• Nenhum resultado encontrado

Direct Evaporatrive Coolers of Gases and Liquids with Lowered Limit of Cooling

N/A
N/A
Protected

Academic year: 2017

Share "Direct Evaporatrive Coolers of Gases and Liquids with Lowered Limit of Cooling"

Copied!
12
0
0

Texto

(1)

Direct Evaporatrive Coolers of Gases and Liquids with Lowered Limit of

Cooling

Doroshenko A.V., Kirillov V.H., Ludnitsky K.V., Goncharenco V.A.

Odessa National Academy of Food Technologies

Odessa, Ukraine

Abstract. We have developed main technical solutions of indirect evaporative water and air coolers with decreased cooling limit. Packed part of heat-mass transfer devices of the film type is implemented based on monoblock multichannel compositions of polymer materials. A mathematical model describing the processes of joint heat and mass transfer in evaporative coolers is proposed. A comparative analysis of the possibilities of coolers designed based on experimental data on the efficiency of processes of heat and mass transfer.

Keywords: indirect evaporative cooling, heat and mass transfer equipment, film flow.

Răcire evaporativă de gaze şi de lichide, de tip indirect cu limită de răcire scăzută Doroşenco A.V., Kirillov V.H., Liudniţky K.V., Gonciarenco V.A.

Academia Naţional de Tehnologii Alimentare din Odesa Odesa, Ucraina

Rezumat. Sunt elaborate soluţiile principiale ale evaporatoarelor de tip indirect pentru r cirea apei şi aerului cu limit de r cire sc zut . Partea de ajutaj a dispozitivelor de transfer termic şi de mas este realizat pe baz compoziţiilor de tip monobloc cu multe canale din materiale polimerice. Se propune un model matematic care descrie procesele de transfer de c ldur şi de mas comune în r citoarele evaporatrive şi este efectut analiza comparativ a r citoarelor elaborate pe baza datelor experimentale ale eficienţei proceselor de schimb de masa şi de c ldur .

Cuvinte-cheie: r cire evaporatov indirect , aparate de schimb de mas şi de c ldur , fluxuri peliculare.

И

А. ., .Х., . ., .А.,

, ,

А а и . -

.

-. ,

-.

- .

Кл евые л ва: , - ,

.

.

( )

,

.

[1-2, 4, 8, 10-11].

-,

-, ,

. Э

[9].

I. И

.

О

( . 1),

[1-2, 10-11],

( ), ,

(2)

( ) « » , ,

, , ,

, ,

( ), – . 1

. Э « »

-,

К .

[ - ], ,

( ), ,

, .

(

),

, .

« » « »

,

.

, . Э ,

,

.

( , . 1 ) ( . 1 , /R) [1, 8],

, .

,

« »

, « »

, ,

.

,

.

/R

. [8].

. 2

/R, ,

. ,

« »

« » ,

-« » ,

.

, ,

(8), « » ,

, ,

« » (9), ,

, . Э

,

,

,

.

« ».

,

. -

( ,

-).

- /R,

11 ( . 2 ). Э

, ,

/R. ,

[ - ], ,

. . 3

.

« » (1) « » (2)

( ),

. « »

(3)

(3)

(4). ( , « » ), , , . « » , , , ( , ), . , , « » , , . « » « » , , , : d = 15 – 20 [1-2].

/R . 3 .

, , ( ) , , « » , . II.

ё 0 ≤х≤ , -ay ≤ b, 0 ≤ z ≤ L ( . 4 ).

ё , ё . ( « » - , , ). « » ( ) « » , [1-2]:

– (0 ≤х≤ , 0 ≤yh (h

– ), 0zL );

t = t (x,y,z)

:

2

2

( ) t t

V y a

x y

 

  ( 1 )

, х = 0, :

t (0,y,z) = t 0

( 0 ≤х≤ , hyb, 0 ≤ zL ) t =t (x,y,z)

p = (x,y,z)

:

y

t

а

a

y

x

t

y

V

B Т B

B

(

)

(

)

(2)

              y p D D y Т R x p y

VB( ) ( Т) (3)

, х = 0: t = t 0, = 0 (4)

у = b:

0

,

0

у

p

y

t

B

. (5)

– (0 ≤х ≤ ,

y≤ 0, 0 ≤z≤ L ) t =t (x,y,z)

:

y

t

а

a

y

x

t

y

V

(

)

(

Т

)

O (6)

z = 0 : t = tO; у = - а :

0

у

t

(7)

у л ия я ия: , у = 0

)

(

0

k

t

t

(4)

77 q0у = 0,

δcw

λcw:

0 1 1 1

0 1 1 2 2

2 2 2 2 ( ) , ; , B t

t a t b p p c t x

p

c a c b p b p x

t

a t a t x

t

c t c t z                       (13)

1

1

1

0

cw cw

k

, у = h: p = ″,

q = qα+ qβ. (9)

, , : . 4 /R.

)

(

)

"

(

,

)

(

)

(

)

"

(

)

(

2 2 2 1 1 1 B B O B O

t

t

c

z

t

p

p

b

x

p

t

t

a

x

t

t

t

c

p

p

b

t

t

a

x

t

(10)

III. А

: х= 0: t = t0, tB = tB0, p = p0;

z = 0: t = t0. (11)

К a1, b1, c1, a2, b2, c2 :

1

a c g

 , b1 =

D p r c g

, c1 =

k c g, 2 B a g

 , 2 1, 61 B

b

g

 ; c2 =

O

k c g

, . . a1, b1, c1, a2, b2, c2

,

-, p″

:

 

690, 5 exp(0, 068 )

p t   t (12)

(13) - (11)

Э [1-2].

.5-6.

(IEC)

o

lG G : 1 – 1,5; 2 – 1,0; 3 – 0,5 ( .5).

,

« ».

φ = 100%,

.

t 1, ,

l = G /G : t0 = t 1 + t*,

« »

« » ,

« »

( – t ),

0

.

Ж

(5)

И И . Indirect Evaporative cooling IECg (IECg/R)

: 1 2 – ; 3 – /R; 6 – ; 7 8 –

« » « »

. 1.

, (IECg) /R (IECg/R)

( И ) ( ),

t1, t 1 h1

, t t

И /R

3

*

( )

t , t , t

( ), t1, t 1

h1

, t

И *

2

, t ( ),

t1, t 1 h1

, t

И

t 1

7

8 6

( )

t , t , t

7

(6)

79

И И .

Indirect Evaporative cooling IECw (IECw/R)

, « »

( ) ( И )

( ) G

, t

G

. 1, .: 4 – ; 5 – /R; 9 – (« ») ; 10 11

– ;

. 2.

(« » ) ,

( ) (IECw) /R (IECw/R) .

9 8

10

( ) G

, t

G 9 8

10

11 И

( ),

t1, t 1, h1

t

5 , t

И /R

IECw/R

11

10 ( ),

t1, t 1, h1

И ( / ) t

, t

4 10

, t

( ) И

( / )

t 4

(7)

И И /R. Indirect Evaporative cooling IEC (IEC/R)

: 1 – « » ; 2 – « » ; 3 – ; 4 – ; 5 –

; , , – , .

. 3. ( , ) /R ( )

К

И

3

1

4 ( )

2 2

1 3

4 И

-

И /R (IEC/R)

: t , h G , t

3 t1, t1,h1

G : G , t , h

И (IEC)

: t , h G , t : G , t , h

t1, t1,h1

1

3

1

2

(8)

81

. 4. К

:

– ;

– /R

– .

И

L

2b 2a

y O

( )

α α

α

β Qα

Qβ Qα

t t h x = const

t = const t x h

t t x h

t

t

Х

,

/

T,

0

h

,

=

И

t = const

z

α α

α

β Qα

Qβ

t x h t = const

t t x h t t h x = const

t x h *

t

t (t )

Х

,

/

h

,

T,

0

И /R

(9)

: 1-1 -2 -3 – ; 1-1 -2 -3 – .

. 5. (IEC)

l = G /G : 1 – 1,5; 2 – 1,0; 3 – 0,5.

: t1 = 350 , x1= 11 /

t1 = 140

1. l = G /G = 1,5: t = 29,20 , t = 28,50 ; φ = 90%

2. l = G /G = 1,0: t = 26,50 ,

t = 25,50 ; φ = 95%

3. l = G /G = 0,5: t = 23,50 ,

t = 22,50 ; φ = 100%

, , % 40

40

60

80

, /

Э , /

X

,

0

70

50

10 15 20 25

35

30

25

5

0 20

15

10

100%

1: t1/t 1/t 1= 35/21/140

x1= 11 /

11 / 1

t 1 = 210 2

2 И (IEC);

l = G /G

t 1 = 140

l = 1.0

3

3

t* = t2 - t 1 1. t* = 8,20 2. t* = 5,50 3. t* = 2,50 1

l = 1.5

l = G /G = 0.5

1

t** = t2 - t 1 1. t** = 15,20 2. t** = 12,50 3. t** = 9,50

И (IEC)

: t , h G , t : G , t , h

t1, t1,h1

(10)

83

: l = G /G = 1.0 .

: 1-2 – ; 1-3 –

.

. 6. (

) /R

: t1 = 350 , x1= 11 /

t 1 = 140

1. И : t = 26,50 , t = 25,50 ; φ = 95% 2. И /R: t = 21,00 , t = 27,00 , φ = 100%

, , % 40

40

60

80

, /

Э , /

X

,

0

70

50

10 15 20 25

35

30

25

5

0 20

15

10

100%

1: t1/t 1/t 1= 35/21/140

x1= 11 /

11 / 1

/

2 /r 2

3 И

И (IEC) И /R (IEC/R)

И /R

t 1 = 210

t1 = 140

И /R (IEC/R)

: t , h G , t

3 t1, t1,h1

G : G , t , h

И (IEC)

: t , h G , t : G , t , h

t1, t1,h1

G

t* = t2 - t 1

t** = t2 - t 1

И

t* = 5,50

t** = 11,50

И /R:

t* = 00

t** = 7,00

(11)

:

1 2 1 2

1 0; 1 0 o o

,

B B

O B

o B

t t t t

E E

t t t t

 

 

 

(14)

0 0 ( ; , ( ; , O O B O B B G E f l t t

G G E f l t t

G     ); );

(15)

2. /R , , , « » ,

t0:

,

,

« »

.

(References)

[1] Doroshenco A.V., Glauberman V.A. Alter-nativnaiai energetika. Solnechnie sistmi teplo-hladosnabjenia. [Alternative energetica. Solar systems of heat and cold supply] Monograph. Odessa, 2012.

1, 5; 0, 45; 1, 0; 0, 65; 0, 5; 0,89.

o B O

o B O

o B O

l G G E

l G G E

l G G E

         . 6 ( )

/R. :

1, 0;

o B

lG G

.

t = 26,50 (t = 25,50 ; φ = 95%)

t = 21,00 /R (

.

, /R. 27, 0o , 100%

o

tC 

[2] Doroshenko A.V.Kompaktnaia teplomassob-mennaia apparatura dlia holodilinoi tehniki (teoria, raschet, injenernaia praktika). [The compact heat and mass transfer equipment for refrigeration (theory, computation, engineering practice).] Doctoral thesis, Odessa, 1992. [3] Loitsianskii L.G. Mehanika jidkosti i gaza.

[Fluid Mechanics] Moscow, 1973.

[4] McNab J.L., McGregor P., 2003, Dual Indirect Cycle Air-Conditioner Uses Heat Concentrated Dessicant and Energy Recovery in a polymer Plate Heat Exchanger. 21h International Congress of Refrigeration IIR/IIF, Washington, D.C, ICR0646.

[5] Chen, G.M., Zheng, J., Doroshenko, A., Shes-topalov, K., 2014a. Design and modeling of a collector-regenerator for solar liquid desiccant cooling system, International Sorption Heat Pump Conference, Washington.

: 1. , « » , ,

К « »

,

,

( );

[6] Chen, G.M., Doroshenko, A.V., Shestopalov, K.O., Khliyeva, O.Y., 2014b. Evaporative coolers of water and air for cooling systems. Analysis and perspectives, 11th IIR Gustav Lorentzen Conference on Natural Refrigerants, Hangzhou.

[7] Doroshenko, A., Shestopalov, K., Khliyeva, O., 2014. Development of new schematic solutions and heat and mass transfer equipment for alternative solar liquid desiccant cooling systems, International Sorption Heat Pump Conference, Washington.

(12)

[9] Koltun, . Life Cycle Assessment of a Conventional and Alternantive Air-Conditioning Systems. P. Koltun, S. Ramakrishnan, A. Doroshenko, M. Kontsov. 21h International Congress of Refrigeration IIR/IIF, Washington, D.C, ICR0140, 2003. P. 45-57.

[10]Doroshenko A.V., Antonova A.R., Lyudnitsky K.V. Solnechnie mnogostupenchatie absorbtsionnie holodilinie sistemi na osnove teplomassoobmennih apparatov plionochnogo

tipa. [Solar multi-stage absorption refrigeration systems based on film type heat-mass exchange apparatuses] Holodilinaia tehnica i tehnologia. – 2015. V51(2) , p. 25-31.

[11]Doroshenko A.V., Lyudnitsky K.V.. Solnechnie holodilinie sistemi na osnove absorbera s vnutrenni isparitelinim ohlajdeniem.[ Solar refrigeration systems based on the absorber with internal evaporative cooling] Holodilinaia tehnica i tehnologia. – 2015.V 51 (3) p. 42-52.

.

А

– ,

-,

-, ,

-,

-.

,

– ,

,

-, .

Referências

Documentos relacionados

Increasing nanoparticles concentration increases single- phase pressure drop compared to pure fluids at the same Reynolds number.Increasing nanoparticle concentration

Simulated curve of the interfacial heat transfer coefficient was used in another numerical solidification model to determine theoretical values of tip growth rates, cooling rates and

Abstract - The results of two-dimensional mathematical modeling of heat and mass transfer in a highly viscous hydrocarbon liquid by inductive and radio-frequency (RF)

The compensation of the variations of the total flow through the evaporators is implemented using the variation of the capacity of the compressor and a

For the resulting program there were developed variants of the corresponding methods of cooling chill in the Table 1.The study of sequential cooling effect of

Ahsan and Fukuhara [1] studied on a new heat and mass transfer tubular solar still and found that the heat and mass transfer coefficients can be expressed as functions of

The complex heat transfer process, including three modes of heat conduction inside the sinter ore particles, gas-solid convection and radiation in the trolley, is taken into

1) Generate Cold and Hot Utilities Simultaneously using Heat pump. 2) Use of Heat Pump as Air conditioner, Water heater and Water Cooler. 3) To calculate the COP of Heat Pump