int. Conf. on Acoustic, Speech

and Signal Processing (ICASSP). Florence, Italy: [s.n.]. 2014. p. 629-633.

CHIN, M. L.; BURRED, J. J. Audio event detection based on layered symbolic

sequence representations. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal

COLLINS, N. Using a pitch detector for onset detection. Proc. of the 6th Int. Society for Music Information Retrieval Conf. (ISMIR). [S.l.]: [s.n.]. 2005. p. 7 p. DAVY, M.; GODSILL, S. Detection of abrupt spectral changes using support

vector machines. An application to audio signal segmentation. Proc. IEEE Int.

Conf. Acoustics, Speech and Signal Processing (ICASSP). Orlando, FL: [s.n.]. 2002. p. 1313-1316.

DEGARA, N. et al. Onset event decoding exploiting the rhythmic structure of

polyphonic music. IEEE Journal os Selected Topics in Signal Processing, 5, n. 6, oct 2011. p. 1228-1239.

DEGARA-QUINTELA, N.; PENA, A.; TORRES-GUIJARRO, S. A comparison of

score-level fusion rules for onset detection in music signals. Proc. 10th Int.

Society for Music Information Retrieval Conf. (ISMIR). Kobe, Japan: [s.n.]. 2009. p. 117-121.

DESCOMPLICANDO A MÚSICA. Descomplicando a Música, [s.n.t.]. Disponivel em: <http://www.descomplicandoamusica.com/>. Acesso em: 07 set. 2017. DIETTERICH, T. G. Ensemble methods in machine learning. Proc. 1st Int.

Workshop on Multiple Classifier Systems (MCS). Lecture Notes in Computer Science (LNCS). Cagliary, Italy: Springer. 2000. p. 1-15.

DIXON, S. Onset detection revisited. Proc. Int. Conf. on Digital Audio Effects (DAFx). Montreal, Canada: [s.n.]. 2006. p. 133-137.

DUXBURY, C. et al. Complex domain onset detection for music signals. Proc. 6th Int. Conf. on Digital Audio Effects (DAFx). London, UK: [s.n.]. 2003. p. 1-4. DUXBURY, C. et al. A comparison between fixed and multiresolution analysis

for onset detection in musical signals. Proc. 7th Int. Conf. on Digital Audio Effects

(DAFx). Naples, Italy: [s.n.]. 2004. p. 1-5.

DUXBURY, C.; SANDLER, M.; DAVIES, M. A hybrid approach to musical note

onset detection. Proc. 5th Int. Conf. on Digital Audio Effects (DAFx). Hamburg,

Germany: [s.n.]. 2002. p. 33-38.

EBU. EBU SQAM CD, 2008. Disponivel em:

<https://tech.ebu.ch/publications/sqamcd>. Acesso em: 05 ago. 2017.

EYBEN, F. et al. Universal onset detection with bidirectional long short-term

memory neural networks. Proc. Int. Society for Music Information Retrieval Conf.

(ISMIR). [S.l.]: [s.n.]. 2010. p. 589-594.

FASTL, H.; ZWICKER, E. Psychoacoustics – Facts and Models. 3rd. ed. [S.l.]: Springer-Verlag, 2007. ISBN ISBN 978-3-540-23159-2.

FERRONI, G. et al. Onset detection exploiting adaptive linear prediction filtering

Music Information Retrieval Evaluation eXchange (MIREX). Curitiba, PR, Brazil: [s.n.]. 2013. p. 4 p.

GABRIELLI, L.; PIAZZA, F.; SQUARTINI, S. Adaptive linear prediction filtering in DWT domain for real-time musical onset detection. EURASIP Journal on Advances

in Signal Processing, p. 1-10, 2011.

GLOVER, J.; LAZZARINI, V.; TIMONEY, J. Real-time detection of musical onsets with linear prediction and sinusoidal modeling. EURASIP Journal on Advances in

Signal Processing, p. 1-13, 2011.

GLOVER, J.; LAZZARINI, V.; TIMONEY, J. Real-time segmentation of the

temporal evolution of musical sounds. Proc. 163rd Meeting Acoustical Society of

America. Hong Kong: [s.n.]. 2012. p. 1-8.

GNANN, V.; SPIERTZ, M. Transient detection with absolute discrete group

delay. Proc. IEEE Int. Symp. on Intelligent Signal Processing and Communication

Systems (ISPACS). [S.l.]: [s.n.]. 2009. p. 311-314.

HEO, H.; SUNG, D.; LEE, K. Note onset detection based on harmonic cepstrum

regularity. Proc. IEEE Int. Conf. on Multimedia and Expo (ICME). San Jose, USA:

[s.n.]. 2013. p. 6 p.

HOLZAPFEL, A. et al. Three dimensions of pitched instrument onset detection. IEEE

Transactions on Audio, Speech, and Language Processing, 18, n. 6, 2010. p.

1517-1527.

JOHNSON, N. Restoring Audio with iZotope RX™. [S.l.]: iZotope, 2008. 74 p. KLAPURI, A. Sound onset detection by applying psychoacoustic knowledge. Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP). Phoenix, Arizona: [s.n.]. 1999. p. 3089-3092.

LACOSTE, A.; ECK, D. A supervised classification algorithm for note onset detection.

EURASIP Applied Signal Processing, p. 1-23, 2007.

LEE, W. C.; KUO, C. C. Improved linear prediction technique for musical onset

detection. Proc. Int. Conf. on Intelligent Information Hiding and Multimedia Signal

Processing. [S.l.]: [s.n.]. 2006. p. 533-536.

LEE, W.; SHIU, Y.; KUO, C. C. Musical onset detection with joint phase and

energy features. Proc. Int. Conf. on Multimedia and Expo (ICME). Beijing, China:

[s.n.]. 2007. p. 184-187.

LEVEAU, P.; DAUDET, L.; RICHARD, G. Methodology and tools for the

evaluation of automatic onset detection algorithms in music. Proc. Int. Society

for Music Information Retrieval Conf. (ISMIR). Barcelona, Spain: [s.n.]. 2004. p. 72- 75.

LIANG, C.; SU, L.; YANG, Y. Musical onset detection using constrained linear reconstruction. IEEE Signal Processing Letters, 22, n. 11, nov. 2015. p. 2142- 2146.

MAKA, T. A comparative study of onset detection methods in the presence of

background noise. Proc. Int. Conf. on Signals and Electronic Systems (ICSES).

Kraków, Poland: [s.n.]. 2016. p. 51-56.

MARCHI, E. et al. Audio onset detection: a wavelet packet based approach with recurrent neural networks. Proc. Int. Joint Conf. on Neural Networks (IJCNN). Beijing, China: [s.n.]. 2014a. p. 3585-3591.

MARCHI, E. et al. Multi-resolution linear prediction based features for audio

onset detection with bidirectional LSTM neural networks. Proc. IEEE Int. Conf.

on Acoustic, Speech and Signal Processing (ICASSP). Florence, Italy: [s.n.]. 2014b. p. 2164-2168.

MAROLT, M.; KAVCIC, A.; PRIVOSNIK, M. Neural Networks for Note Onset

Detection in Piano Music. Proc. Int. Computer Music Conf. (ICMC). Gotenborg,

Sweden: [s.n.]. 2002. p. 4 p.

MASRI, P. Computer modelling of sound for transformation and synthesis of

musical signal. PhD Thesis - University of Bristol. Bristol. 1996.

MCFEE, B.; ELLIS, D. P. W. Better beat tracking through robust onset

aggregation. Proc. IEEE Int. Conf. on Acoustic, Speech and Signal Processing

(ICASSP). Florence, Italy: [s.n.]. 2014. p. 2154-2158.

MIREX. Mirex 2016: Audio Onset Detection, 2016. Disponivel em:

<http://nema.lis.illinois.edu/nema_out/mirex2016/results/aod/summary.html>. Acesso em: 05 ago. 2017.

MOUNIR, M.; KARSMAKERS, P.; WATERSCHOOT, T. Guitar note onset

detection based on a spectral sparsity measure. Proc. 24th European Signal

Processing Conf. (EUSIPCO). Budapest, Hungary: [s.n.]. 2016. p. 978-982.

NUTTALL, A. Some windows with very good sidelobe behavior. IEEE Transactions

on Acoustics, Speech, and Signal Processing, 29, n. 1, feb. 1981. p. 84-91.

O'SHAUGHNESSY, D. Speech communication: human and machine. [S.l.]: Addison-Wesley, 1987. p. 150 p. ISBN ISBN 978-0-201-16520-3.

ROSÃO, C.; RIBEIRO, R.; MATOS, D. M. Influence of peak selection methods on

onset detection. Proc. 13th Int. Society for Music Information Retrieval Conf.

(ISMIR). [S.l.]: [s.n.]. 2012. p. 517-522.

SCHLEUSING, O.; ZHANG, B.; WANG, Y. Onset detection in pitched

nonpercussive music using warping-compensated correlation. Proc. IEEE Int.

Conf. on Acoustic, Speech and Signal Processing (ICASSP). Las Vegas, NV, USA: [s.n.]. 2008. p. 117-120.

SCHLÜTER, J.; BÖCK, S. Musical onset detection with convolutional neural

networks. Proc. 6th Int. Workshop on Machine Learning and Music (MML) &

European Conf. on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD). Prague, Czech Republic: [s.n.]. 2013. p. 1-4. SCHLÜTER, J.; BÖCK, S. Improved musical onset detection with convolutional

neural networks. Proc. IEEE Int. Conf. on Acoustic, Speech and Signal Processing

(ICASSP). Florence, Italy: [s.n.]. 2014. p. 6979-6983.

SHAO, X.; GUI, W.; XU, C. Note onset detection based on sparse decomposition.

Multimed Tools Appl., p. 2613-2631, 2016.

SHEHATA, M. Note onset detection using sparse over-complete representation

of musical signals. Master's Thesis - Università della Svizzera Italiana. Lugano, p.

127 p. 2013.

STASIAK, B.; MONKO, J. Analysis of time-frequency representations for

musical onset detection with convolutional neural network. Proc. Federated

Conf. on Computer Science and Information Systems (FedCSIS). Gdansk, Poland: [s.n.]. 2016. p. 147-152.

STASIAK, B.; MONKO, J.; NIEWIADOMSKI, A. Note onset detection in musical signals via neural-network-based multi-ODF fusion. Int. J. Appl. Math. Comput.

Sci., v. 26, n. 1, p. 203-213, 2016.

STOWELL, D.; PLUMBLEY, M. Adaptive whitening for improved real-time audio

onset detection. Proc. Int. Computer Music Conf. (ICMC). [S.l.]: [s.n.]. 2007. p. 312-

319.

THOSHKAHNA, B.; NSABIMANA, F. X.; RAMAKRISHNAN, K. R. A Transient

Detection Algorithm for Audio using Iterative Analysis of STFT. Proc. 12th Int.

Society for Music Information Retrieval Conf. (ISMIR). [S.l.]: [s.n.]. 2011. p. 203-208. THOSHKAHNA, B.; RAMAKRISHNAN, K. R. A psychoacoustics based sound

onset detection algorithm for polyphonic audio. Proc. Int. Conf. on Signal

Processing (ICSP). Beijing, China: [s.n.]. 2008. p. 1424-1427.

TIAN, M. et al. Design and evaluation of onset detectors using different fusion

policies. Proc. 15th Int. Society for Music Information Retrieval Conf. (ISMIR).

Taipei, Taiwan: [s.n.]. 2014a. p. 631-636.

TIAN, M. et al. A study of instrument-wise onset detection in Beijing opera

percussion ensembles. Proc. IEEE Int. Conf. on Acoustic, Speech and Signal

Processing (ICASSP). Florence, Italy: [s.n.]. 2014b. p. 2159-2163.

TOH, C. C.; ZHANG, B.; WANG, Y. Multiple-feature fusion based onset detection

for solo singing voice. Proc. 9th Int. Society for Music Information Retrieval Conf.

VICKERS, E. The Loudness War: Background, Speculation and Recommendations. Proc. 129th Audio Engineering Society Convention (AES). San Francisco, USA: [s.n.]. 2010. p. 1-27.

VOS, J.; RASCH, R. The perceptual onset of musical tones. Perception and

Psychophysics, v. 29, n. 4, p. 323-335, 1981.

WANG, W. et al. Non-negative matrix factorization for note onset detection of

audio signals. Proc. IEEE Signal Processing Society Workshop on Machine

Learning for Signal Processing. [S.l.]: [s.n.]. 2006. p. 447-452.

WANG, Y. et al. Fusion of signal processing methods with pitch detector for

onset detection. Proc. 3rd Int. Conf. on Consumer Electronics, Communications and

Networks (CECNet). Xianning, China: [s.n.]. 2013. p. 316-319.

ZHANG, B.; WANG, Y. Automatic music transcription using audio-visual fusion for violin practice in home environment. Sound & Music Computing Lab, 2009. Disponivel em: <http://www.smcnus.org/papers/3.Applications_in_Edutainment_(e- Learning)/2009_Automatic_Music_Transcription_using_Audio-

Visual_Fusion_for_Violin_Practice_in_Home_Environment.pdf>. Acesso em: 07 set. 2017.

ZHOU, R.; MATTAVELLI, M.; ZOIA, G. Music onset detection based on resonator time frequency image. IEEE Transactions on Audio, Speech, and Language

Processing, nov 2008. p. 1685-1695.

ZHOU, R.; REISS, J. D. Music onset detection combining energy-based and

pitch-based approaches. Music Information Retrieval Evaluation eXchange

(MIREX). Vienna: [s.n.]. 2007. p. 4 p.

ZHU, B. et al. Adaptive onset detection based on instrument recognition. Proc. 12th Int. Conf. on Signal Processing (ICSP). Hangzhou, Zhejiang, China: [s.n.]. 2014. p. 2416-2421.

Documentos relacionados