• Nenhum resultado encontrado

Theoretical and experimental study of load-induced fluid flow phenomena in compact bone tissue

N/A
N/A
Protected

Academic year: 2023

Share "Theoretical and experimental study of load-induced fluid flow phenomena in compact bone tissue"

Copied!
6
0
0

Texto

(1)

ETH Library

Theoretical and experimental study of load-induced fluid flow phenomena in compact bone tissue

Doctoral Thesis

Author(s):

Knothe Tate, Melissa Louise

Publication date:

1997

Permanent link:

https://doi.org/10.3929/ethz-a-001918005

Rights / license:

In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.

For more information, please consult the Terms of use.

(2)

Diss. ETH Nr. 12420

Theoretical and Experimental Study of

Load-Induced Fluid Flow Phenomena in

Compact Bone Tissue

DISSERTATION for the degree of

DOCTOR OF THE TECHNICAL SCIENCES of the

SWISS FEDERAL INSTITUTE OF TECHNOLOGY

ZURICH, SWITZERLAND

tE

presented by

MELISSA LOUISE KNOTHE TATE

B.

S. Mechanical Engineering and Biological Sciences, Stanford University Dipl. Masch.-Ing. ETH Zurich

bom

on

March 28, 1965

citizen of the United States of America

accepted

on

the recommendation of Professor Dr. Peter Niederer, Examiner

Professor Dr. med. Dr. sci. (h.c.) Stephan M. Perren, Co-examiner

1997

(3)

3

Abstract

Form andfunctionare

intimately

related in bones

constituting

the

appendicular

skeleton.

The effect ofmechanical

loading

onbonearchitecture as well as the

interdependence

of

bone form and mechanical

loading

conditions are

usually

subsumed under Wolffs Law. Given the

importance

of skeletal function in

supporting

the musculoskeletal

system, protecting

the inner organs and

maintaining

metabolic

homeostasis,

a

plethora

ofresearch has been devoted to

explaining

the observational

phenomena

characterized

by

this law.

Although

a number of researchers have

developed

theories

implicating

somemanifestation of mechanicalforcessuchasstress, strain and strain energy

density

forfunctional

adaptation,

the mechanisms

underlying dynamic

bone

growth

and

repair

in responsetomechanical and metabolic stimuli have been established

only

in

part

and crucial

aspects

remainunresolved.

In interstitial spaces of soft tissues and organs, molecular diffusion is considered to be the

major contributing

mechanism for

transport

of various

physiological

fluids and solutes. In

compact bone, however,

we

hypothesize

that

distancesbetween

capillaries

and bone cells are in

part

too

long

and available channels

aretoonarrowto allowfor sufficient diffusionwithin time

periods required

for

healthy

metabolism. The

impermeability

of bone is intrinsic to its

load-bearing

function. It is this function which

provides

an alternate mechanism for molecular

transport

in

bone,

i.e. load-inducedfluidflow.

Physiological loading

of the

poroelastic,

fluid filled tissue of

compact

bone is

postulated

to cause microdeformations of the fluid spaces,

creating

pressure

gradients,

which in turn cause fluid

displacements

to occur. These deformation-induced fluid

displacements

may allow for convective

transport phenomena

which enhance molecular

transport

from the blood

supply

to the outermost

osteocytes

withina

given

osteon,thus

helping

toensuremetabolic function.

In addition to the

possible

role load-induced fluid flow

plays

in

enhancing

moleculartransportwithin

bone,

ithasbeenput forththat load-induced flow contributes to the

regulation

of functional

adaptation

processes

by transmitting

shear stresses

directly

atthe cellular

level,

and/or

by causing

electromechanical

streaming potentials

to

occur, which in turn may alter

osteocyte

membrane

permeability

or

trigger voltage-

sensitive ion channels.

Although

indirect

proof

for load-induced fluid flow can be found in the literature

pertaining

to

streaming potentials,

we know ofno

experimental

studies in which fluid flow per se has been studied in bone tissue

subjected

to

controlledmechanical loads.

In orderto

explore

fluid

transport

processes within

compact

bone

tissue,

we

developed

theoretical and

experimental

methods to assess deformation-induced

displacements

within the

transport system

of

compact

bone. These methods were

implemented

inorderto

approach

the

problem

from fivedistinctvantage

points,

each of

(4)

which is

presented

ina

chapter

of this thesis.

First,

afinite element

(i.e. FE)

model was

developed

to

predict

the relative contribution of convective and diffusive

transport

mechanisms forthemaintenanceof local

equilibria

within the lacunocanalicular system, theosteon as awholeanda

composite system comprising

many osteons. Based on this

model,

a new

theory

of bone

remodelling

based on convective and diffusive

transport

processes is

proposed. Secondly,

an ex vivo

perfusion

model of the

sheep

forelimb

was

developed

in order to measure load-induced fluid

displacements

within

perfused

bone tissue.

Using

this

model,

it could be shown that load-induced fluid flow

represents

a

powerful

mechanism to enhance molecular

transport

within the lacunocanalicular systemof

compact

bone tissue.

Thirdly,

an in vitro model based on

small

cylindrical specimens

excised from the

metacarpus

was

developed

to

study

deformation-induced

displacements

within bone

tissue, irrespective

of blood flow or

perfusion.

Based on

preliminary

studies with this

model,

it could be shown that the

promotion

of molecular

transport by

mechanical

loading

induced fluid flow is

dependent

on

cycle

number and

loading

rate.

Fourthly,

to visualize

transport pathways

for molecular tracers of different molecular

weights,

an in vivo diffusion

study

was

conducted,

the results ofwhich showed that diffusivetransportalone is notefficient for the transport of

larger

molecules such as

proteins

from the blood

supply

to the osteocytes. Given the

physiological

role of

proteins

as carriers for small molecules and

ions,

the

necessity

for another mechanism suchasconvective

transport

via load-induced fluid flow for maintenance of metabolic and

adaptive remodelling activity

was

underscored.

Finally,

we

implemented

ourtracer

techniques

with an in vivo model of

the rat tibia in order to

begin

to elucidate the

relationship

between load-induced fluid flow

phenomena

andcellular processes involvedin

adaptive

bone

remodelling.

(5)

5

Zusammenfassung

Der Knochen

passt

sichseiner

biologischen

und mechanischen

Umgebung

an, um eine

moglichst optimale

Form und Struktur fur

physiologische Belastungen

zu erhalten.

Trotz aller

Forschung

ist der genaue Mechanismus dieser

Anpassung allerdings

noch

nicht

eindeutig

erklart worden. Die meisten Theorien

postulieren

einen direkten

mechanischenEinfluss auf den Knochenumbau. Eine

Voraussetzung

dafiir ware, dass

jede

Zelle des Knochens iiber eine Art Sensorik

verfugen

miisste, um

Abweichungen

vom

gewohnten Belastungsmuster

zu

spiiren

und sich

dementsprechend

anpassen zu

konnen;

da verschiedene Zellen auch verschieden belastet

werden,

miisste sogar

jede

Zelle individuell

einprogrammiert

sein. Eine

andere,

eventuell zusatzliche

Erklarungs- moglichkeit

ware, die funktionelle

Anpassung

der Knochenstruktur als

Transport- problem

zu betrachten. Hierbei miisste der Knochen iiber keine

speziellen Fahigkeiten verfugen,

um zu

erkennen,

ob das normale

Spannungsniveau

iiber- oder unterschritten

wird,

denn die

Steuerung

des Knochenumbaus ware nur eine

Frage

von

Angebot

und

Nachfrage

vonz.B.

Metaboliten,

Mineralstoffenund/oder

osteotropischen

Stoffen.

Obwohl Diffusion ein

wichtiger

Prozess beim

Transport

und Austausch von

Molekulen im

Organismus ist,

habenverschiedene

Untersuchungen gezeigt,

dass in der

Knochenmatrix,

wo 85% des Volumes aus

lasttragendem

Material

(Mineral

und

Collagen) besteht,

Diffusion allein fur den molekularen

Transport

nicht genugen

kann,

umdie

Versorgung

der Knochenzellen

(d.h. Osteozyten)

sicherzustellen. Ein weiterer

moglicher

Mechanismus fur den molekularen

Transport

in der Knochenmatrix

ergibt

sich aus der Funktion des Knochens im Rahmen des

Bewegungsapparates.

Wie von

Piekarski und Munro 1977 erstmals

postuliert,

fuhren die

aufgrund

der

zyklischen Belastung

des Knochens entstehenden Deformationen

hypothetischerweise

zu

Stromungen

der interstitiellen

Fliissigkeit

im Knochen.

Aufgrund

dieser

belastungsinduzierten Stromungen

entstehen konvektive

Vorgange,

welche den

Transport

uber grossere Distanzen bewirken konnen.

Indieser Arbeit wurde derEinflussvonDiffusions- und

Konvektionsvorgangen

als

Teilaspekt

der funktionellen

Anpassung

der Knochenstruktur sowie der metabolischen

Anforderungen

des Knochens untersucht. Das Problem wurde von fiinf verschiedenen

Gesichtspunkten

angegangen. Erstens wurde mittels theoretischer Finite Elemente

Modellierung

das Verhaltnis zwischen konvektivem und diffusivem

Transport

in einem idealisierten Osteon Modell erfasst und mit

experimentellen

Daten von

"daily

strain histories"

(nach

Rubin und

Lanyon 1984) verglichen.

Zweitens wurde ein ex

vivo Perfusionsmodell vom Schafsvorderbein

entwickelt,

um

Fliissigkeits-

verschiebungen

in einem

zyklisch

belastenen

Metacarpus

in situ zu messen. Diese

Experimente zeigten,

dass der

Transport

von Markiermittel in der Kortikalis des belasteten Knochens entschieden grosser istals in

derjenigen

des unbelasteten. Drittens

(6)

wurden in vitro

Untersuchungen

der

Volumenverschiebungen

in

Mikroproben

des

Metacarpus (vom Schaf) durchgefiihrt,

wobei bewiesen werden

konnte,

dass der unter

Belastung

verbesserte

Transport

in

Mikroproben,

im

Vergleich

zu

demjenigem

von

unbelasteten,

vonderAnzahl

Zyklen

sowie der

Belastungsrate abhangt.

Viertens wurde eine in vivo Diffusionsstudie

gemacht,

um die

Perfusionswege

fur Molekule

unterschiedlicher Grossen im Kortikalis und

Spongiosa

derRattentibiaund -metacarpus

zu visualisieren. Diese Studie

zeigte,

dass Diffusion allein fur den molekularen

Transport

vongrosseren Molekulen

(z.B. Eiweissen)

nicht

geniigt,

um die

Versorgung

der

Osteozyten

sicherzustellen. Schliesslich haben wir diese Tracer Methoden in einem in vivo Modell

angewandt,

um den

Zusammenhang

zwischen den

belastungsinduzierten Fliissigkeitsstromungen

und den mit der

Steuerung

des

Knochenumbaus verbundenen zellularen

Vorgangen

zuverdeutlichen.

Referências

Documentos relacionados

Dentro dessa perspectiva, o presente trabalho tem como objetivo realizar uma revisão de literatura sobre os principais materiais utilizados atualmente na confecção de