• Nenhum resultado encontrado

Variabilidade acústica e respostas evolutivas a diferentes pressões seletivas no canto de anúncio de anfíbios

N/A
N/A
Protected

Academic year: 2017

Share "Variabilidade acústica e respostas evolutivas a diferentes pressões seletivas no canto de anúncio de anfíbios"

Copied!
159
0
0

Texto

(1)

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE

CENTRO DE BIOCIÊNCIAS

PROGRAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA

TESE DE DOUTORADO

VARIABILIDADE ACÚSTICA E RESPOSTAS

EVOLUTIVAS A DIFERENTES PRESSÕES SELETIVAS

NO CANTO DE ANÚNCIO DE ANFÍBIOS

David Lucas Röhr

Natal-RN

(2)

David Lucas Röhr

VARIABILIDADE ACÚSTICA E RESPOSTAS

EVOLUTIVAS A DIFERENTES PRESSÕES SELETIVAS

NO CANTO DE ANÚNCIO DE ANFÍBIOS

Natal-RN

Maio/2015

Tese apresentada à Coordenação do Programa de Pós-Graduação em Ecologia, da Universidade Federal do Rio Grande do Norte, em cumprimento às exigências para obtenção do grau de Doutor.

(3)

Catalogação da Publicação na Fonte. UFRN / Biblioteca Setorial do Centro de Biociências

Röhr, David Lucas.

Variabilidade acústica e respostas evolutivas a diferentes pressões seletivas no canto de anúncio de anfíbios. / David Lucas Röhr. – Natal, RN, 2015.

158 f.: il.

Orientador: Prof. Dr. Adrian Antonio Garda.

Tese (Doutorado) – Universidade Federal do Rio Grande do Norte. Centro de Biociências. Programa de Pós-Graduação em Ecologia.

1. Anura. – Tese. 2. Comunicação acústica. – Tese. 3. Canto de anúncio. – Tese. I. Garda, Adrian Antonio. II. Universidade Federal do Rio Grande do Norte. III. Título.

(4)

BANCA EXAMINADORA

_____________________________________________

Dr. Adrian Antonio Garda – Universidade Federal do Rio Grande do

Norte/Presidente – Orientador

_____________________________________________

Dr. Carlos Roberto Sorensen Dutra da Fonseca – Universidade Federal do Rio Grande do Norte/ Membro Interno

_____________________________________________

Dr. Márcio Zikán Cardoso – Universidade Federal do Rio Grande do Norte/ Membro Interno

_____________________________________________

Dr. Carlos Barros de Araújo - Universidade Federal da Paraíba

Membro Externo

_____________________________________________

Dr. Marcelo Felgueiras Napoli - Universidade Federal da Bahia

(5)

AGRADECIMENTOS

Gostaria de começar agradecendo à minha família, devo tudo que sou a eles.

Meu pai, Ferdinand Röhr, que sempre foi meu maior exemplo, por todos os conselhos

muito sensatos (deveria ter seguido-os mais), por todo carinho e apoio em todas as fases

da minha vida, especialmente durante o doutorado. Minha mãe, Gunde Schneider, por

todo amor e cuidado que sempre teve por mim e o grande apoio, principalmente nos

momentos de dificuldade. Minha irmã, Lucia Röhr, por ser minha melhor amiga e uma

grande parceira na vida, juntamente com meu sobrinho, João Lucas, que tá pra nascer a

qualquer momento e já o amo muito. A David Lemos, meu cunhado e amigo.

Gostaria também de agradecer fortemente ao meu orientador, Adrian Garda, e à

minha co-orientadora, Flora Juncá, por todos os ensinamentos sobre bioacústica,

herpetologia e ciência em geral, além de todo o apoio e amizade.

Agradeço muito ao meu grande amigo Gustavo Paterno. A convivência com ele

durante esse doutorado foi fundamental para a elaboração desta tese. As muitas

discussões sobre ciência, estudos de xadrez e a ajuda direta na confecção da tese, além

de sua amizade e companheirismo, foram inestimáveis para minha vida em Natal.

Agradeço muito também ao Felipe Camurugi, sua amizade e sua disposição em

me ajudar foram muito especiais pra mim.

Agradeço ao Marcelo Gehara e ao Pablo Martinez, pela grande contribuição em

dois diferentes capítulos desta tese.

Agradeço a todos os bons amigos que fiz em Natal, especialmente todos com

quem morei na república Tanquetão, vocês todos fizeram minha estadia nesta cidade

muito feliz, me sentindo fazer parte de uma verdadeira família: Laura Fernandez,

Gustavo Paterno; Anna Santos, Natália Pires, Andree Kimber, Nicolas Sebastian, Lucas

Viegas e Marina Fagundes.

Agradeço a todos do Laboratório de Anfíbios e Repteis da UFRN, em especial,

(6)

Felipe Medeiros, Diego Santana, Sara Mângia, Emanuel Fonseca, Flávia Mól Lanna,

Adrian Garda, Marília Lion, Alan Felipe e Thiago Pereira, que se tornaram bons

amigos.

Agradeço a todos que foram a campo comigo, foram tantos que minha memória

ridícula não permite listar todos.

Aos meus amigos do C.R.A, especialmente Bruno Caxias, Fausto Luiz, Gustavo

Galvão, Mário Jarbas, Rodrigo Lapa, Cláudio Leandro, Leo Vidal, Rodrigo Almeida e

Ricardo Quirino.

Agradeço a diversas pessoas que passaram por minha vida em diferentes fases e

me tornaram uma pessoa melhor: Antônio Mattos, Washington Aarão, Alana Araújo,

Denise Bacelar, Bruno Pilatus, Gustavo Paterno, Arturo Escobar, Vinícius São Pedro,

Eliana Faria, Karol Marcal, Mario Jarbas, Juliana Fortes, Igor Alexandre, Welber Pina,

Thiago Nilo e Thiago Mallman.

Agradeço a CAPES pela bolsa, ao CNPq por financiamento das coletas do

segundo capítulo e ao projeto Sisbiota Herpeto-Helmintos por financiar as coletas no

Amapá do primeiro capítulo.

Por último, gostaria de fazer um agradecimento especial à Alana Araújo, que há

quatro anos topou o desafio de enfrentar esse doutorado junto comigo e, apesar da

distância física, na maior parte do tempo, foi minha maior companheira durante todos

(7)

SUMÁRIO

Introdução Geral ... 01

Referências Introdução Geral... 04

Capítulo 01 - Variability in Anuran Advertisement Call: a Multi-level Study with the Genus Phyllomedusa (Hylidae: Anura)……… 07

Introdução... 08

Material e Métodos... 10

Resultados... 12

Discussão... 14

Referências Bibliográficas... 17

Figuras... 21

Tabelas... 23

Material Suplementar... 27

Capítulo 02 - Habitat Depended Variation in the Advertisement Call of Phyllomedusa nordestina (HYLIDAE: ANURA)... 37

Introdução... 38

Material e Métodos... 41

Resultados... 44

Discussão... 45

Referências Bibliográficas... 48

Figuras... 52

Tabelas... 55

Material Suplementar... 57

Capítulo 03 - Background Noise as a Selective Pressure: Stream-breeding Anurans Call at Higher Frequencies... 63

Introdução... 65

Material e Métodos... 66

Resultados... 67

Discussão... 68

Referências Bibliográficas... 72

Tabelas... 75

Figuras... 76

Material Suplementar... 77

(8)

1 Introdução Geral

Sinais reprodutivos podem ter um papel fundamental no processo de especiação,

uma vez que isolamento reprodutivo pode ocorrer mediante variações na estrutura

destes sinais e nas preferências dos possíveis parceiros sexuais (Turelli et al., 2001). A

evolução destes sinais pode ser influenciada por uma gama de forças evolutivas, como

seleção natural, seleção sexual e processos estocásticos (Erdtmann e Amézquita, 2009).

Sinais acústicos são o principal meio de comunicação da maioria das espécies de anuros

(Gerhardt e Huber, 2002). Dentre os diferentes tipos de vocalizações conhecidos para o

grupo, o canto de anúncio, cuja principal função é atrair as fêmeas, tem sido o mais

estudado (Gerhardt, 1994).

A evolução de vocalizações animais pode ser influenciada por processos

estocásticos ou adaptativos que atuam diretamente no processo de especiação. A

importância dos processos estocásticos em mudanças não-adaptativas nas vocalizações

é atribuída à deriva genética (Gerhardt e Huber, 2002; Erdtmann e Amézquita, 2009) e à

mudanças pleiotrópicas acompanhadas indiretamente por mudanças morfológicas

(Cocroft e Ryan, 1995; Podos, 2001; Seddon, 2005; Erdtmann e Amézquita, 2009).

Dentre os processos adaptativos, a importância do reconhecimento específico (Pfenning,

1998) e da seleção sexual (Ryan e Rand, 1993; Carson, 2003; Boul et al., 2007) têm

sido os mais estudados.

Por outro lado, diferentes pressões impostas pelo ambiente onde a comunicação

ocorre podem promover a evolução dos cantos, em distintas direções e intensidades

(Boughman, 2002). Por exemplo, a presença de predadores (Tuttle e Ryan, 1981) ou

parasitas (Bernal et al., 2006) no ambiente, os quais se utilizam dos sinais acústicos de

suas presas para sua detecção/localização, podem exercer uma forte pressão seletiva

sobre estes sinais.

Uma pressão seletiva pode favorecer sinais que minimizem a interferência do

ruído ambiente oriundo dos sinais acústicos de outros animais ou de fatores abióticos

(Wollerman e Wiley, 2002; Feng et al., 2006; Preininger et al., 2007). Na verdade, o

ruído ambiente é um dos principais limitantes da comunicação acústica (Brumm e

Slabberkoorn, 2005). Ambientes lóticos como riachos, que são utilizados por diversas

espécies de anuros para reprodução, produzem um ruído ambiente constante que muitas

(9)

2

espectros graves (Goutte et al., 2013) que se sobrepõe ao canto relativamente grave dos

anuros (Wells, 2007). Desta forma, pode se esperar que anuros que vocalizem perto

destes ambientes utilizem frequências mais altas com menor sobreposição espectral com

o barulho ambiente. De fato, estudos mostram que a estrutura de comunidade de anuros

próximos a riachos está associada à intensidade do barulho da água corrente (Goutte et

al., 2013) e que a utilização de cantos mais agudos aumenta a capacidade de detecção e

localização destes sinais nesses ambientes (Boonman e Kurniati, 2011). Além disso,

todas as espécies de anuros que utilizam de comunicação ultrassônica cantam perto de

corredeiras (Narins et al., 2004; Feng et al., 2006; Arch et al., 2008).

A eficiência da propagação do sinal acústico também está sob intensa pressão

seletiva. Machos com vocalizações de maior alcance aumentam sua chance de atrair

fêmeas. Desse modo, sinais acústicos que sofram o menor grau de atenuação (perda de

energia) e degradação (perda de fidelidade) (Kime et al.,2000; Castellano et al., 2003)

tendem a ser selecionados. A estrutura da vegetação pode ter um papel importante na

propagação do som, uma vez que ondas sonoras se propagam com eficiências distintas

em vegetações abertas ou fechadas. Assim, determinadas características acústicas dos

sinais podem ser mais propícias à propagação em tipos específicos de ambientes (Wiley

e Richards 1978; Kime et al., 2000).

Desta forma, é esperado que animais, especialmente naqueles grupos onde a

comunicação acústica é amplamente difundida (ex. aves, mamíferos e anuros),

modulem a estrutura de suas vocalizações para otimizar sua propagação, o que é conhecido como a ―Hipótese da Adaptação Acústica‖ (Morton, 1975; Rothstein e Fleischer, 1987; Ey e Fischer, 2009). Áreas de vegetação aberta apresentam

características acústicas muito diferentes de áreas com vegetação densa (Wiley e

Richards, 1978). Hábitats fechados tendem a impor maiores pressões seletivas sobre a

sinalização acústica (Ey e Fischer, 2009), uma vez que nestes ambientes a comunicação

visual é mais restrita, as condições acústicas são mais estáveis (Morton, 1975; Brown e

Handford, 2000) e a reverberação e absorção das ondas sonoras são mais intensas

(Wiley e Richards, 1978).

Existem várias predições sobre como as características dos sinais acústicos

devem se comportar em hábitats abertos versus fechados. Como áreas de vegetação

(10)

3

flutuações de vento e temperatura), acredita-se que nestes hábitats as vocalizações

devam apresentar um maior grau de estereotipia em relação aos hábitats abertos. Além

disto, há várias características sonoras, relacionadas a diversos parâmetros acústicos

temporais e espectrais, que favorecem uma propagação eficiente nestes dois ambientes.

Por exemplo, espera-se que vocalizações em ambientes fechados apresentem uma maior

duração, menor taxa de repetição de subelementos do canto, menor número de

elementos de frequência modulados, frequências máximas e mínimas mais baixas,

menores frequências média e dominante, além de bandas de frequências mais restritas.

Dos estudos feitos até hoje com anuros, mamíferos e aves, parte corroboram algumas

destas tendências (revisado em Ey e Fischer, 2009).

Existem basicamente duas metodologias para estudar a influência do ambiente

nos sinais acústicos de diferentes animais: uma abordagem comparativa e outra

experimental (Castellano et al., 2003). Em estudos de base comparativa, sinais acústicos

de diferentes espécies dentro de um grupo monofilético são comparados controlando-se

os possíveis efeitos da filogenia nas diferenças observadas (ver Ey e Fisher, 2009 e

Peters e Peters, 2010). Com isso, é possível determinar se as correlações observadas são

decorrentes da ancestralidade comum ou da evolução convergente em resposta a

pressões seletivas semelhantes (Cosens e Falls, 1984; Wiley, 1991; Badyaey e Leaf,

1997). Em estudos de base experimental, para testar o efeito das diferenças ambientas e

as variações nos sinais acústicos os pesquisadores podem testar de forma direta a

eficiência de propagações em diferentes hábitats e analisar a quantidade de atenuação

e/ou degradação com o aumento da distância (Ryan et al., 1990; Penna e Solis, 1998;

Kime et al., 2000; Röhr e Juncá, 2013).

Estudos realizados com aves e primatas demonstram que, para diferentes grupos,

uma propagação eficiente está sujeita a uma pressão seletiva significativa exercida pelo

meio de propagação (e.g. Wiley, 1991; Brown et al., 1995; Badyaey e Leaf, 1997;

Patten et al., 2004; Seddon, 2005; Kirschel et al., 2009; Ripmeester et al., 2010).

Existem menos estudos realizados com anuros e os resultados não são conclusivos

(Zimmerman, 1983; Ryan et al., 1990; Penna e Solis, 1998; Kime et al., 2000;

Castellano et al., 2003; Bosch e De la Riva, 2004). Isso ocorre especialmente pelo fato

de uma análise filogenética comparativa não ter sido conduzida para anfíbios, visto que

(11)

4

Nesta tese, tentamos avançar sobre o conhecimento dos processos evolutivos que

atuam sobre sinais acústicos, mais especificamente o canto de anúncio dos anuros. No

primeiro capítulo, fizemos uma análise descritiva da variabilidade do canto de anúncio

do gênero Phyllomedusa (Hylidae: Anura) em diferentes níveis: diferentes cantos de um

mesmo indivíduo; cantos de diferentes indivíduos de uma mesma população; cantos de

indivíduos de diferentes populações; cantos de diferentes espécies. Discutimos como a

variabilidade dos diferentes parâmetros acústicos nesses níveis podem evidenciar

processos evolutivos atuantes sobre essas vocalizações. Nos capítulos seguintes

testamos se diferentes pressões seletivas estão associadas à diversidade intra e

interespecífica nesta vocalização. No segundo capítulo, testamos a importância de

barreiras de propagação sobre o canto de anúncio de Phyllomedusa nordestina. Para isto

comparamos vocalizações de indivíduos de diferentes populações que ocorrem na Mata

Atlântica e na Caatinga, além de testar se os parâmetros acústicos estão correlacionados

à quantidade de vegetações no entorno do indivíduo. Já no terceiro capítulo, avaliamos

se a frequência dominante do canto de anúncio das espécies que reproduzem em

ambientes lóticos é mais alta em relação às espécies de ambientes lênticos. Para isto,

utilizamos dados de literatura sobre espécies distribuídas por todo o globo.

Referências

Arch, V. S., Grafe, T. U., Gridi-Papp, U., & Narins, P. M. 2009. Pure ultrasonic communication in an

endemic Bornean frog. Plos One, 4, e5413.

Badyaev, A. V. & Leaf, E. S. 1997. Habitat associations of song characteristics in Phylloscopus and

HippolaisWarblers. The Auk, 114, 40-46.

Bernal, X. E., Rand, A. S. & Ryan, M. J. 2006. Acoustic preferences and localization performance of

blood-sucking flies (Corethrella Coquillett) to túngara frog calls. Behavioral Ecology, 17, 709-715.

Boonman, A. and Kurniati, H. 2011. Evolution of high-frequency communication in frogs. Evolutionary

Ecology Research, 13, 197-207.

Bosch, J. & De la Riva, I. 2004. Are frogs calls modulated by the environment? An analysis with anuran

species from Bolivia. Canadian Journal of Zoology, 82, 1051-1059.

Boughman, J. W. 2002. How sensory drive can promote speciation. Trends in Ecology & Evolution, 17,

571-577.

Boul, K. E., Funk, W. C., Darst, C. R., Cannatella, D. C. & Ryan, M. J. 2007.Sexual selection drives

speciation in an Amazonian frog. Proceedings of the Royal Society B: Biological Sciences, 274, 399-406.

Brown, T. J. & Handford, P. 2000. Sound design for vocalizations: quality in the woods, consistency in the

fields. The Condor, 102, 81-92.

Brown, C. H., Gomez, R. & Waser, P. M. 1995. Old World monkey vocalizations: adaptation to the local

habitat? Animal Behaviour, 50, 954-961.

Brumm, H.& Slabbekoorn, H.. 2005. Acoustic communication in noise. Advances in the Study of Behavior 35,

151-209.

(12)

5

Castellano, S., Giacoma, C. & Ryan, M. J. 2003. Call degradation in diploid and tetraploid toads. Biological

Journal of the Linnean Society, 78, 11-26.

Cocroft, R. B. & Ryan, M. J. 1995. Patterns of advertisement call evolution in toads and chorus frogs. Animal

Behaviour, 49, 283-303.

Cosens, S. E. & Falls, J. B. 1984. A comparison of sound propagation and song frequency in temperate marsh

and grassland habitats.Behavioral Ecology and Sociobiology, 3, 161-170.

Erdtmann, L. & Amézquita, A. 2009. Differential evolution of advertisement call traits in dart-poison frogs

(Anura: Dendrobatidae). Ethology, 115, 801-811.

Ey, E. & Fischer, J. 2009. The ―Acoustic Adaptation Hypothesis‖ – a review of the evidence from birds, anurans and mammals. Bioacoustics, 19, 21-48.

Feng, A. S., Narins, P. M., Xu, C., Lin., W., Yu, Z., Qiu, Q., Xu, Z. & Shen, J. 2006. Ultrasonic

communication in frogs. Nature, 404, 333-336.

Gerhardt, H. C. 1994. The evolution of vocalization in frogs and toads. Annual Review of Ecology and

Systematics, 25, 293-324.

Gerhardt, H. C. & Huber, F. 2002. Acoustic communication in insects and anurans. Chicago: University of

Chicago Press.

Goutte, S., Dubois, A. & Legendre, F. 2013. The importance of ambient sound level to characterise anuran

habitat. Plos One, 8, e78020.

Kime, N. M., Turner, W. R. & Ryan, M. J. 2000. The transmission of advertisement calls in Central American

frogs. Behavioral Ecology,11, 71-83.

Kirschel, N. G., Blumstein, D. T., Cohen, R. E., Buemann, W. Smith, T. B. & Slabbekoorn, H. 2009.

Birdsong tuned to the environment: green hylia song varies with elevation, tree cover, and noise. Behavioral ecology, 20, 1089-1095.

Morton, E. S. 1975. Ecological sources of selection on avian sounds. The American Naturalist, 109, 13-17. Narins, P. M., Feng, A. S., Lin, W. Y., Schnitzler, H. U., Denzinger, A., Suthers, R. A., & Xu, C. H. 2004.

Old World frog and bird, vocalizations contain prominent ultrasonic harmonics. Journal of the Acoustical Society of America, 115, 910-913.

Patten, M. A., Rotenberry, J. T. & Zuk, M. 2004. Habitat selection, acoustic adaptation, and the evolution of

reproductive isolation. Evolution, 58, 2144-2155.

Penna, M. & Solís, R. 1998. Frog call intensities and sound propagation in the South American temperate forest

region. Behavioral Ecology and Sociobiology, 42, 371-381.

Peters, G. & Peters, M. K. 2010. Long-distance call evolution in the Felidae: effects of body weight, habitat,

and phylogeny. Biological Journal of the Linnean Society, 101, 487-500.

Pfenning, K. S. 1998. The evolution of mate choice and the potential for conflict between species and

mate-quality recognition. Proceedings of the Royal Society B: Biological Sciences, 265, 1743-1748.

Podos, J. 2001. Correlated evolution of morphology and vocal signal structure in Darwin´s Finches. Nature, 409, 185-188.

Preininger, D., Markus, B. & Hödl. 2007. Comparison of anuran acoustic communities of two habitat types in

the Danum Valley Conservation Area, Sabah, Malaysia. Salamandra, 43, 129-138.

Ripmeester, E. A. P., Mulder, A. & Slabbekoorn, H. 2010. Habitat-dependent acoustic divergence affects

playbacks in urban and forest populations of the European blackbird. Behavioral Ecology, 21, 876-883.

Röhr, D. L. & Juncá, F. A. 2013. Micro-habitat influence on the advertisement call structure and sound

propagation efficiency of Hypsiboas crepitans (Anura: Hylidae). Journal of Herpetology, 47, 549-554.

Rothstein, S. I. & Fleischer, R. C. 1987. Vocal dialects and the possible relation to honest status signaling in

the Brown-Headed Cowbird. The Condor, 89, 1-23.

Ryan, M. J. & Rand, A. S. 1993. Sexual selection and signal evolution: the ghost of biases past. Philosophical

Transactions: Biological Sciences, 340, 187-195.

Ryan, M. J., Cocroft, R. B. & Wilczynski, W. 1990. The role of environmental selection in intraspecific

divergence of mate recognition signals in the cricket frog, Acris crepitans. Evolution, 44, 1869-1872.

Seddon, N. 2005. Ecological adaptation and species recognition drives vocal evolution in neotropical suboscine

birds. Evolution, 59, 200-215.

Turelli, M., Barton, N. H. & Coyne, J. A. 2001. Theory and speciation. Trends in Ecology & Evolution, 16,

330-343.

Tuttle, M. D. & Ryan, M. J. 1981. Bat predation and the evolution of frog vocalizations in the neotropics.

Science, 214, 677-678.

Wells, K. D. 2010. The ecology and behavior of amphibians. University of Chicago Press, Chicago.

Wiley, R. H. 1991.Associations of song properties with habitats for territorial oscine birds of Eastern North

America. The American Naturalist, 138, 973-993.

Wiley, R. H. & Richards, D. G. 1978. Physical constraints on acoustic communication in the atmosphere:

(13)

6

Wollerman, L. & Wiley, R. H. 2002. Background noise from natural chorus alters female discrimination of

male calls in a Neotropical frog. Animal Behaviour, 63, 15-22.

Zimmerman, B. L. 1983. A comparison of structural features of calls of open and forest habitat frog species in

(14)

7 CAPÍTULO 01

Variability in Anuran Advertisement Call: a Multi-level Study with the Genus Phyllomedusa (Hylidae: Anura).

David Lucas Röhr, Gustavo Brant Paterno, Marcelo Gehara, Felipe Camurugi; Flora

Acuña Juncá, Guilherme Fajardo R. Álvares, Reuber Albuquerque Brandão, Adrian

Antonio Garda

Abstract

Understanding variability of acoustic signals is a first important step for the

comprehension of the evolutionary processes that led to present diversity. Herein, we

evaluate the variability of the advertisement of the anuran genus Phyllomedusa at

different levels: intra-individual; intra-population; inter-population; inter-specific.

Analysis of coefficients of variation showed a continuum of variability between the

acoustic parameters analyzed, from static to highly dynamic. Most of the variation was

attributed to the inter-specific level, while the intra-individual varied the less, however,

the variability at each level differed between parameters. While most temporal acoustic

parameters were affected by environmental temperature, the spectral parameter was

strongly influenced by body size. Only one acoustic parameter was correlated to the

geographic distance between populations, while all presented a significant phylogenetic

signal. Furthermore, the advertisement call for this genus showed a low potential for

individual recognition. Based on these results, we discuss the possible importance of

different evolutionary forces and the usage of this vocalization for taxonomy.

(15)

8 Introduction

Understanding variability is fundamental for the comprehension of evolution

(Hallgrímsson and Hall, 2011). Darwin´s observations on phenotypic variation were the

basis for the development of the concept of natural selection (Darwin, 1859), and intra

and inter-specific variation were central for the modern evolutionary synthesis (Mayr,

1963; Wright, 1968).

Acoustic signals are important for a large proportion of current fauna, and for

most groups it has a predominant reproductive function (Gerhardt, 1994). Because these

signals are involved in conspecific recognition, they may have a key role in

diversification, and their importance as evolutionary forces has been the focus of many

studies (Wilkins et al., 2013).

Acoustic signals are the predominant form of communication for the vast

majority of anuran species. Although many species present more than one type of call,

the advertisement call emitted by males with main function of attracting females can be

considered the most important acoustic signal for this clade (Wells, 1977). Since the

first bioacoustic studies with frogs, authors noticed that each species has a distinct

advertisement call (Blair, 1958, 1964; Duellman and Pyles, 1983). Furthermore, it has

been shown that females demonstrate strong preference for conspecific advertisement

calls, even when considering sister taxa with relatively similar calls (Backwell and

Jennions, 1993; Gerhardt, 1974). Thus, this vocalization is considered an important

pre-zygotic reproductive barrier (Gerhardt and Huber, 2002) and has been used as an

important taxonomic tool, helping overcome the lack of useful external morphological

traits in frogs (Padial and De La Riva, 2009).

The anuran advertisement call is considered stereotyped, especially in

comparison to other vertebrates such as birds and mammals. Still, there is considerable

amount of intra-specific variation at the individual level (Howard and Young, 1998), at

the population level (Sullivan, 1982), and among population of the same species

(Sullivan, 1989). Although several studies clearly demonstrate this variation in each

level separately, few studies have quantified how different acoustic parameters vary at

different levels within a specific clade (Bee et al., 2010; Castellano et al., 2002).

Different acoustic parameters from the same call are semi-independent and might

(16)

9

and Huber, 2002). Therefore, a broad comprehension of variability at different levels

enables the proposition of various hypotheses about the evolutionary mechanisms that

led to the present acoustic diversity.

In general, variation in acoustic signals can be related to pleiotropic effects

(Podos, 2001), stochastic processes (Goicoechea et al., 2010), natural selection (Ryan et

al., 1990), and sexual selection (Gerhardt, 2005). For anurans, pleiotropic effects of

morphology and physiology are exemplified by the well-known influence of body size

and temperature on acoustic parameters. The size of the vocal apparatus usually affects

spectral parameters, while temperature often influences temporal characteristics of the

calls (Gerhardt, 1994). Such relationships can affect the variability of different acoustic

parameters at different levels. For example, acoustic parameters that are more

dependent on temperature should vary more, especially intra-individually and in a

shorter time scale. At the same time, parameters that are highly dependent on

morphology should be more stereotyped, with most of the variation occurring at levels

above individuals or ontogenetically. Therefore, it is important to carefully consider the

influence of temperature and body size in any bioacoustic study.

Stochastic processes affect the evolution and variability of acoustic signals. For

anurans, these effects are tested evaluating the geographic variation of acoustic

parameters (Pröhl et al., 2007) or the effect of phylogeny on inter-specific variation

(Goicoechea et al., 2010). While some acoustic parameters vary mostly in response to

stochastic processes, others are not correlated with phylogeny or biogeography, possibly

because they are under strong selective forces (Erdtmann and Amézquita, 2009). These

different evolutionary pathways should also influence the amount of variation detected

at different levels.

Selection may affect the variability of acoustic parameters in different ways

(Wilkins et al., 2013). For example, acoustic parameters important for conspecific

recognition are under selective pressure not to overlap with calls from sympatric

species, possibly leading to more stereotypy and hence reducing the likelihood of

hybridization (Lemmom, 2009). Beyond this, in diverse acoustic communities, calls

might also be more stereotyped in order to use silent windows and reduce masking

interference (Bee, 2008; Chek et al., 2003). At the same time, a higher stereotypy might

(17)

10

propagation scenario is more stable compared to open areas, which are more susceptible

to wind and temperature shifts (Wiley and Richards, 1978; Ey and Fischer, 2009).

Nevertheless, most studies on the variability of anuran advertisement call discuss

sexual selection (Gerhardt and Huber, 2002). One key measurement of acoustic

variation in frogs has been the individual coefficient of variation. Based on this

measure, extensive literature has shown that variability of different acoustic parameters

follows a continuum from static to dynamic (Bee et al., 2010; Castellano et al., 2002;

Gerhardt, 1991). Static parameters should be under stabilizing or weakly directional

sexual selection (Gerhardt, 1991; Gerhardt and Huber, 2002). Indeed, most studies

confirm that females tend to prefer advertisement calls with values close to the

species/population mean for such acoustic parameters (Castellano et al., 1998; Rosso et

al., 2006), and these parameters should be important for specific recognition and are

more reliable taxonomic tools (Gerhardt and Huber, 2002). In contrast, acoustic

parameters with high individual variability should be under directional selection, and

females should prefer calls with more extreme values from the species distribution for

these parameters (Bosch and Márquez, 2005; Castellano and Giacoma, 1998). These parameters can indicate male’s quality or facilitate localization (Gerhardt and Huber, 2002).

Herein, we evaluate the variability of different acoustic parameters of the

advertisement call of 15 species of the anuran genus Phyllomedusa at different levels:

intra-individual; intra-population; inter-population; intra-specific; inter-specific. We

also estimated what percentage of the total variation detected can be explained by each

levels. Furthermore, we tested: 1) the effect of environmental temperature and body size

on the acoustic parameters, 2) if they present significant phylogenetic signal and 3) if

they are correlated to geographic distance between populations. Finally, we evaluated

the possibility of individual, population, and specific recognition considering the

variation found in the acoustic parameters analyzed.

Material & Methods

The genus Phyllomedusa is composed of approximately 30 species, which are

hylid frogs commonly known as monkey frogs and belong to the Subfamily

Phyllomedusinae. We recorded the advertisement of species from the genus

(18)

11

digital recorder with a sampling rate of 48 kHz and 16 bit resolution, connected to a

Sennheiser ME66 directional microphone. After each recording for the large majority of

the individual we measured the environmental temperature and snout-vent length (See

Table S1 for data on each recording: species; location; coordinates; recording

equipment; temperature; body size; total number of calls analyzed). Acoustic

parameters were measured in Raven Pro 1.4 and spectrograms produced as follows:

FFT window width = 256; Frame = 100; Overlap = 50%.

We analyzed a total of five acoustic parameters for all calls recorded, which we

believe are comparable at all levels, even between different species of this genus:

dominant frequency (DF); total number of pulses in the call (PN); average pulse length

considering all pulses from the call (PL); pulse rate (PR); total duration of the call (DU);

interval between calls (CI).

To estimate the variability of the acoustic parameters we calculated the

coefficient of variation (CV), which is a standardized measure of dispersion calculated

through the ratio of the standard deviation to the mean, for all acoustic parameters at

five different levels: 1) intra-individual (different calls from a single individual); 2)

intra-population (calls from different individuals from a single population); 3)

inter-population (calls from individuals from different inter-populations); 4) intra-specific (calls

from different individuals from the same species, independent from which population);

5) inter-specific (calls from individuals from different species).

To deal with different sample sizes at each level, we created a stratified

hierarchical subsampling method in which we repeatedly drew from our data pool five

different calls that were used to calculate the CV. We ensured that the calls were drawn

from different entities forming the respective level of interest. For instance, before

drawing five calls at the intra-individual level, we drew a species, than a population,

than an individual, than five different calls. For the intra-population level we first drew

a species, than a population, than five calls from different individuals and so on (see

Table 1 for a stepwise description of all steps used to obtain the calls used for each

level). We repeated each subsampling 1,000 times for each level to create five

distributions of variation for each acoustic parameter. The CV for intra and

inter-population was only calculated for Phyllomedusa nordestina due to the lack of

(19)

12

Additionally, we performed a hierarchical ANOVA to calculate the amount of

variation that can be attributed to each level. For this analysis we used only four levels

in order to access the variability repartition for the entire genus: call; individual;

population; species. To test the influence of body size and environmental temperature

on acoustic parameters of Phyllomedusa we performed a regression model using the

mean value from all calls from each individual and including the species as a block. To

evaluate the geographic variation for the different populations of P. nordestina we

applied a Mantel test for each acoustic parameter. In the correlation matrix we included

the geographical coordinates of each locality and the mean acoustic parameters for each

individual.

To quantify the phylogenetic signal strength for each acoustic parameter

between the species of Phyllomedusa we recorded, we used Blomberg's K, which metric

is based on Brownian motion model of evolution, where its significance is tested by

permuting traits across a phylogenetic tree. When K is larger than one, related species

present trait values more similar than expected from a Brownian motion and when it is

smaller than one, relatives are less similar than expected (Blomberg et al., 2003).

Finally, we used a discriminant function analysis with all acoustic parameters to

examine the extent to which calls can be assigned to the correct individual, population

and species, and a cross-validation procedure was used to measure classification

success.

All analyses were done on the R 3.1.2. environment using the following

packages: ggplot2; reshape2; dplyr; gridExtra; ape; picante; caper; diversitree.

Results

We analyzed a total of 3,994 advertisement calls from 188 individuals of 15

different species of Phyllomedusa (see Table S1 for details on each individual

recorded). Although we sampled calls from more than one locality for various species,

we only obtained enough samples from different populations for P. nordestina, for

which we recorded various individuals from 14 populations from different localities

distributed throughout most of the species geographical distribution (Table S1). The

(20)

13

several similar pulses that can be grouped in different notes (See Table 2 for the mean

values of the acoustic parameters for the specie recorded and Figure S1 and S2 for

spectrograms of one call from each species).

The multiple-level analyses of variability using CV showed that all acoustic

parameters presented the lowest variation intra-individually, but the intensity of this

trend varied between parameters. Dominant frequency, pulse length, and pulse rate are

the most static parameters, especially intra-individually. Pulse number and call duration

present intermediate values, while call interval is highly dynamic and shows less

difference between the intra-specific levels and the inter-specific level (Figure 1).

Call parameters also vary considerably below the interespecific level. In general,

the variability is smallest at the intra-individual level for all parameters and a tendency

for the intra-population level to show less variability than the inter-population, with the

intra-specific intermediate. Furthermore, the three most static parameters (dominant

frequency, pulse length, and call rate) show the largest difference inter-specifically

compared to other levels (Figure 1).

The ANOVA confirmed the results from our multi-level CV evaluation, where

most of the advertisement call variability for the 15 species of Phyllomedusa is

explained by inter-specific differences. However, this trend also varies a lot between

parameters, where there is a clear tendency for static acoustic parameters have a larger

percentage of their variability credited to the inter-specific level, with intermediate

parameters having a little less of their variability explained by this level (however more

than 75%) and the dynamic parameter less than 50%. Below the inter-specific level,

pulse rate had a considerable part of its variation attributed to the population level

(Figure 2).

The correlation analyses showed that most of the acoustic parameters are

significantly affected by body size and/or environmental temperature. While

temperature affects mostly the temporal acoustic parameters measured (Table 3), most

parameters where influenced by individuals body size, with a strong effect on the

spectral parameter (dominant frequency) (Table 4). Only pulse rate and call duration

were significantly correlated to the geographical distance between the populations of P.

nordestina (Table 5). Conversely, all acoustic parameters tested presented a significant

(21)

14

acoustic parameters attributed 30.7% of the calls to the correct individual, 37.8% to the

population, and more than 81.2% to the correct species.

Discussion

Our results corroborate most studies on acoustic variability for anuran

advertisement calls, where the acoustic parameters present a continuum of variation

(Bee et al., 2010; Castellano et al., 2002). The parameters that presented the lowest CV

were mainly those that are considered important for frog specific recognition, especially

dominant frequency and pulse rate (Gerhardt, 1994). Tests on female preference

demonstrate that females generally prefer calls with medium values for those

parameters, exerting a stabilizing sexual selection over the population (Castellano and

Giacoma, 1998). Furthermore, studies on reproductive character displacement show that

when populations occur in sympatry with sister taxa with similar advertisement calls

these preferences are stronger, confirming the importance of these parameters for

specific recognition and as reproductive barrier, diminishing hybridization (Lemmom,

2009). However, for some frog species females prefer calls with slightly lower

dominant frequencies, exerting weak directional sexual selection, possibly choosing for

larger males (Poole and Murphy, 2007; Ryan, 1980).

Considering the more variable parameters, call duration generally presents

intermediate values of CV, while call interval/call rate are highly dynamic (Bee et al.,

2010; Castellano et al., 2002; Gerhardt, 1991). Accordingly, females show directional

preferences for these parameters, which are behaviorally controlled to some extent and

are directly involved in the energetic expenditure of call production (Sullivan, 1992;

Bosch and Márquez, 2005). These more extreme values from the population/species

distribution could indicate higher fitness males or maybe just enhance probability of

signal detection and facilitate localization, with this preference simply representing less

energy cost and lower predation risk (Gerhardt, 1994).

As expected, the inter-specific level was the most variable and most of the

advertisement call variability for Phyllomedusa is attributed to this level, while the

lowest CV was detected intra-individually, except for call interval, which has a high

variability at all levels (Figures 1 & 2). Furthermore, variability in levels that compare

calls from different individuals of the same species also changed as predicted,

(22)

inter-15

population, with intermediate values for intra-specific, probably because it includes

calls from individuals which may or not be from the same population.

Most studies on geographical variation of anuran advertisement call detected

significant differences between calls from individuals from distinct populations (Snyder

and Jameson, 1965; Hasegawa et al., 1999; Castellano and Giacoma, 2000). This

variation may be associated to stochastic processes and be directly related to gene flow

or selection (Smith et al., 2003; Bernal et al., 2005, Pröhl et al., 2007; Ohmer et al.,

2009), which may act directly on call characteristics or through pleiotropic effects

(Castellano et al., 1999). When selective pressures are weak, call variation is expected

to be correlated with geographical distance between populations or associated to an

important dispersal barrier (Pröhl et al., 2006).

From all acoustic parameters evaluated for P. nordestina only pulse rate and call

duration are related to geographical distance between populations, and pulse rate had a

higher percentage of its variation explained by the population level when compared to

the other static parameters. Possibly, less parameters were correlated to geographic

distance because there is little variation between populations, both comparing with the

inter-specific variation we detected for the species of Phyllomedusa and with other

studies on geographical variation in anuran advertisement call (Snyder and Jameson,

1965; Hasegawa et al., 1999; Castellano and Giacoma, 2002; Bernal et al., 2005; Pröhl

et al., 2007). This low variability between different populations may be related to

conservative selective pressures acting upon all or most populations, to a large amount

of gene flow, or because of recent population expansions. Other studies on geographic

variation of anuran advertisement calls found contrasting results on the relationship

between call variation and geographic distances (Snyder and Jameson, 1965; Hasegawa

et al., 1999; Castellano and Giacoma, 2000; Smith et al 2003; Bernal et al., 2005; Pröhl

et al., 2005; Ohmer et al., 2009).

Conversely, when considering the variation between the calls from the different

species studied, all acoustic parameters presented a significant phylogenetic signal.

These results corroborate most studies on phylogenetic signals for anurans (Cocroft and

Ryan, 1995; Wollenberg et al., 2007; Erdtmann and Amézquita, 2009; Goicoechea et

al., 2010). Although the anuran advertisement call traditionally is seen as a rapidly

(23)

16

1994), recent studies have found surprisingly strong phylogenetic signals for most

acoustic parameters tested, calling attention to the importance of stochastic processes,

such as genetic drift, in the evolution of these vocalizations (Cocroft and Ryan, 1995;

Wollenberg et al., 2007; Erdtmann and Amézquita, 2009; Goicoechea et al., 2010).

Analyzing acoustic signal variability in different parameters also enables

evaluating the possibility of individual recognition (Bee, 2004; Bee et al., 2010; Bee

and Gerhardt, 2001a; Bee et al., 2001; Feng et al., 2009a; Gasser et al., 2009). Besides

attracting mates, the anuran advertisement call also presents a territorial function

(Wells, 1977), and studies on individual recognition have focused on the dear enemy effect, because recognizing constant neighbors might reduce male’s aggressiveness (Bee, 2003, 2004; Bee and Gerhardt, 2001b). For at least some species it has been

shown that males are capable of recognizing neighbor calls (Bee and Gerhardt, 2002;

Davis, 1987; Feng et al., 2009b), and studies of variability using discriminant function

analyses generally assign more than 70% of the calls to the correct individual (Bee,

2004; Bee et al., 2010; Bee and Gerhardt, 2001a; Bee et al., 2001; Feng et al., 2009b;

Feng et al., 2009a; Gasser et al., 2009). For Phyllomedusa, probably individual

recognition is not important (only about 30% of the calls were assigned to the correct

individual). Furthermore, discriminant analyses confirms the relative low variability

between populations (less than 40% of the calls were assigned to the correct

population). Finally, only slightly more than 80% of the calls were assigned to the

correct species, which could account for the apparent large amount of hybridization in

this genus (Haddad et al., 1994).

Our results confirm that the advertisement call of the species studied from the

genus Phyllomedusa may be used as a reliable taxonomic tool, because all acoustic

parameters analyzed, except call interval, presented a much higher inter-specific

variation in comparison to all intra-specific levels. However, considering the variation

detected for the different intra-specific levels, it is important to have adequate replicates

from different localities. Furthermore, it is recomended to consider temperature and

body size, because most of the acoustic parameters were influenced by one or both

variables. It is important to emphasize the influence of body size on the dominant

frequency, considering that it was the only strong correlation recovered. CV at different

levels shows that, between the analyzed acoustic parameters, dominant frequency could

(24)

inter-17

specific variation is related to differences in body size, with a pleiotropic effect on the

advertisement call.

Acknowledgements

AAG and FAJ thank CNPq for financial support (Universal # 473503/2012-3 and

#305704/2013-3, respectively). DLR also thanks Sisbiota Herpeto-Helmintos project for financial support.

References

Backwell, P.R.Y., and Jennions, M.D. (1993). Mate choice in the Neotropical frog, Hyla

ebraccata: sexual selection, mate recognition and signal selection Animal Behaviour 45, 1248

1250.

Bee, M.A. (2003). A test of the "dear enemy effect" in the strawberry dart-poison frog

(Dendrobates pumilio). Behavioral Ecology and Sociobiology 54, 601–610.

Bee, M.A. (2004). Within-individual variation in bullfrog vocalizations: Implications for a

vocally mediated social recognition system. The Journal of the Acoustical Society of America

116, 3770–3781.

Bee, M.A. (2008). Finding a mate at a cocktail party: spatial release from masking improves

acoustic mate recognition in grey treefrogs. Animal Behaviour 75, 1781–1791.

Bee, M.A., Cook, J.M., Love, E.K., O’Bryan, L.R., Pettitt, B.A., Schrode, K., and Vélez, A.

(2010). Assessing acoustic signal variability and the potential for sexual selection and social

recognition in boreal chorus frogs (Pseudacris maculata). Ethology 116, 564–576.

Bee, M.A., and Gerhardt, H.C. (2001a). Neighbour–stranger discrimination by territorial male

bullfrogs (Rana catesbeiana): II. Perceptual basis. Animal Behaviour 62, 1141–1150.

Bee, M.A., and Gerhardt, H.C. (2001b). Neighbour–stranger discrimination by territorial male

bullfrogs (Rana catesbeiana): I. Acoustic basis. Animal Behaviour 62, 1129–1140.

Bee, M.A., and Gerhardt, H.C. (2002). Individual voice recognition in a territorial frog (Rana

catesbeiana). Proceedings of the Royal Society of London B: Biological Sciences 269, 1443

1448.

Bee, M.A., Kozich, C.E., Blackwell, K.J., and Gerhardt, H.C. (2001). Individual variation in

advertisement calls of territorial male green frogs, Rana clamitans: implications for individual

(25)

18 Bernal, X. E., Guarnizo, C. and Lüddecke, H. (2005). Geographic variation in advertisement

call and genetic structure of Colostethus palmatus (Anura, Dendrobatidae) from the Colombian

Andes. Herpetologica 61, 395-408.

Blair, W.F. (1958). Mating call in the speciation of anuran amphibians. The American

Naturalist 92, 27–51.

Blair, W.F. (1964). Isolating mechanisms and interspecies interactions in anuran amphibians.

The Quarterly Review of Biology 39, 334–344.

Blomberg, S.P., Garland Jr., T., and Ives, A.R. (2003). Testing for phylogenetic signal in

comparative data: behavioral traits are more labile. Evolution 57, 717-745.

Bosch, J., and Márquez, R. (2005). Female preference intensities on different call characteristics

and symmetry of preference above and below the mean in the iberian midwife toad Alytes

cisternasii. Ethology 111, 323—333.

Castellano, S. and Giacoma, C. (2000). Morphometric and advertisement call geographic

variation in polyploid green toads. Biological Journal of the Linnean Society 70, 341-360.

Castellano, S., Cuatto, B., Rinella, R., Rosso, A., and Giacoma, C. (2002). The advertisement

call of the European treefrogs (Hyla arborea): a multilevel study of variation. Ethology 108,

75–89.

Castellano, S., and Giacoma, C. (1998). Stabilizing and directional female choice for male calls

in the European green toad. Animal Behaviour 56, 275–287.

Castellano, S., Rosso, A., Doglio, S., and Giacoma, C. (1999). Body size and calling variation in

the green toad (Bufo viridis). Journal of Zoology 248, 83–90.

Chek, A.A., Bogart, J.P., and Lougheed, S.C. (2003). Mating signal partitioning in multi-species

assemblages: a null model test using frogs. Ecology Letters 6, 235–247.

Cocroft, R. B. and Ryan, M. J. (1995). Patterns of advertisement call evolution in toads and

chorus frogs. Animal Behaviour 49, 283-303.

Darwin, C.R. (1859). On the origin of species by means of natural selection, or the preservation

of favoured races in the struggle for life.

Davis, M.S. (1987). Acoustically mediated neighbor recognition in the North American

bullfrog, Rana catesbeiana. Behavioral Ecology and Sociobiology 21, 185–190.

Duellman, W.E., and Pyles, R.A. (1983). Acoustic resource partitioning in anuran communities.

Copeia 1983, 639–649.

Erdtmann, L., and Amézquita, A. (2009). Differential evolution of advertisement call traits in

dart-poison frogs (Anura: Dendrobatidae). Ethology 115, 801–811.

Ey, E. and Fischer, J. (2009). The ―acoustic adaptation hypothesis‖ - a review of the evidence

from birds, anurans and mammals. Bioacoustics 19, 21-48.

Feng, A.S., Arch, V.S., Yu, Z., Yu, X.J., Xu, Z.M., and Shen, J.X. (2009b). Neighbor–stranger

(26)

19 Feng, A.S., Riede, T., Arch, V.S., Yu, Z., Xu, Z.M., Yu, X.J., and Shen, J.X. (2009a). Diversity

of the vocal signals of concave-eared torrent frogs (Odorrana tormota): evidence for individual

signatures. Ethology 115, 1015–1028.

Gasser, H., Ameézquita, A., and Hödl, W. (2009). Who is calling? Intraspecific call variation in

the aromobatid frog Allobates femoralis. Ethology 115, 596–607.

Gerhardt, H.C. (1974). Behavioral isolation of the tree frogs, Hyla cinerea and Hyla andersonii.

American Midland Naturalist 91, 424–433.

Gerhardt, H.C. (1991). Female mate choice in treefrogs: static and dynamic acoustic criteria.

Animal Behaviour 42, 615–635.

Gerhardt, H.C. (1994). The evolution of vocalization in frogs and toads. Annual Review of

Ecology and Systematics 25, 293–324.

Gerhardt, H.C. (2005). Advertisement-call preferences in diploid-tetraploid treefrogs (Hyla

chrysoscelis and Hyla versicolor): implications for Mate choice and the evolution of

communication systems. Evolution 59, 395–408.

Gerhardt, H.C., and Huber, F. (2002). Acoustic communication in insects and anurans: common

problems and diverse solutions (University of Chicago Press).

Goicoechea, N., De La Riva, I., and Padial, J.M. (2010). Recovering phylogenetic signal from

frog mating calls. Zoologica Scripta 39, 141–154.

Haddad, C.F.B., Pombal, J., J.P., and Batistic, R.F. (1994). Natural hybridization between

diploid and tetraploid species of leaf-frogs, genus Phyllomedusa (Amphibia). Journal of

Herpetology 28, 425–430.

Hallgrímsson, B., and Hall, B.K. (2011). Variation: a central concept in biology (Academic

Press).

Hasegawa, H., Ueda, H. and Sumida, M. 1999. Clinal geographic variation in the advertisement

call of the Wrinkled Frog, Rana rugosa. Herpetologica 55, 318-324.

Howard, R.D., and Young, J.R. (1998). Individual variation in male vocal traits and female

mating preferences in Bufo americanus. Animal Behaviour 55, 1165–1179.

Lemmom, E.M. (2009). Diversification of conspecific signals in sympatry: geographic overlap

drives multidimensional reproductive character displacement in frogs Evolution 63, 1155–1170.

Mayr, E. (1963). Animal Species and Evolution (Cambridge, Massachusets: Belknap Press).

Ohmer, M. E., Robertson, J. M. and Zamudio, K. R. 2009. Discordance in body size, colour

pattern, and advertisement call across genetically distinct populations in a Neotropical anuran

(Dendropsophus ebraccatus). Biological Journal of the Linnean Society 97, 298-313.

Padial, J.M., and De La Riva, I. (2009). Integrative taxonomy reveals cryptic Amazonian

species of Pristimantis (Anura: Strabomantidae). Zoological Journal of the Linnean Society

(27)

20 Podos, J. (2001). Correlated evolution of morphology and vocal signal structure in Darwin's

finches. Nature 409, 185-188.

Poole, K.G., and Murphy, C.G. (2007). Preferences of female barking treefrogs, Hyla gratiosa,

for larger males: univariate and composite tests. Animal Behaviour 73, 513-524.

Pröhl, H., Hagemann, S., Karsch, J., and Höbel, G. (2007). Geographic variation in male sexual

signals in strawberry poison frogs (Dendrobates pumilio). Ethology 113, 825-837.

Pröhl, H., Koshy, R.A., Mueller, U., Rand, A.S., and Ryan, M.J. (2006). Geographic variation

of genetic and behavioral traits in Northern and Southern Túngara frogs. Evolution 60, 2006.

Rosso, A., Castellano, S.and Giacoma, C. (2006). Preferences for call spectral properties in

Hyla intermedia. Ethology 112, 599-607.

Ryan, M.J. (1980). Female mate choice in a Neotropical frog. Science 209, 523-525.

Ryan, M.J., Cocroft, R.B., and Wilczynski, W. (1990). The role of environmental selection in

intraspecific divergence of mate recognition signals in the cricket frog, Acris crepitans.

Evolution 44, 1869-1872.

Smith, M. J., Roberts, J. D., Hammond, T.J. and Davis, R. A. (2003). Intraspecific variation in

the advertisement call of the Sunset Frog Spicospina flammocaerulea (Anura: Myobatrachidae):

A frog with a limited geographic distribution. Journal of Herpetology 37, 285-291.

Snyder, W. F. and Jameson, D. L. (1965). Multivariate geographic variation of mating call in

populations of the Pacific Tree Frog (Hyla regilla). Copeia 1965, 129-142.

Sullivan, B.K. (1982). Significance of size, temperature and call attributes to sexual selection in

Bufo woodhousei australis. Journal of Herpetology 16, 103-106.

Sullivan, B.K. (1989). Interpopulational variation in vocalizations of Bufo woodhousii. Journal

of Herpetology 23, 368-373.

Sullivan, B. K. (1992). Sexual selection and calling behavior in the American Toad (Bufo

americanus). Copeia 1992, 1-7.

Wells, K.D. (1977). The social behaviour of anuran amphibians. Animal Behaviour 25,

666-693.

Wiley, R. H. and Richards D. G. (1978). Physical constraints on acoustic communication in the

atmosphere: implications for the evolution of animal vocalizations. Behavioral Ecology and

Sociobiology 3, 69-94.

Wilkins, M.R., Seddon, N., and Safran, R.J. (2013). Evolutionary divergence in acoustic

signals: causes and consequences. Trends in Ecology & Evolution 28, 156-155.

Wollenberg, K. C., Glaw, F. Meyer, A. and Vences, M. (2007). Molecular phylogeny of

Malagasy reed frogs, Heterixalus, and the relative performance of bioacoustics and

color-patterns for resolving their systematics. Molecular Phylogenetics and Evolution 45, 14-22.

Wright, S. (1968). Evolution and the Genetics of Populations: A Treatise, Vol 4 (Chicago:

(28)

21 Figure 1: Variability of six acoustic parameters from the advertisement call of 15

species of Phyllomedusa at different levels. Coeficient of variation was calculated based

on a stratified hierarchical subsampling method in which we repeatedly drew from our

data pool five different calls. This procedure was repeated 1,000 times for each

(29)

22 Figure 2: Results of the hierarchical ANOVA showing what percentage of the

variability of the advertisement call of 15 species of Phyllomedusa is attributed to each

level for all acoustic parameters: dominant frequency (df); number of pulses (pn); pulse

(30)

23 Table 1: Detailed step by step procedure used to draw calls from our data pool in the

stratified hierarchical subsampling method used to calculate the coefficient of variation

of the advertisement call of Phyllomedusa at different levels for each acoustic

parameter.

Level Step 1 Step 2 Step 3 Step 4 Step 5

Intra-individual Draw one specie Draw one individual Draw five different calls from this individual

Calculate CV Repeat 1,000 x

Intra-population Draw one population of P. nordestina Draw five different individuals from this population

Draw one call from each individual

Calculate CV Repeat 1,000 x

Inter-population Draw five different populations of P. nordestina Draw one individual from each population

Draw one call from each individual

Calculate CV Repeat 1,000 x

Intra-specific Draw one species

Draw five different individuals

Draw one call from each individual

Calculate CV Repeat 1,000 x

Inter-specific Draw five different species

Draw one individual from each specie

Draw one call from each individual

(31)

24 Table 02: Advertisement call description for all species of Phyllomedusa recorded. Mean, standard deviation, maximum and minimum values

for each acoustic parameter.

Specie Number of individuals Number of calls Call duration (s) Dominant frequency (Hz) Call interval (s)

Number of pulses Pulse rate (pulse/s)

Pulse lenght (s)

Phyllomedusa nordestina 100 2227

0.039 ± 0.017 (0.01-0.089)

2079.086 ± 193.94 (1500-2625)

9.085 ± 26.595 (0.015-290.299)

3.814 ± 0.913 (2-8)

109.906 ± 32.993 (40-230.769)

0.005 ± 0.001 (0.0005-0.01)

Phyllomedusa azurea 4 45

0.029 ± 0.0014 (0.026-0.034)

2291.151 ± 59.219 (2153.3-2411.7)

21.599 ± 20.662 (1.432-88.384)

4 ± 0 (4-4)

135.705 ± 7.606 (111.111-150)

0.005 ± 0.0005 (0.004-0.006)

Phyllomedusa bahiana 10 115

0.311 ± 0.171 (0.134-0.992)

1141.304 ± 148.107 (937.5-1312.5)

18.408 ± 14.256 (0.986-74.14)

14.495 ± 4.170 (7-26)

43.085 ± 9.245 (20.618-63.492)

0.014 ± 0.004 (0.006-0.021)

Phyllomedusa camba 5 260

0.039 ± 0.008 (0.024-0.074)

668.509 ± 105.429 (562.5-1125)

5.812 ± 15.196 (0.087-121.42)

4.711 ± 1.117 (3-9)

112.587 ± 8.558 (88.888-142.857)

0.005 ± 0.0005 (0.003-0.006)

Phyllomedusa distincta 9 113

0.230 ± 0.051 (0.134-0.35)

1299.226 ± 99.332 (1125-1875)

22.976 ± 12.378 (9.2-82.562)

6.832 ± 1.059 (5-10)

27.883 ± 3.640 (15.244-35.714)

0.017 ± 0.001 (0.013-0.024)

Phyllomedusa hypocondrialis 11 354

0.027 ± 0.005 (0.017-0.048)

1970.339 ± 98.021 (1687.5-2250)

8.157 ± 19.462 (0.203-195.219)

4.070 ± 0.747 (3-7)

141.152 ± 14.440 (103.448-200)

0.005 ± 0.0009 (0.003-0.008)

Phyllomedusa iheringii 7 164

0.318 ± 0.065 (0.19-0.494)

1240.473 ± 132.010 (937.5-1500)

17.350 ± 12.203 (1.011-109.484)

9.310 ± 1.798 (6-14)

27.735 ± 3.038 (20.746-36.363)

0.017 ± 0.003 (0.012-0.025)

Phyllomedusa rohdei 7 47

0.150 ± 0.072 (0.078-0.415)

2014.628 ± 189.398 (1687.5-2250)

37.132 ± 43.132 (2.773-183.164)

5.234 ± 2.397 (3-11)

33.164 ± 4.555 (25.157-46.391)

0.018 ± 0.003 (0.011-0.024)

Phyllomedusa tetraploidea 7 121

0.033 ± 0.090 (0.194-0.645)

1182.335 ± 107.827 (937.5-1312.5)

18.038 ± 13.749 (2.24-77.324)

9.280 ± 2 (5-15)

29.389 ± 3.812 (20.634-38.095)

0.015 ± 0.001 (0.010-0.022)

Phyllomedusa vaillantii 4 12

0.043 ± 0.007 (0.03-0.053)

1609.375 ± 148.680 (1312.5-1875)

64.123 ± 65.685 (11.986-180.149)

7.916 ± 1.311 (5-10)

178.123 ± 15.675 (155.555-212.121)

0.004 ± 0.0006 (0.002-0.005)

Phyllomedusa burmeisteri 1 5

0.118 ± 0.010 (0.1-0.126)

1102.5 ± 154.0.65 (1033.6-1378.1)

8.396 ± 4.860 (3.724-15.224)

6.8 ± 0.447 (6-7)

51.450 ± 0.778 (50.420-52.173)

0.004 ± 0.0002 (0.004-0.004)

Phyllomedusa megacephala 2 20

0.321 ± 0.085 (0.25-0.566)

1809.375 ± 139.717 (1687.5-2062.5)

42.742 ± 34.665 (7.033-137.449)

13.4 ± 3.589 (8-22)

39.782 ± 7.990 (23.381-54.140)

0.005 ± 0.0006 (0.004-0.006)

Phyllomedusa ayeaye 5 96

0.093 ± 0.039 (0.025-0.16)

1471.444 ± 167.530 (1205.9-1722.7)

7.3 ± 12.846 (0.253-60.04)

5.625 ± 1.135 (3-10)

71.520 ± 40.508 (30.303-208.33)

0.008 ± 0.002 (0.003-0.015)

Phyllomedusa oreades 7 200

0.025 ± 0.005 (0.018-0.068)

1679.589 ± 153.0.89 (1125-2067.2)

15.362 ± 42.189 (0.192-352.912)

3.925 ± 0.641 (3-7)

1140.519 ± 23.248 (79.365-285.714)

0.004 ± 0.001 (0.002-0.007)

Phyllomedusa centralis 9 215

0.037 ± 0.014 (0.019-0.099)

1271.514 ± 174.469 (937.5-1550.4)

7.552 ± 12.433 (0.2-79.318)

4.423 ± 0.838 (3-7)

115.818 ± 28.474 (45.977-166.666)

(32)

25 Table 3: Influence of the environmental temperature on the acoustic parameters of the

advertisement call of 15 species of Phyllomedusa. Regression models included the

mean value of the acoustic parameter for each individual and the species was included

as a block.

Source n F p

Call Interval 172 3.035 0.0833

Dominant Frequency 172 4.612 0.0332

Call Duration 172 19.329 <0.001

Pulse Length 172 9.499 0.002

Number of Pulses 172 2.393 0.123

Pulse Rate 172 21.142 <0.001

Table 4: Influence of body size on the acoustic parameters of the advertisement call of

15 species of Phyllomedusa. Regression models included the mean value of the acoustic

parameter for each individual and the species was included as a block.

Source n F p

Call Interval 165 0.501 0.479

Dominant Frequency 165 360.321 <0.001

Call Duration 165 63.311 <0.001

Pulse Length 165 44.384 <0.001

Number of Pulses 165 92.656 <0.001

Pulse Rate 165 28.451 <0.001

Table 5: Results of Mantel test evaluating which acoustic parameters of the

advertisement call of Phyllomedusa nordestina are correlated to the geographic distance

between populations.

Source r p

Call Duration 0.064 0.0492

Dominant Frequency 0.0346 0.1896

Number of Pulses 0.0177 0.3174

Pulse Length -0.0169 0.6096

Pulse Rate 0.1099 0.0039

Call Interval -0.0038 0.4668

(33)

26 Table 6: Phylogenetic signal for acoustic parameters and body size of Phyllomedusa calculated through Blomberg’s K (Blomberg et al., 2003)

Source Blomberg´s K PIC.mean PIC.rdn.mean P

Call Duration 0.735 0.0011 0.0043 0.009

Dominant Freuency 0.6418 16689.364 56643.053 0.007

Call Interval 0.691 23.480 74.192 0.016

Number of Pulses 0.535 0.964 2.696 0.023

Pulse Rate 0.794 198.234 729.991 0.004

Pulse Length 0.566 <0.001 <0.001 0.027

Imagem

Table 5: Results of Mantel test evaluating which acoustic parameters of the
Table S1: Detailed information in each individual of Phyllomedusa recorded throughout Brazil
Figure S1: Principal component analysis for the vegetation measured around each
Table 2. Anova table for the phylogenetic generalized least square model {log(DF) ~  habitat * log(SLV)} evaluating the effects of body size (SVL) and habitat on
+6

Referências

Documentos relacionados

Here we describe the advertise- ment and release calls of the tree frog Phyllomedusa ayeaye (Lutz, 1966) and report on the social context of emissions and a physical

Table 1 Lethal concentrations (LC) in ppm for the crude skin secretions of Leptodactylus knudseni (Anura: Lepdodactylidae) and Phyllomedusa vaillantii (Anura: Hylidae) against

173 APÊNDICE W – Análise estatística por participante das médias dos tempos de reação obtidos nos experimentos de escuta automonitorada I e II: prosódia informativa de Tópico e

de Extensão Acadêmica “Além da Culpa – Justiça Restaurativa para adolescentes”, fruto da parceria entre a Faculdade de Direito da Universidade Federal de Juiz de Fora e a

Comentários gerais: os estudantes iniciaram a aula prática com a contagem diferencial de glóbulos diretamente no. microscópio

Os relatos das viagens imaginárias de São Tiago – do Além para as batalhas da Reconquista – também auxiliavam na divulgação da presença das relíquias do santo em

109 Figura 57 - Expansão do espectro de HOESY 1H-19F do composto 5-4-metilfenil-3trifluorometil-1-2,4-difluorofenil-1H-pirazol 5e Espectro registrado a 298 K em um aparelho

Ela foi baseada em pesquisas anteriores que utilizaram o dispositivo portátil de avaliação da fração exalada do óxido nítrico (FENO) – NIOX MINO e teve como