• Nenhum resultado encontrado

Como trabalhos futuros, pretendemos:

• Realizar o reconhecimento de íris com apoio da cloud, onde módulos do processa- mento que requerem demasiado tempo de execução, como a segmentação, possam ser transferidos para serem executados na infraestrutura da cloud, e assim, possibilitar que o reconhecimento de íris seja realizado eficientemente;

• Expandir esse trabalho com métodos de avaliação que empregam técnicas de ma- chine learning e também deep learning, a fim de tornar o reconhecimento de íris mais robusto para lidar com imagens adquiridas em ambientes outdoor ;

• Estudar técnicas de combinação de descritores e/ou métodos de aprendizagem para melhorar a eficácia do sistema de reconhecimento de íris;

• Realizar testes com outros descritores binários, tais como BinBoost [45], BRIGHT [46], LBP [47], entre outros;

Referências Bibliográficas

[1] Casia iris image database. http://biometrics.idealtest.org/, 2014.

[2] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. Brief: Binary robust independent elementary features. European Conference on Computer Vision (ECCV), pages 778– 792, 2010.

[3] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: an efficient alternative to sift or surf. In Proceedings of the International Conference on Computer Vision (ICCV), pages 2564–2571. IEEE, 2011.

[4] S. Leutenegger, M. Chli, and R. Y. Siegwart. Brisk: Binary robust invariant scala- ble keypoints. In Proceedings of the International Conference on Computer Vision (ICCV), pages 2548–2555. IEEE, 2011.

[5] M. De Marsico, M. Nappi, D. Riccio, and H. Wechsler. Mobile iris challenge eva- luation (miche)-i, biometric iris dataset and protocols. Pattern Recognition Letters, 57:17–23, 2015.

[6] K. W. Bowyer, K. Hollingsworth, and P. J. Flynn. Image understanding for iris biometrics: A survey. Computer Vision and Image Understanding, 110(2):281 – 307, 2008.

[7] J. Daugman and C. Downing. Epigenetic randomness, complexity and singularity of human iris patterns. Proceedings of the Royal Society of London B: Biological Sciences, 268(1477):1737–1740, 2001.

[8] J. G. Daugman. High confidence visual recognition of persons by a test of statistical independence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(11):1148–1161, 1993.

[9] R. P. Wildes. Iris recognition: an emerging biometric technology. Proceedings of the IEEE, 85(9):1348–1363, 1997.

[10] W. W. Boles and B. Boashash. A human identification technique using images of the iris and wavelet transform. IEEE Transactions on Signal Processing, 46(4):1185– 1188, 1998.

[11] M. De Marsico, C. Galdi, M. Nappi, and D. Riccio. Firme: Face and iris recognition for mobile engagement. Image and Vision Computing, 32(12):1161 – 1172, 2014.

REFERÊNCIAS BIBLIOGRÁFICAS 57

[12] S. Wright. Estudo da symantec mostra que 90% dos celulares perdidos tem informa- ções violadas. https://www.symantec.com/content/pt/br/about/presskits/b-honey- stick-01062014-AR-pt-br.pdf, 2014.

[13] A. Muron and J. Pospísil. The human iris structure and its usages. Physica, 39:87–95, 2000.

[14] H. Proenca, S. Filipe, R. Santos, J. Oliveira, and L. A. Alexandre. The ubiris.v2: A database of visible wavelength iris images captured on-the-move and at-a-distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(8):1529–1535, 2010.

[15] J. Daugman. New methods in iris recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 37(5):1167–1175, 2007.

[16] J. R. Matey, O. Naroditsky, K. Hanna, R. Kolczynski, D. J. LoIacono, S. Mangru, M. Tinker, T. M. Zappia, and W. Y. Zhao. Iris on the move: Acquisition of ima- ges for iris recognition in less constrained environments. Proceedings of the IEEE, 94(11):1936–1947, 2006.

[17] K. W. Bowyer, K. P. Hollingsworth, and P. J. Flynn. Handbook of Iris Recognition, chapter A Survey of Iris Biometrics Research: 2008–2010, pages 15–54. Springer London, 2013.

[18] C. Belcher and Y. Du. A selective feature information approach for iris image-quality measure. IEEE Transactions on Information Forensics and Security, 3(3):572–577, 2008.

[19] N.D. Kalka, J. Zuo, N.A. Schmid, and B. Cukic. Estimating and fusing quality factors for iris biometric images. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 40(3):509–524, 2010.

[20] H. Proenca. Quality assessment of degraded iris images acquired in the visible wa- velength. IEEE Transactions on Information Forensics and Security, 6(1):82–95, 2011.

[21] P. VC. Hough. Method and means for recognizing complex patterns. Technical report, U.S. Patent No. 3,069,654, 1962.

[22] J. Illingworth and J. Kittler. A survey of the hough transform. Computer Vision, Graphics, and Image Processing, 44(1):87–116, 1988.

[23] H. Mehrotra, P. K. Sa, and B. Majhi. Fast segmentation and adaptive surf descriptor for iris recognition. Mathematical and Computer Modelling, 58(1):132–146, 2013. [24] M. De Marsico, M. Nappi, and R. Daniel. Isis: Iris segmentation for identification

REFERÊNCIAS BIBLIOGRÁFICAS 58

[25] M. Haindl and M. Krupička. Unsupervised detection of non-iris occlusions. Pattern Recognition Letters, 57:60 – 65, 2015.

[26] D. H. Ballard. Generalizing the hough transform to detect arbitrary shapes. Pattern recognition, 13(2):111–122, 1981.

[27] H. Proenca and L. A. Alexandre. Iris recognition: An analysis of the aliasing problem in the iris normalization stage. In Proceedings of the International Conference on Computational Intelligence and Security (CIS), volume 2, pages 1771–1774. IEEE, 2006.

[28] J. Canny. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, (6):679–698, 1986.

[29] Gabriel Taubin. Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit equations with applications to edge and range image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(11):1115–1138, 1991.

[30] M. De Marsico, M. Nappi, D. Riccio, and H. Wechsler. Iris segmentation using pupil location, linearization, and limbus boundary reconstruction in ambient intelligent environments. Journal of Ambient Intelligence and Humanized Computing, 2(2):153– 162, 2011.

[31] J. G. Daugman. Complete discrete 2-d gabor transforms by neural networks for image analysis and compression. IEEE Transactions on Acoustics, Speech, and Signal Processing, 36(7):1169–1179, 1988.

[32] J. Ko, Y. Gil, J. Yoo, and K. Chung. A novel and efficient feature extraction method for iris recognition. ETRI journal, 29(3):399–401, 2007.

[33] K. P. Hollingsworth, K. W. Bowyer, and P. J. Flynn. The best bits in an iris code. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(6):964–973, 2009.

[34] H. Proenca. Iris recognition: what is beyond bit fragility? IEEE Transactions on Information Forensics and Security, 10(2):321–332, 2015.

[35] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision (IJCV), 60(2):91–110, 2004.

[36] E. Rosten and T. Drummond. Machine learning for high-speed corner detection. In Proceedings of the European Conference on Computer Vision (ECCV), pages 430– 443. Springer, 2006.

[37] C. Harris and M. Stephens. A combined corner and edge detector. In Proceedings of the Alvey Vision Conference, volume 15, page 50. Citeseer, 1988.

REFERÊNCIAS BIBLIOGRÁFICAS 59

[38] E. Mair, G. D. Hager, D. Burschka, M. Suppa, and G. Hirzinger. Adaptive and generic corner detection based on the accelerated segment test. In Proceedings of the European Conference on Computer vision (ECCV), pages 183–196. Springer, 2010. [39] J. Daugman. Probing the uniqueness and randomness of iriscodes: Results from 200

billion iris pair comparisons. Proceedings of the IEEE, 94(11):1927–1935, 2006. [40] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up robust features (surf).

Computer Vision and Image Understanding, 110(3):346–359, 2008.

[41] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communi- cations of the ACM, 24(6):381–395, 1981.

[42] R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI’95), pages 1137–1143. Morgan Kaufmann Publishers Inc., 1995. [43] Opencv-python tutorials’s documentation. https://goo.gl/0Ealdv, 2014.

[44] A. Anjos, L. El-Shafey, R. Wallace, M. Günther, C. McCool, and S. Marcel. Bob: A free signal processing and machine learning toolbox for researchers. In Proceedings of the ACM International Conference on Multimedia (MM ’12), pages 1449–1452. ACM, 2012.

[45] T. Trzcinski, M. Christoudias, P. Fua, and V. Lepetit. Boosting binary keypoint descriptors. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2874–2881. IEEE, 2013.

[46] K. Iwamoto, R. Mase, and T. Nomura. Bright: A scalable and compact binary descriptor for low-latency and high accuracy object identification. In Proceedings of the IEEE International Conference on Image Processing (ICIP), pages 2915–2919. IEEE, 2013.

[47] T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7):971–987, 2002.

Documentos relacionados