• Nenhum resultado encontrado

Evaluation of Estrogenic Potential of Flavonoids Using a Recombinant Yeast Strain and MCF7/BUS Cell Proliferation Assay

N/A
N/A
Protected

Academic year: 2017

Share "Evaluation of Estrogenic Potential of Flavonoids Using a Recombinant Yeast Strain and MCF7/BUS Cell Proliferation Assay"

Copied!
7
0
0

Texto

(1)

Recombinant Yeast Strain and MCF7/BUS Cell

Proliferation Assay

Fla´via A. Resende1*, Ana Paula S. de Oliveira1, Mariana S. de Camargo1, Wagner Vilegas2, Eliana A. Varanda1

1Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Univ Estadual Paulista, Araraquara, Sa˜o Paulo, Brazil,2Campus do Litoral Paulista-Unidade Sa˜o Vicente, Univ Estadual Paulista, Sa˜o Vicente, Sa˜o Paulo, Brazil

Abstract

Phytoestrogens are of interest because of their reported beneficial effects on many human maladies including cancer, neurodegeneration, cardiovascular disease and diabetes. Furthermore, there is a search for compounds with estrogenic activity that can replace estrogen in hormone replacement therapy during menopause, without the undesirable effects of estrogen, such as the elevation of breast cancer occurrence. Thus, the principal objective of this study was to assess the estrogenic activity of flavonoids with different hydroxylation patterns: quercetin, kaempferol, luteolin, fisetin, chrysin, galangin, flavone, 3-hydroxyflavone, 5-hydroxyflavone and 7-hydroxyflavone via two different in vitro assays, the recombinant yeast assay (RYA) and the MCF-7 proliferation assay (E-screen), since the most potent phytoestrogens are members of the flavonoid family. In these assays, kaempferol was the only compound that showed ERa-dependent transcriptional activation activity by RYA, showing 6.7461.7 nM EEQ, besides acting as a full agonist for the stimulation of proliferation of MCF-7/BUS cells. The other compounds did not show detectable levels of interaction with ER under the conditions used in the RYA. However, in theE-screenassay, compounds such as galangin, luteolin and fisetin also stimulated the proliferation of MCF-7/BUS cells, acting as partial agonists. In the evaluation of antiestrogenicity, the compounds quercetin, chrysin and 3-hydroxyflavone significantly inhibited the cell proliferation induced by 17-b-estradiol in theE-screen assay, indicating that these compounds may act as estrogen receptor antagonists. Overall, it became clear in the assay results that the estrogenic activity of flavonoids was affected by small structural differences such as the number of hydroxyl groups, especially those on the B ring of the flavonoid.

Citation:Resende FA, de Oliveira APS, de Camargo MS, Vilegas W, Varanda EA (2013) Evaluation of Estrogenic Potential of Flavonoids Using a Recombinant Yeast Strain and MCF7/BUS Cell Proliferation Assay. PLoS ONE 8(10): e74881. doi:10.1371/journal.pone.0074881

Editor:Jae-wook Jeong, Michigan State University, United States of America ReceivedMay 6, 2013;AcceptedAugust 8, 2013;PublishedOctober 1, 2013

Copyright:ß2013 Resende et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding:This work was supported by ‘‘Fundac¸a˜o de Amparo a` Pesquisa do Estado de Sa˜o Paulo (FAPESP)’’ and ‘‘Coordenac¸a˜o de Aperfeic¸oamento de Pessoal de Nı´vel Superior (CAPES)’’, Brazilian state and federal agencies. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests:The authors have declared that no competing interests exist. * E-mail: flaviabiomed@yahoo.com.br

Introduction

An important class of toxicity arising from the environment is endocrine disruption. This is an especially harmful effect of chemical pollution that occurs when a chemical accumulates in an animal (or human) and affects its endocrine system. Given the multiple functions of hormones in the body, this alteration can lead to a variety of adverse effects, including hermaphroditism in fish and reproductive deficiencies in humans [1,2].

On the other hand, compounds that either induce or inhibit cellular estrogen responses have potential value as biochemical tools and candidates for drug development. Since the discovery of the nonsteroidal estrogens, many estrogen agonists and antagonists have been developed as agents for regulating fertility, preventing and controlling hormone-responsive breast cancer, and post-menopausal hormone replacement [3].

Thus, estrogenicity of flavonoids has become an important issue, since the most potent phytoestrogens are members of the flavonoid family. Besides their estrogenic properties, phytoestro-gens exert a wide variety of pharmacological effects in animal cells,

including inhibition of tyrosine kinases and DNA topoisomerases, antioxidative effects, interference in a plethora of signaling pathways, cell cycle, and apoptosis events, synergism with growth factors by inducing synthesis or activating receptors, and modulation of important enzymatic activities [4].

(2)

endometriosis. However, one of the limitations for determining estrogenicity of chemicals by checking the proliferation of ER positive MCF-7 cell line is that mitogens other than estrogens can also influence cell proliferation thus rendering non-specific responses by chemicals [5].

Thus, to complement the assay of proliferation of MCF-7 cells, we included the recombinant yeast-based estrogenicity assay, also known as recombinant yeast assay (RYA). RYA utilizes an engineered yeast strain in which the transcription of a reporter gene depends upon the presence in the medium of compounds capable of binding to ERa[6]. This is a simplified version of the mechanism by which natural estrogens operate in vertebrates; the fundamental similarity of transcription in all eukaryotes ensures that it also works in yeast [7].

Two characteristics of the yeast cell contribute to the success of the RYA. First, yeast has no endogenous system homologous to vertebrate nuclear receptors that could interfere with the assay. Second, the folding and post translational processing of vertebrate protein in yeast is very similar to the one from mammalian cells, which results in the preservation of the native receptor structure when expressed in yeast. This is of paramount interest for our purposes, since the correct structure of the ligand-binding domain of the receptor determines the specificity of the system, that is, its capability to distinguish between ligands and non-ligands. This latter point has been tested in numerous reports comparing ligand activity of different compounds in yeast and in mammalian systems. Although some differences do occur, RYA always stands as a reliable method to detect and characterize vertebrate receptor ligands [8].

In this work we investigated the potential estrogenicity of ten flavonoids (quercetin, kaempferol, luteolin, fisetin, galangin, chrysin, flavone, 3-hydroxyflavone, 5-hydroxyflavone and 7-hydroxyflavone) with different hydroxylation patterns (Figure 1) by combining two in vitro methods that monitor the estrogen responses that occur in vertebrate cells.

The two assays combined allow the analyst to estimate the affinity of a series of compounds for the human estrogen receptor (ER), as well as to explore the possible physiological consequences of this interaction [9].

Materials and Methods

Chemicals and Culture Media

Quercetin, kaempferol, fisetin, luteolin, flavone, 3-hydroxyfla-vone, 5-hydroxyfla3-hydroxyfla-vone, 7-hydroxyfla3-hydroxyfla-vone, chrysin, galangin and dimethyl sulfoxide (DMSO) were purchased from Sigma Chemical Co. (St. Louis, MO, USA). Yeast was grown on complete medium (10 g/L BactoTM yeast extract, 20 g/L BactoTM peptone, BD, Sparks, Maryland, USA; 20 g/L glucose) and minimal medium (6.7 g/L yeast nitrogen base without amino acids, Difco, Basel, Switzerland, 20 g/L glucose, supplemented with 0.1 g/L of prototrophic markers as required). The human MCF-7/BUS breast cancer cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) with 15 mg/L phenol red, 10% fetal bovine serum (FBS), 2% of 200 mM L-glutamine, 2% of 1 M HEPES buffer, 1% of 100 mM sodium pyruvate and 1% of 10 mg/mL penicillin–streptomycin, at 37uC, in an atmosphere of 5% CO2 and 95% air at saturating humidity.

Recombinant Yeast Assay (RYA)

The RYA tests were performed essentially as in Garcia-Reyero et al. [6]. Briefly, yeast strain BY4741 (MATa ura3D0 leu2D0 his3D1 met15D0) (EUROSCARF, Frankfurt, Germany), which was kindly provided by Dr Benjamin Pin˜a (CSIC, Barcelona, Spain), was transformed with plasmids pH5HE0 and pVitBX2 [6]. Expression plasmid pH5HE0 contains the human estrogen hormone receptor gene HE0 [10], cloned into the constitutive yeast expression vector pAAH5 [11]. The reporter plasmid pVITB2x contains two copies of the pseudo-palindromic estrogen responsive element from theXenopus laevisvitellogenin B1 gene (59-AGTCACTGTGACC-39) inserted into the unique KpnI site of pSFLD-178K [9].

Transformed clones were first grown in 3 mL of rich complete medium at 30uC. Next, they were grown overnight in minimal medium. The final culture was adjusted to an optical density (OD) of 0.1 at 600 nm and distributed in the wells of a siliconized 96-well polypropylene microliter plate (NUNCTM, U96 PP 0.5 mL), at 90mL in the first row. Aliquots of 10mL of the flavonoids, at initial concentration of 0.125 g/L, were dispensed into wells on the first row and serial dilutions were prepared along the plate, containing flavonoid with dilution factors 1:10, 1:30, 1:90, 1:270 and 1:810.

A positive control was made by adding 17-b-estradiol at a final concentration of 10 nM. Moreover, we included a toxicity control, by adding 10 nM of 17-b-estradiol to a sample with a dilution factor of 1:30, and 10% DMSO as the negative control.

Plates were incubated for 6 h at 30uC under mild shaking. After incubation, 50mL of Y-PERTM (PIERCETM, Rockford, IL, USA) was added to each well and incubated at 30uC for a further 30 min. Afterwards, 50mL of assay buffer was added to the lysed cells. The assay buffer was prepared by mixing 100 mL Z-buffer, 1 mL Triton X-100 (Sigma), 1 mL SDS 10%, 70mL 2-mercap-toethanol (Fluka) and 21 mg of 4-methylumbelliferylb -D-galac-toside (Sigma). Z-Buffer is a mix of: 60 mM Na2HPO4, 40 mM NaH2PO4, 10 mM KCl and 1 mM MgSO4, pH 7.0.

After centrifugation, plates were read in a spectrofluorometer (Synergy H1, Biotek), at 355 nm excitation and 460 nm emission wavelengths. Fluorescence was recorded for 20 min (one mea-surement per min);b-galactosidase activity was calculated as the

(3)

rate of increase of fluorescence (in arbitrary units). Data analysis of fluorescence units was performed with GraphPad Prism 5.0 (GraphPad Software Inc., San Diego, CA), using the ANOVA test followed by the Tukey test (p,0.05). RYA does not provide a direct measurement of the molar (or mass) concentration of endocrine disruptors, but of their estrogenic activity. For simplification, results were calculated as estradiol equivalents (EEQ), defined as the amount of estradiol that should be present to account for the observed response in a given sample. These equivalents were calculated from the lowest dilution in which the

b-galactosidase activity was indistinguishable from that of the control (only vehicle).

To translate results from serial dilutions to EEQ, we assumed that hormonal dose-response curves follow a sigmoidal function:

R{R0 Rmax{R0~

1 1zKd½ L

in which R0, R, and Rmax represent b-galactosidase units obtained without ligand (or extract) addition, at a given ligand concentration [L], and at a saturating ligand concentration, respectively. Kd represents the dissociation constant of the ligand– hormone complex; its value coincides with EC50, the ligand concentration giving 50% of the maximal response. For extract serial dilutions, plotting dilution factors versus relative response followed an inverse sigmoidal function, in which the apparent EC50correspond to the dilution (actual or theoretical) giving 50% the response for 10 nM estradiol. Apparent EC50values for each sample (a minimum of two replicas with at least four points each) were calculated using standard non-linear regression methods These values were converted to EEQ by assuming they correspond to the EC50 of estradiol [5–9], 72.9628 pM in our assay. Six independent experiments were done with the flavonoids, all of them in triplicate.

E-screen Assay

The simple and sensitive E-screen cell proliferation assay was performed with the human MCF-7/BUS breast cancer cell line. MCF-7/BUS cells were used according to a technique slightly modified Villalobos et al. [12] from that originally described Soto et al. [13]. As an established estrogenic cell line these cells endogenously express ERa. In absence of any other reporter constructs they therefore allow a reliable detection of potential transcriptional changes caused by xenoestrogens [14].

Human MCF-7/BUS breast cancer cells were kindly provided by the Laboratory of Medical Investigations (Department of Environmental Medicine; University of Granada, Granada, Spain), and were cultivated in DMEM with phenol red, supplemented with 10% FBS at 37uC in an atmosphere of 5% CO2and 95% air under saturating humidity.

Growth stimulation of MCF-7/BUS by compounds was measured as described in Soto et al. [13], with modifications by Villalobos et al. [12].

Subconfluent MCF-7/BUS cells were trypsinized and seeded in 24-well plates to an initial concentration of 20,000 cells per well in DMEM with 10% (v/v) FBS (1 mL/well). After cell adhesion to well bottoms (24 h incubation; 37uC, 5% CO2), the cells were washed with phosphate-buffered saline (PBS) and the culture medium was changed to DMEM supplemented with 10% charcoal dextran-stripped (steroid-free) FBS. The steroid-free experimental medium consisted of phenol-red- free DMEM supplemented with 10% stripped FBS, 2% of 200 mM

L-glutamine, 2% of 1 M HEPES buffer, 1% of 100 mM sodium pyruvate and 1% of 10 mg/mL penicillin-streptomycin.

Positive and negative controls were 161028M 17-b-estradiol and steroid-free experimental medium, respectively. There was also a solvent control (DMSO at 0.01%, the maximum concentration of solvent used in the test) and medium control (10% FBS in DMEM).

Test compounds were added to experimental medium at a range of concentrations from 161029 to 161025M. The concentrations were selected on the basis of a preliminary toxicity test based on sulforhodamine B (SRB) assay. Each experiment was performed three times on triplicate samples. The assay was terminated after 144 h of incubation by removing the medium from the wells and then the SRB assay was carried out.

For antiestrogenicity tests, before incubation, 161028M of 17-b-estradiol was added to the wells.

The estrogenic activity results were expressed as mean 6 standard deviation of the proliferative effect (PE), which represents the maximum proliferation induced by the flavonoids in the MCF-7/BUS cells. This parameter was calculated according to Schiliro´ et al. [15], and is the ratio between the highest cell number achieved with the sample or 17-b-estradiol and the cell number in the solvent control (0.01% DMSO):

PE~ ðmax cell numberÞsample

cell number

ð Þsolvent control

The estrogenic activity of a sample is evaluated by determining the relative efficacy of stimulation, called the relative proliferative effect (RPE%). The RPE compares the maximum proliferation induced by a sample with that induced by 17-b-estradiol:

RPE%~ ðPE{1Þsample

PE{1

ð Þ17-b-estradiol

|100

The RPE can be used to define full agonists for ER, between 80% and 100% relative proliferation. Partial and weak agonists induce a relative cell proliferation from 25% up to 80%, or 10% to 25%, respectively [16].

Formulas and functions of Excel (Microsoft, NY, USA) were used to calculate these results. Moreover, data analysis of estrogenic activity was performed with GraphPad Prism 5.0 (GraphPad Software Inc., San Diego, CA), using the ANOVA test followed by the Tukey test. Data analysis of antiestrogenic activity also was performed with GraphPad Prism 5.0 (GraphPad Software Inc., San Diego, CA), using the ANOVA test, however followed by the Dunnet test, to detect significant inhibition of MCF-7 proliferation after flavonoid treatment. Three independent exper-iments were done with the flavonoids, all of them in triplicate.

Cytotoxicity Assay

(4)

tap water 5–6 times and dried thoroughly. 0.4% SRB dissolved in 1% acetic acid was added and incubated for 30 min. The wells were washed 5–6 times with 1% acetic acid and dried. To each dried well, 10 mM Trizma base (pH 10.5) was added. Optical density was measured at 530 nm in a microplate reader (Synergy H1, Biotek).

Results

A total of 10 flavonoids were analyzed by the RYA assay. Among them, only kaempferol showed significant estrogenic activity, with ERa-dependent transcriptional activation activity, showing EC50 of 17.463.2mM and 6.7461.7 nM EEQ (Table 1). The other compounds (quercetin, fisetin, chrysin, luteolin, galangin, flavone, 3-hydroxyflavone, 5-hydroxyflavone and 7-hydroxyflavone) showed no detectable levels of estrogenic-ity.

The variation onb-galactosidase activity at different kaempferol concentrations (tested in sextuplicate) is represented inFigure 2. The effects of 17-b-estradiol and flavonoids quercetin, kaemp-ferol, galangin, luteolin, fisetin, chrysin, 3-hydroxyflavone, 5-hydroxyflavone, 7-hydroxyflavone and flavone on MCF-7/BUS cell proliferation measured byE-screenare shown inTable 2.

The results are expressed in PE and RPE %. RPE is a measure of the magnitude of the response of the tested substances, relative to the reference substance 17-b-estradiol ( = 100%).

Galangin, luteolin and fisetin showed partial agonist activity, with RPE = 44.0%, 35.3% and 53.5%, respectively; however, kaempferol exhibited full agonist activity, with RPE = 85.3%, demonstrating a higher capacity to induce the MCF-7/BUS cell proliferation. Quercetin, chrysin, 3-hydroxyflavone, 5-hydroxy-flavone, 7-hydroxyflavone and flavone did not induce significant cell proliferative activity (Table 2).

With respect to antiestrogenic activity, we observed that the flavonoids quercetin, chrysin and 3-hydroxyflavone significantly suppressed cell proliferation, compared to the effect of 17-b -estradiol alone, suggesting an antiestrogenic or 17-b-estradiol antagonist effect (Figure 3). The other compounds showed no differences in cell proliferation inhibition when compared with 17-b-estradiol alone, under the present experimental conditions (data not shown).

Discussion

Phytoestrogens are plant-derived chemicals with estrogen-like activities, which may perform beneficial roles in human estrogen deficiency, and the most potent phytoestrogens are members of the flavonoid family [17]. These compounds have some structural similarities to the natural estrogen 17-b-estradiol, as well as to other steroid hormones and steroid hormone antagonists [18], and

can interact with the ER and induce gene expression similar to that induced by estrogens, albeit at a lower affinity [19].

The ER has been shown to be able to bind to an array of compounds with a degree of structural diversity [20]. However, the potency of each substance may be due to its affinity for the ERs [21].

Given the significant interest in the estrogenic activity of phytoestrogens, this study was conducted to determine the estrogenic activity of flavonoids by the methods of E-screen and RYA.

By comparison with the natural estrogen, 17-b-estradiol, compounds or samples can be ranked according to their potency. Since thein vivoeffects of estradiol are very well documented, this compound serves as a reference framework for compound prioritization or hazard identification in environmental matrices [22].

When we relate the structure of flavonoids to their estrogenic activity in the RYA and E-screen, it is clear that there is some flexibility in the structural characteristics necessary to induce an estrogenic response. However, the results obtained in this study indicate that subtle changes in the structure of these compounds may alter their biological activity and specificity to the ER. The number of hydroxyl groups, especially those on the B ring of the flavonoid, seems to be important, whereas changes in A- or C-ring hydroxylation are of minor importance.

According to Zand et al. [18], hydroxyl groups at position 49 confer more potent estrogenic activity and the most potent estrogenic compounds have between 2 and 4 hydroxyl groups. At least one is bonded at position 7 of the A-ring, and another at position 49of the B-ring. These structural features are exhibited by the molecules of quercetin, kaempferol, fisetin and luteolin.

Interestingly the results of RYA are concordant with the data obtained in cell proliferation assay where kaempferol proved to be the only one with estrogenic activity mediated by ERadependent transactivation, with 6.7461.7 nM EEQ in the RYA. Further-more, it acted as a full agonist for stimulation of proliferation of MCF-7/BUS cells. The other compounds (quercetin, fisetin,

Table 1.Estradiol equivalents (EEQ) and median effective concentration (EC50) of the kaempferol from the recombinant yeast assay.

Compounds EEQa EC

50b

Kaempferol 6.7461.7 nM 17.463.2mM

Estradiol 2 72.9628 pM

aEEQ (estradiol equivalents) = concentration of estradiol that elicit the same response as the sample in the RYA assay.

bEC50= the ligand concentration giving 50% of the maximal response. doi:10.1371/journal.pone.0074881.t001

Figure 2. Estrogenic response for kaempferol in the recombi-nant yeast assay.Different concentrations of kaempferol (mM) were added to genetically engineered, estrogen- responsive yeast cells and incubated for 6 h. The b-galactosidase activities were calculated as fluorescence units (FU). Values are averages of six independent experiments; bars indicate value ranges. aSignificantly different from the negative control, DMSO, FU = 182621.bSignificantly different from the positive control, 17-b-estradiol, FU = 99106338 (one-way ANOVA, Tukey test;p#0.05).

(5)

chrysin, luteolin, galangin, flavone, 3-hydroxyflavone, 5- hydro-xyflavone and 7- hydrohydro-xyflavone) showed no detectable levels of estrogenicity in the conditions used in the RYA. However, in the E-screen, compounds such as galangin, luteolin and fisetin also stimulated proliferation of MCF-7/BUS cells, acting as partial agonists.

ER is a member of the nuclear receptor super family of proteins that modulates the expression of genes typically as a consequence of ligand binding. In addition to that some recent reports suggest that estrogens and estrogen mimicking compounds also activate diverse growth factor/mitogen-like signaling pathways, including Src/Ras/MAPK and cAMP pathways, in MCF-7 cells and these

responses may be associated with activation of membrane ER [5,23].

The discrepancy between RYA and MCF-7 test results might be due to distinct mechanisms occurring in yeast and in mammalian cells [9]. Yeast, for example, does not contain endogenous steroid or thyroid hormone receptors or related proteins such as aromatase. Moreover, the ER functions as a ligand-dependent transcription factor in the recombinant yeast. Thus, the estrogen-icity of a substance can only be assessed by this mechanism in the RYA.

With respect to the antiestrogenic activity, the compounds quercetin, chrysin and 3-hydroxyflavone significantly inhibited cell proliferation induced by 17-b-estradiol in the E-screen assay,

Table 2.Effects of flavonoids (quercetin, kaempferol, galangin, luteolin, fisetin, chrysin, 3-hydroxyflavone, 5-hydroxyflavone, 7-hydroxyflavone and flavone) on MCF-7/BUS cell proliferation measured byE-screen.

Quercetin Kaempferol Galangin Luteolin Fisetin

Concentrations (M) PEa RPEb PEa RPEb PEa RPEb PEa RPEb PEa RPEb

c

C+ 1.4160.36 100 1.4160.36 100 1.4160.36 100 1.4160.36 100 1.4160.36 100

1029 0.92

60.17* 2 1.1760.48* 42.2 1.0460.13* 9.2 1.1460.25* 35.3 1.1560.49* 37.2

1028 0.76

60.27* 2 1.0760.39* 16.1 1.0360.13* 8.3 1.1360.29* 31.6 1.1260.55* 29.2 1027 0.8360.13* 2 1.1160.48* 27.1 1.0060.11* 0.8 1.0860.27* 20.1 1.1160.45* 27.0

1026 0.89

60.13* 2 1.2760.52* 66.8 1.0660.17* 15.0 1.0960.25* 23.1 1.2260.57* 53.5

1025 0.77

60.15* 2 1.3560.26* 85.3 1.1860.39* 44.0 1.1160.18* 27.5 1.1460.61* 33.3 Chrysin 3-hydroxyflavone 5-hydroxyflavone 7-hydroxyflavone Flavone

PEa RPEb PEa RPEb PEa RPEb PEa RPEb PEa RPEb

cC

+ 1.4160.36 100 1.4160.36 100 1.4160.36 100 1.4160.36 100 1.4160.36 100

1029 0.94

60.13* 2 0.9160.11* 2 0.8560.26* 2 0.8860.08* 2 0.9960.03* 2

1028 0.90

60.14* 2 0.8760.03* 2 1.0060.09* 2 0.9360.06* 2 0.9560.19* 2

1027 0.85

60.16* 2 0.7960.04* 2 0.8860.23* 2 0.8260.17* 2 0.9760.06* 2

1026 0.97

60.12* 2 0.8360.21* 2 0.8260.21* 2 1.0060.02* 0.6 0.9360.13* 2

1025 1.00

60.04* 1.0 0.5660.22* 2 0.5660.18* 2 1.0260.06* 4.9 0.6760.19* 2 aProliferative effect (PE) is calculated as the effect on solvent control;

bRelative proliferative effect (RPE) compares the maximum proliferation induced by a sample with that induced by 17-b-estradiol; cC+= positive control (1

61028M 17-b-estradiol).

*Significantly different from the positive control, 17-b-estradiol (one-way ANOVA, Tukey test;p#0.05). doi:10.1371/journal.pone.0074881.t002

(6)

indicating that these compounds can act as ER antagonists. These results are highly relevant, because antiestrogens block 17-b -estradiol binding to ERaand antagonize estrogen-stimulated gene expression which is highly desirable relative to breast cancer prevention and treatment [24].

According to Oh et al. [23], antiestrogenic compounds can act by competing with 17-b-estradiol for ER binding, resulting in a functionally inactive, ligand-bound complex, or by depleting endogenous estrogen through the inhibition of estradiol biosyn-thesis (aromatase activity) or stimulation of estradiol catabolism. Moreover, antagonist-bound ERs adopt a distinct conformation that enables them to preferentially interact with corepressors rather than coactivators, thereby reinforcing their negative regulatory properties [24].

On the basis of structure-activity relationships analyzed by Fang et al. [25], some distinguishing features were found to be essential for xenoestrogen activity, using 17-b-estradiol as a template: (1) bonding capacity of the phenolic ring, mimicking the 3-OH, (2) H-bond donor mimicking the17-b-OH, (3) O-O distance between 3-and 17-b-OH, and its orientation, (4) hydrophobicity and (5) a ring structure. The elimination or modification of any of these features of the estrogen significantly reduces its binding affinity for the receptor.

Moreover, according to Anstead et al. [26], even if the overall skeletal conformation is similar, steroids lacking an aromatic ring have low binding affinity. On the other hand, according to Ward and Kuhnle [27], only an aromatic ring and a hydroxyl group are important features for a compound to bind to the receptor.

Regarding the compounds evaluated in this study, we observed that although quercetin has only one hydroxylation in the 39 -position of kaempferol [17,28], this structure did not show estrogenic activity in either the RYA orE-screenassay.

This indicates that ortho positioning between two hydroxyl groups may serve to reduce estrogenicity [17]. Moreover, Zand et al. [18] demonstrated that a total number of groups exceeding 4 reduce the estrogenic activity of the flavonoid. Of the compounds evaluated, quercetin is the only substance that has more than four hydroxyl groups. However, quercetin proved capable of inhibiting cell proliferation induced by 17-b-estradiol significantly, demon-strating antiestrogenic activity.

The estrogenicity of fisetin and luteolin was weak, probably due to two hydroxyl groups on the B ring, which reduced the stimulation of cell proliferation and impeded direct interaction between the compounds and the ER. In the E-screen, these compounds exhibited some estrogenic activity, as partial agonists, while in the RYA they showed no detectable levels of estrogenicity. Another compound that has structural properties similar to those of kaempferol is galangin, differing only in the number of hydroxyl groups on the B ring. In fact, galangin is a flavonol that does not have any hydroxyl group on the B ring [29]. In the E-screen, galangin also acted as a partial agonist, whereas in the RYA,

the absence of hydroxyl groups on the B ring prevented interaction with the ER, demonstrating that the activity of this compound is not directly dependent on the affinity for the ER.

According to Choi et al. [17], hydroxyl groups appear to be crucial for binding activity. If hydroxyl groups are not present in the structure, no estrogenic activity is observed [18], as demon-strated in the results with flavone.

The structural modifications of the A- and C-rings do not appear to influence the estrogenic activity of these compounds, as can be observed in the results of the flavonoids 3-hydroxyflavone, 5-hydroxyflavone, 7-hydroxyflavone, flavone and chrysin in both the RYA and theE-screen. The lack of estrogenicity is believed to be primarily due to the absence of a hydroxyl on the B ring.

However, the presence of only one hydroxyl group in position 3, as in the molecule of 3-hydroxyflavone, and hydroxyl groups at positions 5 and 7, as in chrysin, were shown to be important in the antiestrogenic activity. These compounds inhibited significantly the cell proliferation induced by 17-b-estradiol.

Studies have suggested that the three-dimensional folding of the hormone-binding domain induced by a ligand to leads a change the ionic charge at the surface of the ligand-receptor complex. Estrogen antagonist can induce conformational modifications of the ER that do not preclude its binding to the estrogen response element but fail to promote the sequence events needed for gene transcription [30].

The double bond between carbons 2 and 3 does not seem to interfere in the estrogenicity, because all of the compounds that showed (anti) estrogenic activity have this structural feature.

However, it is well established that functional phytoestrogens belong to structurally different classes of compounds; therefore, chemical structures alone are not sufficient to predict estrogenic activity [31]. Moreover, the negative results observed in this study do not exclude the estrogenic activity of the respective tested compounds, since they may act by different mechanisms from those revealed by RYA andE-screen.

Further research is needed to reach a better understanding of the interactions involved in ligand-receptor binding, since a more detailed knowledge of its structure may prove valuable in the search for preventative natural phytoestrogens, as well as the development of novel drugs derived from natural products. In this context, we highlight, among the compounds tested, the estrogenic activity of kaempferol mediated by ERa-dependent transcriptional activation and by stimulation of MCF-7/BUS cell proliferation. Moreover, this work emphasizes again the need for complemen-tary methods of analysis of estrogenic activity.

Author Contributions

Conceived and designed the experiments: FAR WV EAV. Performed the experiments: FAR APSO MSC. Analyzed the data: FAR. Contributed reagents/materials/analysis tools: WV EAV. Wrote the paper: FAR.

References

1. Brix R, Noguerol TN, Pin˜a B, Balaam J, Nilsen AJ, et al. (2010) Evaluation of the suitability of recombinant yeast-based estrogenicity assays as a pre-screening tool in environmental samples. Environ Int 36: 361–367.

2. Tokarz J, Mo¨ller G, Angelis MH, Adamski J (2013) Zebrafish and steroids: what do we know and what do we need to know? J Steroid Biochem Mol Biol doi: 10.1016/j.jsbmb.2013.01.003.

3. Ogawa T, Ohta K, Iijima T, Suzuki T, Ohta S, et al. (2009) Synthesis and biological evaluation ofp-carborane bisphenols and their derivatives: structure-activity relationship for estrogenic structure-activity. Bioorg Med Chem 17: 1109–1117. 4. De Naeyer A, Vanden Berghe W, Pocock V, Milligan S, Haegeman G, et al. (2004) Estrogenic and anticarcinogenic properties of kurarinone, a lavandulyl flavanone from the roots ofSophora flavescens. J Nat Prod 67(11): 1829–32.

5. Sharan S, Nikhil K, Roy P (2013) Effects of low dose treatment of tributyltin on the regulation of estrogen receptor functions in MCF-7 cells. Toxicol Appl Pharmacol. 269(2): 176–186.

6. Garcia-Reyero N, Grau E, Castillo M, Lo´pez de Alda MJ, Barcelo´ D, et al. (2001) Monitoring of endocrine disruptors in surface waters by the yeast recombinant assay. Environ Toxicol Chem 20: 1152–1158.

7. Ce´spedes R, Lacorte S, Raldu´a D, Ginebreda A, Barcelo´ D, et a. (2005) Distribution of endocrine disruptors in the Llobregat River basin (Catalonia, NE Spain). Chemosphere 61: 1710–1719.

(7)

9. Garcia-Reyero N, Requena V, Petrovic M, Fischer B, Hansen PD, et al. (2004) Estrogenic potential of halogenated derivatives of nonylphenol ethoxylates and carboxylates. Environ Toxicol Chem 23: 705–711.

10. Green S, Chambon P (1991) The oestrogen receptor: from perception to mechanism. In: PARKER, M. G. (Ed.). Nuclear hormone receptors. London: Academic Press, p 15–38.

11. Schneider JC, Guarente L (1991) Vectors for expression of cloned genes in yeast: Regulation, overproduction, and underproduction. Meth Enzymol 194: 373– 388.

12. Villalobos M, Olea N, Brotons JA, Olea-Serrano MF, Ruiz de Almodovar JM, et al. (1995) TheE-screenassay: a comparison of different MCF-7 cell stocks. Environ Health Perspect 103: 844–850.

13. Soto AM, Lin TM, Justicia H, Silvia RM, Sonnenschein C (1992) An ‘‘in culture’’ bioassay to assess the estrogenicity of xenobiotics. In: COLBORN T and CLEMENT C. (Eds.) Chemically induced alterations in sexual development: The wildlife/human connection Princeton, NJ: Princeton Scientific Publishing, p.295–309.

14. Tarnow P, Tralau T, Hunecke D, Luch A (2013) Effects of triclocarban on the transcription of estrogen, androgen and aryl hydrocarbon receptor responsive genes in human breast cancer cells. Toxicol In Vitro 27(5): 1467–1475. 15. Schiliro´ T, Gorrasi I, Longo A, Coluccia S, Gilli G (2011) Endocrine disrupting

activity in fruits and vegetables evaluated with theE-screenassay in relation to pesticide residues. J Steroid Biochem Mol Biol 127: 139–146.

16. Kuch B, Kern F, Metzger JW, Von der Trenck KT (2010) Effect-related monitoring: estrogen-like substances in groundwater. Environ Sci Poll Res Int 17: 250–260.

17. Choi SY, Ha TY, Ahn JY, Kim SR, Kang KS, et al. (2008) Estrogenic activities of isoflavones and flavones and their structure-activity relationships. Planta Med 74: 25–32.

18. Zand RS, Jenkins DJ, Diamandis EP (2000) Steroid hormone activity of flavonoids and related compounds. Breast Cancer Res Treat 62: 35–49. 19. Ferguson LR (2001) Role of plant polyphenols in genomic stability. Mutat Res

475: 89–111.

20. Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, et al. (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinol 139: 4252–4263.

21. Wanda GJ, Njamen D, Yankep E, Fotsing MT, Fomum ZT, et al. (2006) Estrogenic properties of isoflavones derived fromMillettia griffoniana.Phytomed 13: 139–145.

22. Vanparys C, Depiereux S, Nadzialek S, Robbens J, Blust R, et al. (2010) Performance of the flow cytometricE-screenassay in screening estrogenicity of pure compounds and environmental samples. Sci Total Environ 408: 4451– 4460.

23. Oh SM, Kim HR, Chung KH (2009)In vitroestrogenic and antiestrogenic potential of chlorostyrenes. Toxicol In Vitro 23: 1242–1248.

24. Liu S, Han SJ, Smith CL (2013) Cooperative activation of gene expression by agonists and antagonists mediated by estrogen receptor heteroligand dimer complexes. Mol Pharmacol 85(5): 1066–1077.

25. Fang H, Tong W, Shi LM, Blair R, Perkins R, et al. (2001) Structure-activity relationships for a large diverse set of natural, synthetic, and environmental estrogens. Chem Res Toxicol 14: 280–294.

26. Anstead GM, Carlson KE, Katzenellenbogen JA (1997) The estradiol pharmacophore: ligand structure-estrogen receptor binding affinity relationships and a model for the receptor binding site. Steroids 62: 268–303.

27. Ward HA, Kuhnle GG (2010) Phytoestrogen consumption and association with breast, prostate and colorectal cancer in EPIC Norfolk. Arch Biochem Bioph 501: 170–175.

28. Hou DX, Kumamoto T (2010) Flavonoids as protein kinase inhibitors for cancer chemoprevention: direct binding and molecular modeling. Antiox Redox Signal 13: 691–719.

29. Duarte Silva I, Gaspar J, Gomes da Costa G, Rodrigues AS, Laires A, et al. (2000) Chemical features of flavonols affecting their genotoxicity. Potential implications in their use as therapeutical agents. Chem Biol Interact 124: 29–51. 30. Watanabe C, Egami T, Midorikawa K, Hiraku Y, Oikawa S, et al. (2010) DNA damage and estrogenic activity induced by the environmental pollutant 2-nitrotoluene and its metabolite. Environ Health Prev Med 15: 319–326. 31. De-Eknamkul W, Umehara K, Monthakantirat O, Toth R, Frecer V, et al.

Referências

Documentos relacionados

Material e Método Foram entrevistadas 413 pessoas do Município de Santa Maria, Estado do Rio Grande do Sul, Brasil, sobre o consumo de medicamentos no último mês.. Resultados

Foi elaborado e validado um questionário denominado QURMA, específico para esta pesquisa, em que constam: a) dados de identificação (sexo, idade, profissão, renda familiar,

As mudanças na politica de saúde e social, os avanços no tratamento farmacológico, a desinstitucionalização e a substituição do modelo focado na cura e centrado no hospital pelo

Viveiros Educadores são espaços de produção de mudas de espécies vegetais onde, além de produzi-las, desenvolve-se de forma Intencional, processos que buscam ampliar as

No segundo capítulo, são apresentadas as finalidades e as relações entre a performance e a loucura, dando ênfase ao processo criativo no segmento psicossocial, pois ao descrever e

The objective of this study was to evaluate the viability of pasture with high production capacity and the potential for production of silage using different sources and doses

Universidade Estadual da Paraíba, Campina Grande, 2016. Nas últimas décadas temos vivido uma grande mudança no mercado de trabalho numa visão geral. As micro e pequenas empresas

Tem também uma coisa muita engraçada nesse texto que nas traduções (BECKETT escreveu primeiro em inglês e depois traduziu pro francês). Para o inglês, a peça se chama