• Nenhum resultado encontrado

SOLUTION METHOD OF DYNAMIC ROUTING AND WAVE LENGTH ASSIGNMENT PROBLEM FOR WDM NETWORKS WITH TAKING INTO ACCOUNT FOUR-WAVE MIXING EFFECT

N/A
N/A
Protected

Academic year: 2017

Share "SOLUTION METHOD OF DYNAMIC ROUTING AND WAVE LENGTH ASSIGNMENT PROBLEM FOR WDM NETWORKS WITH TAKING INTO ACCOUNT FOUR-WAVE MIXING EFFECT"

Copied!
8
0
0

Texto

(1)

ɍȾɄ 621.391

ɆȿɌɈȾ

Ɋȿɒȿɇɂə

ɁȺȾȺɑɂ

ȾɂɇȺɆɂɑȿɋɄɈȽɈ

ȼɕȻɈɊȺ

ɆȺɊɒɊɍɌɈȼ

ɂ

ɇȺɁɇȺɑȿɇɂə

ȾɅɂɇ

ȼɈɅɇ

ȼ

ɋȿɌəɏ

WDM

ɋ

ɍɑȿɌɈɆ

əȼɅȿɇɂə

ɑȿɌɕɊȿɏȼɈɅɇɈȼɈȽɈ

ɋɆȿɒɂȼȺɇɂə

Ⱦ.ȼ. Ⱥɝɟɟɜ, Ⱥ.Ⱥ. ɉɟɪɟɜɟɪɡɟɜ

WDM.

WDM

.

-.

13% Q- 0,812.

Ʉɥɸɱɟɜɵɟɫɥɨɜɚ: , RWA, , , ,

-.

ȼɜɟɞɟɧɢɟ

(Wavelength-division multiplexing, WDM).

WDM- .

,

.

-. ,

[1].

: –

, .

(Routing and Wavelength Assignment,

RWA) [2–4]. RWA

-.

-,

-.

-.

.

WDM-( ), (Bit Error Rate, BER). ,

-.

.

-. –

-, .

-, ,

, .

.

RoF (Radio over Fiber) [5, 6].

RoF ( )

. ,

.

. MSCA (maximal service channel allocation) [7].

WDM ,

(Dynamic Routing and Wavelength

Assign-ment, DRWA).

DRWA ,

, .

-– . ,

(2)

-- , , 2013, № 3 (85)

30

. ,

-.

.

, ,

. :

, , , .

-, .

,

. ,

[8].

[9, 10]

(Least Load Routing, LLR) .

LLR ,

.

(Fixed Paths

Least Congestion routing, FPLC)

[11]. , FPLC-

. ,

-, LLR FPLC ,

, .

,

(Weighted Least-Congestion Routing First-Fit, WLCR-FF) [12],

-, ( ) ( )

( )

F R W R

h R

 ,

( )

W RR; F R( ) – R

-; ( )h RR.

, .

-. , – ,

, - [13].

-, .

, , ,

.

,

, (Dynamic Wavelength

Routing, DWR) [14]. DWR ,

(Least

Congestion with Least Nodal-degree Routing algorithm, LCLNR)

(Dynamic two-end wavelength routing algorithm, DTWR).

. ,

-, ,

-.

,

WDM. ,

(BER) Q- .

Ɇɚɬɟɦɚɬɢɱɟɫɤɚɹɩɨɫɬɚɧɨɜɤɚɡɚɞɚɱɢɪɚɫɩɪɟɞɟɥɟɧɢɹɞɥɢɧɜɨɥɧɜɬɪɚɧɫɩɨɪɬɧɨɣɫɟɬɢ WDM ( , )

G N L ,

 

i

Nn – ; L {lg u} – ,

( , )

gu g u

(3)

s

n – ; nd – ;

s

N – ; Nd – ; W – ,

; Ksd {Kisd} –

s

n nd.

: i i

sd sd

hK –1– i- ns nd ;

i sd

Wi- ; i

sd  – i

sd

K , i i

sd Wsd

  ; i

sd

x – 

-i sd

K ; gulgu - ; Wgu

lgu - ; deg( )nini

( , )

G N L ; isd – ,

i sd

K ;  sd Ksd

n ns, d

; (Osd) – ,

sd  .

:

 sd

n ns, d

;

 sd – , sd.

– :

min i

sd sd i K Blocking

sd

K K

Z

K

 

 .

DWR – LCLNR DTWR.

LCLNR ,

-, . k

(s, d)

[15]. k-

-,

( sd) w

O

h

  .

,

-.

. ,

,

min deg( )

d

s

n

i i n

n

.

1,

. LCLNR :

В :

) ,

(N L

G K

, Kisd, i[1,k] е{s,d} sdKsdi ,i[1,k]

В O(Ksdi )

] , 1 [ , / )

(K w h i K

O i i

i

sd   

if O(Ksdi )0,i[1,K] then ;

return;

else max {1..}O(K ), sd Temp;

i sd k i

sd   

end if

if Temp 2, then min [1, ]

deg( ),

   

j Temp i P n

i P

p

sd n PKsd .

if P2 then Temp

(4)

- , , 2013, № 3 (85)

32

i sd x first-fit [3]. LCLNR,

DTWR. DTWR .

ɋɰɟɧɚɪɢɣȺ.

.

ɋɰɟɧɚɪɢɣȼ.

.

ɋɰɟɧɚɪɢɣ ɋ. ,

.

DTWR ȼ ɋ. DTWR –

-. – Ⱥ, ,

.

. LCLNR.

DTWR .

while sd ;

do v sn n  , c dn n  , v sn n W c dn n W

if ( 0

v sn

n

W ) (Wndnc 0) then ; return;

else if 

                 

d i s

i in N id N n i si W W , , then ; return;

else G(N,L),   0

c d v

sn n n

n ;

( , )

G N L  end if

В s di

n n

K Д ;

if s d

i n n

K   then Kisd ,

return; else

s d

i i sd n n

KK , LCLNR

end if

end while.

DRWA :

 DTWR

-. DRWA;

 LNCLR

- , ( );

 first-fit [16].

Ɋɚɡɪɚɛɨɬɤɚɦɟɬɨɞɚɭɫɬɪɚɧɟɧɢɹɩɪɢɜɟɞɟɧɧɵɯɧɟɞɨɫɬɚɬɤɨɜ

, ,

-,

WDM. [17]

-: 2 2 2 2 (1 ) ( , , ) 9 L L

ijk i j k i j k

e

P f f f D P P P e

            , i

P, Pj, Pkfi, fj, fk ; D

-;   ; L

-.  2 2π γ λ n A  , 2

n  ; A

(5)

 : 2 2 2 2 4 sin 2 1 (1 ) L L L e e                          .

 Dc( )

-:

2 2

2 ( )

( ) ( )

2

k k c

ik jk c ik jk

dD

f f D f f

c c d

                , | |

ik i k

f f f

   ,fjk | fjfk|; c .

m f : , 1 1 ( ) ( , ) N N

m ijk i j k i j

P f P f f f

 



,

N – .

(ASE)

0

2 ( 1)

ase sp m

Pn Ghff ,

sp

n – ; h ; f0 –

WDM; G .

, , , ( ) : ( 1) ase ase

P P N  ,

у

N – .

( 1)

P P G N  .

ASE

2 2 8 e P

P z P  ,

2

0

4 e

ease ease

f

P z P P

f       , e f  – . m e z hf   ,

; e – .

Q- , ease e P Q P P     (1) 2 2 1 2π x Q

P e dx

 

.

e

P – , P – ; Pease – ASE.

(1)

LCLNR :

( ) ( sd) w FMP R

O

h

(6)

- , , 2013, № 3 (85)

34

( )

FMP R – , O(sd)

,

-R .

Q- ,

, Q- . Q

-, .

, DTWR

-,

-– :

ln( ( i )) ln(1 sn) ... ln (1 kd)

sd m

w w

P K

W W

     ,

sn

ws n.

,

 

i

sd

P K

.

.

.

.

. ,

.

20 , – 3.

-,

,

. (0,2–0,9).

random, – first-fit.

-, . 1.

0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 , –1

0 20 40 60 80 100

. 1. З

( . 1) ,

(19%) 1,5. 1

14%, 0,8 – 8%. 0,4 -

.

. 2 Q-

.

, , Q-

(7)

Q

-0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 3,5

4,5 5,5

4 5 6

, –1

. 2. З Q-

1, 2 ,

( Q- )

.

.

-, DTWR .

-Q- , , .

Ɂɚɤɥɸɱɟɧɢɟ

(DRWA). , ,

.

LCLNR DTWR. ,

DTWR

, DRWA.

- , ,

LNCLR. first-fit

-.

:

DTWR ,

;

; random

first-fit.

. RWA

-.

-,

1,5 , 19%,

13%. Q-

(0,4), .

-Q- 0,812.

Ʌɢɬɟɪɚɬɭɪɚ

1. Gangxiang S., Rodney S.T. Translucent Optical Networks: The Way Forward // IEEE Communications Magazine. – 2007. – V. 45. – P. 48–54.

2. Ramesh G., Sundaravadivelu S. Reliable Routing and Wavelength Assignment for Optical WDM Networks // European Journal of Scientific Research. – 2010. – V. 48. – № 1. – P. 85–96.

(8)

- , , 2013, № 3 (85)

36

4. Mokhtar A., Azizoglu M. Adaptive wavelength routing in all-optical networks // IEEE/ACM Transactions on Networking. – 1998. – V. 6. – № 2. – P. 197–206.

5. Jianjun Yu. Radio-over-optical-fiber networks: introduction to the feature issue // Journal of Optical Networking. – 2009. – V. 8 (5). – P. 481–488.

6. Gomes P.H., Fonseca da N.L.S., Branquinho O.C. Optimization of the use of Radio Resource of Radio-Over-Fiber Access Networks // Global Telecommunications Conference (GLOBECOM 2010). – 2010. – P. 1–5. 7. Mirosław Klinkowski, Marek Jaworski, Davide Careglio. Channel Allocation in Dense Wavelength Division

Multiplexing Radio-over-Fiber Networks // 12th International Conference on Transparent Optical Networks. – 2010. – P. 1–5.

8. Zang H., Jue J. P., Mukherjee B. A review of routing and wavelength assignment approaches for wavelength-routed optical networks // Optical Network Magazine. – 2000. – V. 1. – № 1. – P. 47–60.

9. Karasan E., Ayanoglu E. Effects of wavelength routing and selection algorithms on wavelength conversion gain in WDM optical networks // IEEE/ACM Transactions on Networking. – 1998. – V. 6. – № 2. – P. 186– 196.

10.Birman A. Computing Approximate Blocking Probabilities for a Class of All-Optical Networks // IEEE Journal on Selected Areas in Communications. – 1996. – V. 14. – № 5. – P. 852–857.

11.Li L., Somani A.K. Dynamic Wavelength Routing Using Congestion and Neighborhood Information // IEEE/ACM Transactions on networking. – 1999. – V. 7. – № 5. – P. 779–786.

12.Xiaowen Chu, Bo Li, Zhensheng Zhang. A Dynamic RWA Algorithm in a Wavelength-Routed All-Optical Network with Wavelength Converters // INFOCOM. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications. IEEE Societies. – 2003. – V. 3. – P. 1795–1804.

13.Yates J.M., Rumsewicz M.P. Wavelength converters in dynamically-reconfigurable WDM networks // IEEE Communications Surveys & Tutorials. – 1999. – V. 2. – № 2. – P. 2–15.

14.Kungmang Lo, Daryoush Habibi, Quoc Viet Phung, Hoang Nghia Nguyen. Dynamic Wavelength routing in all optical meshnetwork // Proceedings of Asia Pacific Conference on Communications. – 2005. – P. 178–182.

15.Bhandari R. Survivable Networks: Algorithms for Diverse Routing. – Kluwer Academic Publishers, 1999. – 200 p.

16. . ., . ., . .

DWDM // - .

– 2011. – № 5/3 (53). – . 25–29.

17. . ., . . DWDM //

. – 2009. – № 5. – C. 27–33.

ȺɝɟɟɜȾɦɢɬɪɢɣȼɥɚɞɢɦɢɪɨɜɢɱ – ,

, , dm@ageyev.in.ua

ɉɟɪɟɜɟɪɡɟɜȺɥɟɤɫɚɧɞɪȺɧɚɬɨɥɶɟɜɢɱ – , ,

Referências

Documentos relacionados

A Resolução nº 333, de 4 de novembro de 2003, do Conselho Nacional de Saúde, define, entre outras, as seguintes atribuições para os conselhos municipais de saúde: 1 implementar

Já que “o poder maior do mito é sua recorrência” (BARTHES, 2001, p. 156) e representa “fonte dos textos e tramas da cultura” (CONTRERA, 1996), nossa proposição em

Por outro lado, o aumento do número de divórcios, no contexto de uma cultura fortemente monógama, em conjunto com uma crescente cultura visual do corpo – que trouxe

Sendo assim, a partir dessa discussão e da apresentação da aplicação prática desenvolvida em minhas aulas de Artes com o uso das TDIC, a meta central

C, “Relationship Between Constant-Phase Element (CPE) Parameters and Physical Properties of Films With a Distributed Resistivity”, Elsevier, Electrochimica Acta,

Como uma falta não pode ser diretamente detectada pelo sistema, o ponto inicial para as técnicas de tolerância a faltas é a ›detecção de um estado errôneo

"Os materiais, componentes e conjuntos comprados fazem parte do produto da empresa e afetam diretamente a qualidade de seu produto ... O comprador deve estabelecer