• Nenhum resultado encontrado

On estimates of a fractional counterpart of the logarithmic derivative of a meromorphic function

N/A
N/A
Protected

Academic year: 2016

Share "On estimates of a fractional counterpart of the logarithmic derivative of a meromorphic function"

Copied!
6
0
0

Texto

(1)

УДК 517.53

I. E. Chyzhykov, N. S. Semochko

ON ESTIMATES OF A FRACTIONAL COUNTERPART OF THE

LOGARITHMIC DERIVATIVE OF A MEROMORPHIC FUNCTION

I. E. Chyzhykov, N. S. Semochko.On estimates of a fractional counterpart of the logarithmic derivative of a meromorphic function, Mat. Stud.39(2013), 107–112.

We consider the problem of finding lower bounds for growth of solutions of a fractional differential equation in the complex plane. We estimate a fractional integral of the logarithmic derivative of a meromorphic function.

И. Э. Чижиков, Н. С. Семочко.К оценкам дробного аналога логарифмической производной

// Мат. Студiї. – 2013. – Т.39, №1. – C.107–112.

Рассматривается проблема оценки снизу роста решений дифференциального уравне-ния дробного порядка в комплексной плоскости. Оценивается дробный интеграл логариф-мической производной мероморфной функции.

Letf be a meromorphic function inC,f(0)6= 0,. We use the standard notation of the Nevanlinna theory ([7]).

There are two standard ways to estimate the growth of solutions of ordinary differential equations in a complex domain. The first one is based on the Wiman-Valiron theory (see monographs [20], [19], [14]), which is very effective for the complex plane when solutions are of finite order of growth. However, there are some principal restrictions for application of the Wiman-Valiron method when the complex domain is not the whole plane, e.g. the unit disk, an angle, as well as when solutions are of infinite order. Concerning recent development of the Wiman-Valiron method we address the reader to the papers [15], [17], [18], [1], [6].

On the other hand, estimates of the logarithmic derivative ff(z)′(z) have been successfully applied in all mentioned cases for obtaining lower bounds for growth of solutions of ordinary differential equations (see e.g. [9, 2, 3, 4]). One of the typical, but not the best possible estimate is (cf. [8])

kr

Z

r

dt

Z

0

f′(reiϕ)

f(reiϕ)

dϕ=O(T(k

2r, f)), k >1, r

→+,

whereT(r, f)is the Nevanlinna characteristic of a meromorphic functionf. Note that logari-thmic derivative estimates have various applications in the theory of entire and meromorphic functions ([7]).

2010Mathematics Subject Classification:26A33, 34M05, 34M10.

Keywords:Riemann-Liouville operator, fractional derivative, fractional differential equation, logarithmic deri-vative, meromorphic function, Nevanlinna’s characteristic, growth.

c

(2)

In contrast to ordinary differential equations, the analytic theory of fractional differential equations with variable coefficients was initiated only recently ([11], [13]). Such equations are widely used for modeling of diffusion phenomena and anomalous relaxation ([5, 12]).

Let hL(0, a), a >0. The Riemann-Liouville fractional integral of order α >0 for h is defined as

D−αh(x) = 1 Γ(α)

x

Z

0

(xt)α−1h(t)dt, x(0, a),

D0h(x)h(x), Dαh(x) = d p

dxp{D

−(p−α)h(x)

}, α(p1, p], pN,

where Γ(α)is the Gamma function.

In the papers [11] and [13] the following equation is studied

Dαu(t) =a(t)u(t), t >0, (1)

where a(t) =A(tα), A(z) is analytic in |z|< r

0, Dαu(t) =Dαu(t)−tαΓ(1u(0)α) is the

Caputo-Dzhrbashyan fractional derivative. In particular, in [13] the following theorem is proved.

Theorem A ([13]). Suppose that A is a polynomial of degree m 0. The solution u(t) of equation (1) satisfying the initial condition u(0) = u0 has the form u(t) =v(tα), where v is an entire function whose order does not exceed 1+mα .

Essentially, lack of a fractional analogue of the logarithmic derivative estimate did not allow to obtain a lower bound for the growth of the solution of (1) in Theorem A.

Problem 1. Find a reasonable estimate for Dfαf(z) in the class of meromorphic (analytic) functions in C of finite order of growth.

Remark 1. Writing Dαf(z) we mean that the operator is taken of variable r =|z|. Since

f

f (z) equals infinity at zeros (and poles) of f, it makes sense to consider the integral

means with respect to the circles centered at the origin. Deriving uniform estimates for a meromorphic functionf we have to omit even rays emanating from the origin and containing poles, because the Riemann-Liouville operatorDαf is represented by a divergent integral in

this case.

Here we give a contribution, which will probably help to solve Problem 1. According to formula (17.11) in [16, p. 241] we have

Dαf

f =D

α−1

f′ f +R1

,

where the error term R1 has the form

R1(x) = 1 Γ(1α)

x

Z

a

(xt)α−2Dαf(t) x

Z

t

1

f

(s)ds. (2)

In view of these relationships, we search for an estimate of the value

Iα[f](r) = 2π

Z

0

Dα−1|f

(reiϕ)|

(3)

Theorem 1. Let f be a meromorphic function in C, f(0) = 06 ,, {cq} be the sequence of

its zeros and poles, α(0,1), β (1 +). Then for somer0 >0and a constant C(α, β)

Iα[f](r) = 2π

Z

0

Dα−1|f

(reiϕ)|

|f(reiϕ)|dϕ≤C(α, β)

T(βr, f)

rα +

1

rα−1 r/2

Z

0

n(t,0,, f)

t2 dt

, rr0,

where n(t,0,, f) is the counting function of {cq}.

Moreover, C(β, α) =O(1)(11 α)) asβ 1+, α1.

Corollary 1. For every ε >0we have Iα[f](r) =O(r(ρ−α+ε)+

) as r+.

The following problem is left open.

Problem 2. Find an estimate for Dα−1R(x, f), α(0,1), where R(x, f) is given by (2). Proof of Theorem 1. Let1< k < 32. We have

Dα−1|f

(reiϕ)|

|f(reiϕ)| = 1 Γ(1α)

r

Z

0

|f′(teiϕ)|

|f(teiϕ)|(r−t)

−αdt.

We use the following well-known estimate of the logarithmic derivative ([7])

|f′(z)|

|f(z)|

4sT(s, f) (s− |z|)2 + 2

X

|cq|<s

1

|zcq|

, |z|< s.

Therefore

Iα[f](r) = 2π

Z

0 r

Z

0

1 Γ(1α)

|f′(teiϕ)|

|f(teiϕ)|(r−t)

−αdtdϕ

Γ(12 −α)

r

Z

0

sT(s, f)(rt)−α (st)2 dt+

X

|cq|<s 2π

Z

0 r

Z

0

(rt)−α

|teiϕc q|

dtdϕ

=:

=: 2 Γ(1α)

I+ X

|cq|<s

Jq

. (3)

We puts =kr. Then

I = 4πsT(s, f)

r−2(s−r)

Z

0 +

r

Z

r−2(s−r)

!

(rt)−α (st)2 dt≤

≤4πsT(s, f) 1 2α(sr)α

r−2(s−r)

Z

0

dt

(st)2 + 1 (sr)2

r

Z

r−2(s−r)

(rt)−αdt

!

=

= 4πsT(s, f) 1 2α(sr)α

1 (st)

r−2(s−r)

0 −

1

(1α)(sr)2(r−t) 1−α

r r−2(s−r)

!

≤ 42πsα

1

3 + 2 1α

T(s, f)

(sr)α ≤C(k, α)

T(kr, f)

(4)

We have to estimate Jq =

Rr

0

R2π

0

(r−t)−α

|teiϕcq|dϕdt. Without loss of generality we may assume

that cq>1. By Theorem 1.7 ([10, p. 7–8]) we have for some C >0 2π

Z

0

|1ze−iϕ| ≤Cln 2

1− |z|, |z|<1.

Hence

Z

0

dϕ |teiϕc

q| ≤

   C t ln 2 1−t

cq

, t > cq; C

cq ln

2 1−t

cq

, t < cq.

(5)

Note that the choice of k yields the inequality 23cq < 23kr < r. We split the integralJq in the

following way

Jq =

2cq/3

Z

0 +

r

Z

2cq/3

!

(rt)−αdt

Z

0

dϕ |teiϕc

q|

=:Jq1+Jq2. (6)

Using (5) we get

Jq1 ≤C 2cq/3

Z

0

(rt)−α

cq

ln 2 1 ct

q

dt Cln 6 cq

2cq/3

Z

0

(rt)−αdt Cln 6

1α r1−α

cq

. (7)

In order to estimateJq2 we consider three cases: i)cq ≤ r2;ii)2r < cq ≤r, and iii)r < cq ≤kr.

In the case i) applying (5) and using a property of the fractional integral ([16, (2.44)]) we obtain

r

Z

3cq/2

Z

0

(rt)−α

|teiϕc q|

dϕdtC

r

Z

3cq/2

(rt)−α

t ln

2 1 cq

t

dtCln 6Γ(1α)Dα−11 r

≤ Cr(αα). (8)

Similarly

3cq

2

Z

2cq/3

Z

0

(rt)−α

|teiϕc q|

dϕdtC

cq

Z

2cq/3

(rt)−α

cq

ln 2 1 t

cq

dt+C

3cq/2

Z

cq

(rt)−α

t ln

2 1cq

t

dt

≤ C

(rcq)α 1

Z

2/3

ln 2

1τdτ + C

(r 3cq

2 )α 3/2 Z 1 1 τ ln 2τ

τ1dτ ≤

C(α)

rα . (9)

It now follows from (6), (8), and (9) that

Jq ≤

C(α)r1−α

cq

, cq<

r

2. (10)

We then consider the case iii), i.e.r < cq≤kr. Making use of (5) and H¨older’s inequality,

where αp <1< p, 1p + p1′ = 1, we deduce

Jq2 ≤C

Z r

2 3cq

(rt)−α

cq

ln 2 1 ct

q

dt= C

cα q

Z cqr

2 3

r cq −

τ−α

ln 2

(5)

cCα

q

Z cqr

2 3

r cq −

τ−αpdτ

1pZ cqr

2 3

ln 2 1τ

p′

p1′

cCα

q

(cr

q −

2 3)1−αp 1αp

1pZ 1

2 3

ln 2 1τ

p′

1

p′

≤ C(rα, pα ).

It remains to consider the case r

2 < cq ≤r. Similarly to the previous cases we obtain

Jq2 ≤C cq

Z

2cq/3

(rt)−α

cq

ln 2 1 t

cq

dt+C

r

Z

cq

(rt)−α

t ln

2 1cq

t dt= = C cα q 1 Z 2/3 r cq −

τ−α

ln 2

1τdτ+ C cα q r/cq Z 1 r cq −

τ−α

ln 2τ

τ 1

τ ≤

cCα q

1

Z

2/3

(1τ)−αln 2

1τdτ + C cα q

Zr/cq

1

r cq −

τ−αp

dτ 1p r cq Z 1 ln 2τ

τ−1

τ

p′

p′1

≤ Cc(αα)

q

+ C

cα q

(cr

q −1)

1−αp 1αp

1p

2

Z

1

ln 2τ

τ−1

τ

p′

p1′

≤ C(rα, pα ), αp <1< p.

We see that

Jq2 =O(r−α), r →+∞,

r

2 ≤cq ≤kr. (11)

We now able to give an upper estimate for Iα[f](r). It follows from (4), (7), (10), and

(11) that

Iα[f](r) = 2π

Z

0

Dα−1|f

(reiϕ)|

|f(reiϕ)|dϕ≤C

T(kr, f)

rα +

X

cq≤r

2 r1−α

cq

+ X

r

2<cq<kr

1 rα ≤ ≤C

T(kr, f) +n(kr,0,, f)

rα ) +

1

rα−1 r/2

Z

0

dn(t,0,, f)

t

≤C

T(kr, f) +n(kr,0,, f)

rα ) +

1

rα−1 r/2

Z

0

n(t,0,, f)

t2 dt

≤C

T(kr, f) + N(k2r,0,∞,f)

lnk

rα +

+ 1

rα−1 r/2

Z

0

n(t,0,, f)dt t2

≤C(α, k)

T(k2r, f)

rα +

1

rα−1 r/2

Z

0

n(t,0,, f)dt t2

.

Here we used inequality ([7])n(kr,0,, f) N(k2r,0,lnk∞,f). Choosingk =√β, we arrive to the assertion of the theorem whenβ (1,94). The general case follows from the monotonicity of the Nevanlinna characteristic.

(6)

REFERENCES

1. W. Bergweiler, Ph.J. Rippon, G.M. Stallard,Dynamics of meromorphic functions with direct or logari-thmic singullarities, Proc. London Math. Soc., (3)97 (2008), 368–400.

2. I. Chyzhykov, G.G. Gundersen, J. Heittokangas,Linear differential equations and logarithmic derivative estimates, Proc. London Math. Soc., (3)86(2003), 735–754.

3. I. Chyzhykov, J. Heittokangas, J. R¨atty¨a,On the finiteness ofϕ-order of solutions of linear differential

equations in the unit disc, J. d’Analyse Math.,109(2009), V.1, 163–196.

4. I. Chyzhykov, J. Heittokangas, J. R¨atty¨a,Sharp logarithmic derivative estimates with applications to ODE’s in the unit disc, J. Austr. Math. Soc.,88(2010), 145–167.

5. S.D. Eidelman, S.D. Ivasyshen, A.N. Kochubei, Analitic Methods in the Theory of Differential and Pseudo-Differential Equations of Parabolic Type, Birkh¨auser, Basel, 2004.

6. P.C. Fenton, M.M. Strumia, Wiman-Valiron theory in the disc, Journal of the London Mathematical Society,79(2009), 478–496.

7. A.A. Gol’dberg, I.V. Ostrovskii, Value distribution of meromorphic functions, Transl. Math. Mono-graphs, V.236, Amer. Math. Soc., 2008.

8. A.A. Gol’dberg, N.N. Strochik, Asymptotic behavior of meromorphic functions of completely regular growth and of their logarithmic derivatives, Siberian Math. Journal, 26(1985), №6, 802–809.

9. G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function, plus similar esti-mates, J. London Math. Soc., (2)37 (1988), 88–104.

10. H. Hedenmaln, B. Korenblum, K. Zhu, Theory of Bergman spaces. – Springer Verlag, 2001.

11. A.A. Kilbas, M. Rivero, L. Rodriguez-Germa, J.J. Trujilo,α-Analitic solutions of some linear fractional

differential equations with variable coefficients, Appl. Math. Comput.,187(2007), 239–249.

12. A.A. Kilbas, H.M. Srivastava, J.J. Trujilo, Theory and Applications of Fractiоnal Differential Equations. – Elsevier, Amsterdam, 2006.

13. A.N. Kochubei, Fractional differential equations: α-entire solutions, regular and irregular singularities, Fract. Calc. Appl. Anal.,12(2009), №2, 135–158.

14. I. Laine, Nevanlinna Theory and Complex Differential Equations. – Walter de Gruyter, Berlin, 1993. 15. T.M. Salo, O.B. Skaskiv, Ya.Z. Stasyuk,On a central exponent of entire Dirichlet series,Mat. Stud.19

(2003), №1, 61–72.

16. S.G. Samko, A.A. Kilbas, O.I. Marichev, Integrals and derivatives of fractional order and some of their applications, Nauka i tekhnika, Minsk, 1987. (in Russian)

17. O. Skaskiv, On the logarithmic derivative and central exponent of Dirichlet series, Math. Bull. of Shevchenko Scientific Soc.,2(2005), 213–230. (in Ukrainian)

18. O.B. Skaskiv, Ya.Z. Stasyuk,On derivatives of Dirichlet series, Visnyk of Lviv Univ.,64(2005), 258–265.

(in Ukrainian)

19. Sh. Strelitz, Asymptotic properties of analytic solutions of differential equations. – Izdat Mintis, Vilnius, 1972, 468 p. (in Russian)

20. H. Wittich, Neuere Untersuchungen ¨uber eindeutige analytische Funktionen, 2nd edn. – Springer, Berlin, 1968.

Lviv Ivan Franko National University chyzhykov@yahoo.com

semochkons@mail.ru

Referências

Documentos relacionados

O plano diretor de Bacabeira, instituído em 2007, estabelece nove zonas ao município dentre estas se destaca a Zona Especial de Interesse Ambiental (ZEIA), a

A relevância deste trabalho é contribuir no campo da cardiologia preventiva, viabili- zando o acesso do paciente ao conhecimento das DCV’s por meio da educação em saúde da

Os elevados números referentes ao valor gerado pelas chamadas in- dústrias culturais, nas economias avançadas do mundo, acrescentam mais uma racionalidade para defender a presença

Desse modo, é preciso construir espaços para refl etir sobre como as ques- tões de gênero constituem as relações entre os pares do mesmo sexo e oposto e, também, observar como

Até o momento, o grande destaque do estudo tem ficado por conta do papel desempenhado pela FL junto às redes de educação pública, com ênfase nos espaços das

Utilizamos como fontes documentos disponíveis nos Arquivos públicos da Câmara Municipal e da Prefeitura Municipal dessa cidade, como leis, decretos e projetos de leis que

Nas mulheres em que a secreção láctea é insu- ficiente, e as circunstâncias não permitem a aquisi- ção duma ama, deve recorrer-se ao aleitamento misto; a criança é

Para alguns autores isto deve-se ao facto de o pé plano ser apenas uma fase da evolução normal do pé em algumas crianças, sendo a cura inevitável, apesar do tratamento..