• Nenhum resultado encontrado

6.5.1 Variável dependente

a) análise da microbioma intestinal.

6.5.2 Variáveis independentes

a) IG: variável contínua (dias) e avaliada pela data da última menstruação confiável ou ultrassom obstétrico precoce, realizado nas primeiras 12 semanas da gestação e confirmada pelo exame clínico neonatal;

b) Peso nascimento: variável numérica contínua, que foi estratificado em faixas de peso;

c) Sexo: masculino/feminino; d) Escore de Apgar;

e) Classificação quanto à IG: em Pequeno (PIG) ou Adequado à idade gestacional (AIG), de acordo com as curvas de crescimento intrauterinas empregadas na rotina da Neonatologia;

f) Dados maternos e obstétricos: tipo de parto, idade materna, presença de bolsa rota superior a 18 horas, infecção urinária materna, corioamninite, descolamento de placenta;

g) Morbidades e intercorrências do recém-nascido: presença de doença da membrana hialina, neutropenia, sepse neonatal precoce e tardia, enterocolite necrosante, convulsões, asfixia neonatal, hemorragia peri-intraventricular, alta ou óbito. Diagnóstico de sepse precoce foi determinado pela presença de hemocultura positiva nas primeiras 72 horas de vida e de sepse tardia, hemocultura positiva após 72 horas de vida, acompanhadas de sinais clínicos de infecção;

h) Tipo de alimentação enteral recebida: leite materno/fórmula láctea/mista (leite materno e fórmula láctea).

Todas essas variáveis foram obtidas pela revisão de prontuários e, longitudinalmente, durante o acompanhamento do recém-nascido na Neonatologia, com o devido registro em ficha protocolo individual (APÊNDICE A).

6.6 SELEÇÃO DA AMOSTRA

Este estudo baseou-se em uma estratégia de amostragem de conveniência com pacientes recrutados na Seção de Neonatologia do Hospital de Clínicas de Porto Alegre (HCPA), no Brasil.

Os grupos foram separados de acordo com o tipo de alimentação: leite materno exclusivo (LME), fórmula láctea exclusiva (FLE), prevalência de leite materno (PLM), prevalência de fórmula láctea (PFL), e misto (fórmula láctea e leite materno (FM)). Os recém- nascidos que foram alimentados com aleitamento materno exclusivo receberam apenas o leite

materno sem adicionar nenhum outro tipo de líquido. Os que foram alimentados com fórmula

láctea exclusiva receberam somente algum tipo de fórmula láctea infantil, sem nenhum tipo de outro alimento. As prevalências de leite materno foram para recém-nascidos que receberam os dois tipos de leite, o materno e algum tipo de fórmula láctea infantil, prevalecendo 70% de leite materno. Já na prevalência de fórmula láctea, receberam os dois tipos de leite, o materno e algum tipo de fórmula láctea infantil, prevalecendo 70% de fórmula láctea infantil. No grupo dos mistos, os recém-nascidos receberam os dois tipos de leite, o materno e algum tipo de fórmula láctea infantil, num percentual de 40-50% de cada tipo.

6.7 CONSIDERAÇÕES ESTATÍSTICAS

Foram digitados os dados no programa Excel e, posteriormente, exportados para o programa SPSS v. 18.0 para análise estatística. Foram descritas as variáveis categóricas por frequências e percentuais. As variáveis quantitativas foram descritas pela média e pelo desvio padrão. Foram comparadas as variáveis categóricas pelo teste de Qui-quadrado e as quantitativas pela Análise de Variância (ANOVA) seguido do teste post-hoc de Tukey.

6.8 CONSIDERAÇÕES ÉTICAS

Atendendo à Resolução 466/2012, que regulamenta a pesquisa com seres humanos, o projeto de pesquisa foi submetido para avaliação quanto aos seus aspectos metodológicos e éticos pela Comissão de Ética e Pesquisa do Hospital de Clínicas de Porto Alegre.

Foi preenchido o Termo de Compromisso para Utilização de Dados, que é fornecido pelo Grupo de Pesquisa e Pós-Graduação do HCPA. Deste modo, foi assegurada a confidencialidade das informações contidas nos bancos que possam identificar os indivíduos.

Também foi dado aos pais o Termo de Consentimento Livre e Esclarecido, para solicitar a autorização para a coleta de fezes e inclusão no estudo (APÊNDICE B).

7 REFERÊNCIAS BIBLIOGRAFICAS

ANGELONI, S. et al. Glycoprofiling with micro-arrays of glycoconjugates and lectins. Glycobiology, v. 15, n. 1, p. 31-41, 2005.

ARBOLEYA, S. et al. Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiology Ecology, v. 79, n. 3, p. 763-72, 2012.

ARDESHIR, A. et al. Breast-fed and bottle-fed infant rhesus macaques develop distinct gutmicrobiotas and immune systems. Science Translational Medicine, v. 6, n. 252, p. 252ra120.

ARRIETA, M. et al. The intestinal microbiome in early life: health and disease. Frontiers in Immunology, v. 5, p. 427, 2014.

BÄCKHED, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe, v. 17, p. 690–703, 2015.

BODE, L. et al. Human milk oligosaccharides reduce platelet-neutrophil complex formation leading to a decrease in neutrophil beta 2 integrin expression. Journal of Leukocyte Biology, v. 76, n. 4, p. 820-6, 2004.

BOIX-AMORÓS, A.; COLLADO, M. C.; MIRA, A. Relationship between milk microbiota, bacterial load, macronutrients, and human cells during lactation. Frontiers in Microbiology, v. 7, p. 492, 2016.

BRASIL. Ministério da Saúde. Conselho Nacional de saúde. Resolução nº 466, de 12 de dezembro de 2012.

BROOKS, B. et al. Microbes in the neonatal intensive care unit resemble those found in the gut of premature infants. Microbiome, v. 2, p. 1, 2014.

CABREIRO, F.; GEMS, D. Worms need microbes too: microbiota, health and aging in Caenorhabditis elegans. EMBO Molecular Medicine, v. 5, p. 1300-10, 2013.

CABRERA-RUBIO, R. et al. Impact of mode of delivery on the milk microbiota composition of healthy women. Journal of Developmental Origins of Health and Disease, v. 7, p. 54- 60, 2016.

CACHO, N. T. et al. Personalization of the microbiota of donor human milk with mother’s own milk. Frontiers in Microbiology, v. 8, p. 1470, 2017.

CAICEDO, R. A. et al. The developing intestinal ecosystem: implications for the neonate. Pediatr Ressearch, v. 58, n. 4, p. 625-8, 2005.

CAPORASO, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, v. 7, n. 5, p. 335-6, 2010.

CAPORASO, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J, v. 6, p. 1621–24, 2012.

CLARK, R. H. et al. Reported medication use in the neonatal intensive care unit: data from a large national data set. Pediatrics, v. 117, p. 1979–87, 2006.

COLE, J. R. et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Research, v. 42, p. D633–D642, 2014.

COLLADO, M. C. et al. Microbial ecology and host-microbiota interactions during early life stages. Gut Microbes, v. 3, n. 4, p. 352-65, 2012.

COLUMPSI, P. et al. Beyond the gut bacterial microbiota: The gut virome. Journal of Medical Virology, v. 88, p. 1467–72, 2016.

CONG, X. et al. Gut Microbiome Developmental Patterns in Early Life of Preterm Infants: Impacts of Feeding and Gender. PLoS One, v. 11, n. 4, p. e0152751, 2016.

COTTEN, C. M. et al. NICHD Neonatal Research Network. Prolonged duration of initial empirical antibiotic treatment is associated with increased rates of necrotizing enterocolitis and death for extremely low birth weight infants. Pediatrics, v. 123, p. 58–66, 2009.

DETHLEFSEN, L. et al. Assembly of the human intestinal microbiota. Trends Ecology Evolution, v. 21, n. 9, p. 517-23, 2006.

DETHLEFSEN, L. et al. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biology, v. 6, p. e280, 2008.

DOMINGUEZ-BELLO, M. G. et al. R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences, v. 107, p. 11971-5, 2010.

EDGAR, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, v. 10, p. 996–8, 2013.

EDGAR, R. C. SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS

sequences. Sep 09, 2016. bioRxiv. Disponível em:

https://www.biorxiv.org/content/10.1101/074161v1. Acesso em: 27 jan. 2018

EIWEGGER, T. et al. Human milk-derived oligosaccharides and plant-derived oligosaccharides stimulate cytokine production of cord blood T-cells in vitro. Pediatric Research, v. 56, n. 4, p. 536-40, 2004.

FALLANI, M. et al. Determinants of the human infant intestinal microbiota after the introduction of first complementary foods in infant samples from five European centres. Microbiology, v. 157, p. 1385-92, 2011.

FANARO, S. et al. Intestinal microflora in early infancy: composition and development. Acta Paediatrica Supplement, v. 91, p. 48-55, 2003.

FULTHORPE, R. R. et al. Distantly sampled soils carry few species in common. The ISME Journal, v. 2, n. 9, p. 901-10, 2008.

GARTNER, L. M. et al. Breastfeeding and the use of human milk. Pediatrics, v. 115, n. 2, p. 496-506, 2005.

GIONGO, A. et al. PANGEA: pipeline for analysis of next generation amplicons. The ISME Journal, v. 4, n. 7, p. 852-61, 2010.

GOOD, I. J. The population frequencies of species and the estimation of population parameters. Biometrika, v. 40, p. 237–64, 1953.

GREGORY, K. E. et al. Influence of maternal breast milk ingestion on acquisition of the intestinal microbiome in preterm infants. Microbiome, v. 4, p. 68, 2016.

GRITZ, E. C.; BHANDARI, V. The human neonatal gut microbiome: a brief review. Frontiers in Pediatrics, v. 3, p. 17, 2015.

GRØVSLIEN, A. H.; GRØNN, M. Donor milk banking and breastfeeding in Norway. Journal of Human Lactation, v. 25, n. 2, p. 206-10, 2009.

GUARNER, F.; MALAGELADA, J. Gut flora in health and disease. The Lancet, v. 361, p. 512-9, 2003.

HAMADY, M. et al. Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nature Methods, v. 5, n. 3, p. 235-7, 2008.

HARMSEN, H. J. et al. Analysis of intestinal flora development in breast-fed and formula- fed infants by using molecular identification and detection methods. Journal of Pediatric Gastroenterology and Nutrition, v. 30, n. 1, p. 61-7, 2000.

HOOPER, L. V.; GORDON, J. I. Commensal host-bacterial relationships in the gut. Science, v. 292, p. 1115-8, 2001.

HOUGHTELING, P.; WALKER, W. A. Why is initial bacterial colonization of the intestine important to the infant’s and child’s health? Journal of Pediatric Gastroenterology and Nutrition, v. 60, p. 294-307, 2015.

HSIEH, M. H.; VERSALOVIC, J. The human microbiome and probiotics: implications for pediatrics. Current Problems in Pediatric and Adolescent Health Care, v. 38, p. 309–27, 2008.

HUMAN MICROBIOME PROJECT CONSORTIUM. Structure, function and diversity of the healthy human microbiome. Nature, v. 486, p. 207-14, 2012.

HUMAN MILK BANKING ASSOCIATION OF NORTH AMERICA. Guidelines for the Establishment and Operation of a Donor Human Milk Bank. 15. ed. Fort Worth, TX: Human Milk Banking Association of North America, 2009.

HUURRE, A. et al. Mode of delivery -effects on gut microbiota and humoral immunity. Neonatology, v. 93, n. 4, p. 236-40, 2008.

KHODAYAR-PARDO, P. et al. Impacto flactati on stage, gestation alage and mode of delivery on breast milk microbiota. Journal of Perinatology, v. 34, p. 599-605, 2014.

KUNTZ, S.; KUNZ, C.; RUDLOFF, S. Oligosaccharides from human milk induce growth arrest via G2/M by influencing growth related cell cycle genes in intestinal epithelial cells. British Journal of Nutrition, v. 101, n. 9, p. 1306-15, 2009.

KUNTZ, S.; RUDLOFF, S.; KUNZ, C. Oligosaccharides from human milk influence growth- related characteristics of intestinally transformed and non-transformed intestinal cells. British Journal of Nutrition, v. 99, n. 3, p. 462-71, 2008.

KUNZ, C. et al. Oligosaccharides in human milk: structural, functional, and metabolic aspects. Annual Review of Nutrition, v. 20, p. 699-722, 2000.

LA ROSA, P. S. et al. Patterned progression of bacterial populations in the premature infant gut. Proceedings of the National Academy of Sciences, v. 111, p. 12522-27, 2014.

LANGHENDRIES, J. P. [Early bacterial colonisation of the intestine: why it matters?]. Archives de Pediatrie, v. 13, n. 12, p. 1526-34, 2006.

LEMAS, D. J. et al. Exploring the contribution of maternal antibiotics and breastfeeding to development of the infant microbiome and pediatric obesity. Semin. Journal of Maternal- Fetal and Neonatal Medicine, 2016; 21:

LEMOS, L. N. et al. Rethinking microbial diversity analysis in the high throughput sequencing era. Journal of Microbiological Methods, v. 86, n. 1, p. 42–51, 2011.

LI, J. et al. MetaHIT Consortium. An integrated catalog of reference genes in the human gut microbiome. Nature Biotechnology, v. 32, p. 834-41, 2014.

LY, M. et al. Transmission of viruses via our microbiomes. Microbiome, v. 4, n. 1, p. 64, 2016.

MADAN, J. C. et al. Association of cesarean delivery and formula supplementation with the intestinal microbiome of 6-week-old infants. JAMA Pediatrics, v. 170, n. 3, p. 212-9, 2016. MADAN, J. C. et al. Gut microbial colonisation in premature neonates predicts neonatal sepsis. Archives of Disease in Childhood-Fetal and Neonatal Edition, v. 97, n. 6, p. F456- 62, 2012.

MARTIN, F. J. et al. Probiotic modulation of symbiotic gut microbial-host metabolic interactions in a humanized microbiome mouse model. Molecular Systems Biology, v. 4, p. 157, 2008.

MARTIN, R. et al. Early-life events, including mode of delivery and type of feeding, siblings and gender, shape the developing gut microbiota. Suchodolski JS, ed. PLoS One, v. 11, n. 6, e0158498, 2016. doi:10.1371/journal.pone.0158498.

MARX, C. et al. Human milk oligosaccharide composition differs between donor milk and mother’s own milk in the NICU. Journal of Human Lactation, v. 30, n. 1, p. 54-61, 2013. McMURDIE, P. J.; HOLMES, S. Phyloseq: an R Package for reproducible interactive analysis and graphics of microbiome census data. PLoS One, v. 8, p. e61217, 2013.

MIURA E.; SILVEIRA, R. C.; PROCIANOY, R. S. [Neonatal sepsis: diagnosis and treatment]. Jornal de Pediatria, v. 75, n. 1, p. S57-62, 1999.

MORGAN, X. C.; HUTTENHOWER, C. Chapter 12: Human microbiome analysis. PLoS Computational Biology, v. 8, n. 12:e1002808, 2012.

MSHVILDADZE, M. et al. Intestinal microbial ecology in premature infants assessed with non–culture-based techniques. The Journal of Pediatrics, v. 156, n. 1, p. 20-5, 2010b. MSHVILDADZE, M.; NEU, J. The infant intestinal microbiome: friend or foe? Early Human Development, v. 86, n. 1, p. 67-71, 2010a.

MUNYAKA, P. M.; KHAFIPOUR, E.; GHIA, J. External influence of early childhood establishment of gut microbiota and subsequent health implications. Frontiers in Pediatrics, v. 2, p. 109, 2014.

MURPHY, K. et al. The composition of human milk and infant faecal microbiota over the first three months of life: A pilot study. Scientific Reports, v. 7, p. 40597, 2017.

NEWBURG, D. S.; RUIZ-PALACIOS, G. M.; MORROW, A. L. Human milk glycans protect infants against enteric pathogens. Annual Review of Nutrition, v. 25, p. 37-58, 2005. ORRHAGE, K.; NORD, C. E. Factors controlling the bacterial colonization of the intestine in breastfed infants. Acta Paediatrica, v. 88, n. 430, p. 47-57, 1999.

PAMMI, M. et al. Intestinal dysbiosis in preterm infants preceding necrotizing enterocolitis: a systematic review and meta-analysis. Microbiome, v. 5, p. 31, 2017.

PANNARAJ, P. S. et al. Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatrics, v. 171, n. 7, p. 647–54, 2017.

PANNARAJ, P. S. et al. Shared and distinct features of human milk and infant stool viromes. Frontiers in Microbiology, v. 9, p. 1162, 2018.

PARRACHO, H.; McCARTNEY, A. L.; GIBSON, G. R. Probiotics and prebiotics in infant nutrition. The Proceedings of the Nutrition Society, v. 66, n. 3, p. 405-11, 2007.

PENDERS, J. et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics, v. 118, p. 511–21, 2006.

PYLRO, V. S. et al. Data analysis for 16S microbial profiling from different benchtop sequencing platforms. Journal of Microbiological Methods, v. 107, p. 30–37, 2014.

R DEVELOPMENT CORE TEAM. R: A language and environment for statistical computing. 2008.

ROESCH, L. F. et al. Pyrosequencing enumerates and contrasts soil microbial diversity. The ISME Journal, v. 1, n. 4, p. 283-90, 2007.

ROGER, L. C. et al. Examination of faecal Bifidobacterium populations in breast- and formula-fed infants during the first 18 months of life. Microbiology, v. 156, n. Pt 11, p. 3329- 41, 2010b.

ROGER, L. C.; McCARTNEY, A. L. Longitudinal investigation of the faecal microbiota of healthy full-term infants using fluorescence in situ hybridization and denaturing gradient gel electrophoresis. Microbiology, v. 156, n. Pt 11, p. 3317-28, 2010a.

SAAVEDRA, J. M.; DATTILO, A. M. Early development of intestinal microbiota: implications for future health. Gastroenterology Clinics of North America, v. 41, n. 4, p. 717-31, 2012.

SATOKARI, R. et al. Bifidobacterium and Lactobacillus DNA in the human placenta. Letters in Applied Microbiology, v. 48, n. 1, p. 8-12, 2009.

SCHWIERTZ, A. et al. Development of the intestinal bacterial composition in hospitalized preterm infants in comparison with breast-fed, full-term infants. Pediatric Research, v. 54, n. 3, p. 393-9, 2003.

SOMMER, F.; BÄCKHED, F. The gut microbiota—masters of host development and physiology. Nature Reviews Microbiology, v. 11, n. 4, p. 227-38, 2013.

SPRINGER, S. Human milk banking in Germany. Journal of Human Lactation, v. 13, n. 1, p. 65-8, 1997.

SPRINGER, S. News about human milk banking in Germany. Advances in Experimental Medicine and Biology, v. 478, p. 441-2, 2000.

STEARNS, J. C. et al. Ethnic and diet-related differences in the healthy infant microbiome. Genome Medicine, v. 9, p. 32, 2017.

SUBRAMANIAN, S. et al. A persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature, v. 510, p. 417-21, 2014.

TORRAZZA, R. M. et al. Intestinal microbial ecology and environmental factors affecting necrotizing enterocolitis. PLoS One, v. 8, n. 12, p. e83304, 2013.

TULLY, M. R. A year of remarkable growth for donor milk banking in North America. Journal of Human Lactation, v. 16, n. 3, p. 235-6, 2000.

TURNBAUGH, P. J. et al. The human microbiome project: exploring the microbial part of ourselves in a changing world. Nature, v. 449, n. 7164, p. 804, 2007.

WALKER, A. W. et al. The species composition of the human intestinal microbiota differs between particle-associated and liquid phase communities. Environmental Microbiology, v. 10, n. 12, p. 3275-83, 2008.

WANG, B. Sialic acid is an essential nutrient for brain development and cognition. Annual Review Nutrition, v. 29, p. 177-222, 2009.

WANG, Y. et al. 16S rRNA gene-based analysis of fecal microbiota from preterm infants with and without necrotizing enterocolitis. ISME, v. 3, n. 8, p. 944-54, 2009.

WESTERBEEK, E. A. M. et al. The intestinal bacterial colonisation in preterm infants: a review of the literature. Clinical Nutrition, v. 25, p. 361–8, 2006.

YANG, I. et al. The infant microbiome: implications for infant health and neurocognitive development. Nursing Research, v. 65, n. 1, p. 76-88, 2016.

YASMIN, F. et al. Cesarean section, formula feeding, and infant antibiotic exposure: separate and combined impacts on gut microbial changes in later infancy. Frontiers in Pediatrics, v. 5, p. 200, 2017.

ZEISSIG, S.; BLUMBERG, R. S. Life at the beginning: perturbation of the microbiota by antibiotics in early life and its role in health and disease. Nature Immunology, v. 15, p. 307- 10, 2014.

8 ARTIGO ORIGINAL

INFLUÊNCIA DA NUTRIÇÃO ENTERAL NA MICROBIOTA INTESTINAL DO RECÉM-NASCIDO PRÉ-TERMO

RESUMO

INTRODUÇÃO: A colonização precoce do intestino neonatal é influenciada pelas práticas de alimentação. A diversidade da microbiota fecal durante a permanência em Unidade de Terapia Intensiva de recém-nascidos (RN) alimentados com leite humano é pouco estudada. OBJETIVO: Determinar as diferenças na microbiota fecal dos prematuros recém-nascidos (PRN), considerando o uso de leite materno exclusivo e de fórmula láctea, ao longo dos primeiros 28 dias de vida. MÉTODO: Foram incluídos 62 PRN com IG ≤ 32 semanas, distribuídos em cinco grupos, conforme regime alimentar: 7 PRN com leite materno exclusivo, 8 PRN com fórmula láctea exclusiva, 16 PRN com alimentação mista > 70% de leite materno próprio, 16 PRN com alimentação mista > 70% de fórmula láctea, e 15 PRN com alimentação mista 50% de leite materno próprio e 50% de fórmula láctea. Critérios de exclusão: infecções congênitas, malformações congênitas e RNs de mães usuárias de drogas. As fezes foram coletadas semanalmente durante os primeiros 28 dias de vida. Todos os espécimes fecais foram dissolvidos em glicerol 1:1 e imediatamente congelados a -80 ºC até extração de DNA microbiano, para amplificação do gene 16 S rRNA e seu sequenciamento. Os dados foram trabalhados por estatística descritiva e analítica. RESULTADOS: Os grupos foram semelhantes em dados perinatais e neonatais. Diferenças significativas na diversidade da comunidade microbiana nos tratamentos foram encontradas (p <0,001), principalmente entre uso de leite materno exclusivo quando comparado à dieta com fórmula láctea exclusiva (33%) e a > 70% de fórmula láctea (37%). A dieta por leite materno exclusivo permitiu maior diversidade microbiana (média de 85 Operational Taxonomic Unit – OTUs), enquanto a > 70% de fórmula láctea a menor diversidade (média de 9 OTUs). Demais grupos apresentaram uma média da diversidade microbiana de 29 OTUs para dieta com fórmula láctea exclusiva, 23 OTUs para > 70% de leite materno próprio e 25 OTUs para 50% de leite materno próprio e 50% fórmula láctea. A proporção média do gênero Escherichia foi sempre maior em tratamentos contendo fórmula láctea do que no tratamento com leite materno exclusivo. CONCLUSÃO: A microbiota fecal no período neonatal de PRN alimentados com leite materno exclusivo possui maior diversidade bacteriana do que os alimentados com fórmula

láctea. Sugerimos que a microbiota fecal determinada pelo uso do leite materno próprio pode ser protetora contra várias morbidades neonatais.

Palavras-chave: Recém-nascido. Microbiota. Alimentação.

ABSTRACT

BACKGROUND: Early colonization of neonatal gut is influenced by feeding practices. Fecal diversity during NICU stay of newborns fed with human milk is poorly studied. OBJECTIVE: To determine the differences in preterm infants´ stool microbiota considering the use of exclusive own´s mothers milk and formula feeding along the first 28 days of life. METHODS: We included newborns with GA ≤ 32 weeks divided in 5 group according the feeding regimen: 7 exclusive own´s mother milk, 8 exclusive preterm formula, 16 mixed feeding with >70% own´s mothers milk, 16 mixed feeding with >70% preterm formula, and 15 mixed 50% own´s mother milk and preterm formula. Exclusion criteria: congenital infections, congenital malformations and newborns of drug addicted mothers. Stools were collected weekly during the first 28 DOL. All specimens were mixed with glycerol 1:1 and immediately frozen at – 80 ºC until microbial DNA extraction, 16 S rRNA amplification and sequencing. RESULTS: All groups were similar in perinatal and neonatal and neonatal data. There were significant differences in microbial community among treatments. Those differences were further confirmed by the permutational multivariate analysis of variance. Approximately 33% and 37% of the variation in distance between microbial communities could be explained by the treatment with maternal milk only compared to diets based exclusively or preferentially in formula, respectively. Alpha diversity measurements indicated significant differences (p <0.001, Krusual-Wallis test) among the diversity of OTUs within treatments. The diet Composed by maternal milk only allowed for greater microbial diversity (average of 85 OTUs). The formula based group presented the smallest diversity (average of 9 OTUs). Those diets based in exclusive formula and preferably maternal milk presented an average of 29 and 23 OTUs respectively; and the diet based in a mixture of formula and maternal milk presented an average of 25 OTUs. The mean proportion of the genus Escherichia was always greater in treatments containing formula than in the treatment with maternal milk only. CONCLUSIONS: Fecal microbiota in the neonatal period of preterm infants fed with exclusive own’s mother milk has increased diversity and a genus composition different from those fed with formula. We suggest that fecal microbiota

determined by use of own’s mother milk may be protective against several neonatal morbidities.

Keywords: Newborn. Microbiota. Feeding.

INTRODUÇÃO

A microbiota intestinal é muito importante para o metabolismo, desenvolvimento e comportamento dos seres humanos.(1,2) Apesar de vários estudos sobre o tema e a sua relação com doenças de alta complexidade(1,3,4), eles restringiram-se apenas à sua enumeração baseada em cultura, perfilhamento genético (16S) e/ou utilização de amostras pequenas, o que deixa claro que os fatores que formam a microbiota intestinal não foram examinados a contento.(1,5,6) Sabe-se que o desenvolvimento da microbiota dos recém-nascidos depende de fatores médicos e dietéticos(1,7), mas não se sabe ainda como eles influenciam a sua

Documentos relacionados