• Nenhum resultado encontrado

Formation of Hydrogen-Ion in Isomolar Solution of Hydrochloric and Hydrobromic Acids and Their Salts

N/A
N/A
Protected

Academic year: 2017

Share "Formation of Hydrogen-Ion in Isomolar Solution of Hydrochloric and Hydrobromic Acids and Their Salts"

Copied!
10
0
0

Texto

(1)

2016, . 158, . 3 ISSN 1815-6169 (Print)

. 381–390 ISSN 2500-218X (Online)

381

541.8

. .

1

,

. . Ф

2

,

. .

1

,

. . Ш

1

,

. .

я

1

1

, . я , 660041, я

2

,

. я , 660049, я

и

,

-, .

,

,

,

, .

,

.

, .

в в : , - ,

.

,

,

,

,

,

.

.

,

Д1, 2Ж,

.

,

(

α

1

) [3].

,

(2)

,

.

.

Д4Ж,

;

. .

,

,

-HSO

4–

10

Д5Ж.

,

,

,

.

,

-,

,

.

.

,

SO

42−

-

.

,

.

,

-.

,

.

-

,

M + L = ML.

-

,

Li

+

, Na

+

, K

+

, NH

4 +

Br

, CI

,

SO

42−

-

,

--

(

SO

4−solv

).

-

25

°

,

(

HBr, HNO

3

),

-.

0,5; 1,0; 2,0; 3,0; 4,0.

. 1 2

.

(1÷3)·10

–5

/ .

-4·10

–5

/ .

:

,

SO

Sr

SrSO

solv 24 solv

2 4

 

(1)

solv 4 solv

solv 2

4

H

HSO

(3)

. 1

(L, / )

HBr, / L, /

(Li, H)Br (Na, H)Br (K, H)Br

I = 0.5

0 2.51 2.55 2.58

0.3 5.62 5.68 5.74

0.4 6.33 6.36 6.40

0.5 6.85 6.85 6.86

I = 1.0

0 3.70 3.80 3.79

0.2 5.64 5.73 5.76

0.4 6.97 6.98 7.01

0.6 7.94 7.92 8.02

0.8 9.02 8.92 9.08

1.0 9.72 9.72 9.75

I = 2.0

0 4.49 4.58 4.60

0.25 5.89 6.02 6.84

0.5 6.67 6.86 6.86

1.0 8.36 8.40 8.39

1.5 9.24 9.24 9.22

2.0 9.88 9.86 9.86

I = 3.0

0 4.70 4.87 4.90

0.5 6.46 9.03 7.94

1.0 7.95 10.05 10.20

1.5 8.12 11.23 12.30

2.0 9.18 11.45 12.20

2.5 9.23 11.25 11.98

3.0 10.04 10.04 10.00

I = 4.0

0 4.80 4.98 5,02

0.5 6.10 8.02 10.02

1.0 6.86 9.02 10.23

2.0 8.25 10.46 12.68

3.0 9.12 10.97 11.98

4.0 10.42 10.40 10.44

,

,

(

):

],

SO

][

Sr

[

24

2 SO

 

SO

,

(3)

1 1 2 4 4

1 [HSO ][SO ] [H ]

     

.

(4)

(3) (4)

solv

-,

Θ

(4)

. 2

(L, / )

H l, / (Li, H) L, /

l (Na, H)Cl (K, H)Cl

I = 0.5

0 2.90 2.60 3.26

0.3 6.03 5.84 6.58

0.4 6.53 6.55 6.70

0.5 6.78 6.83 6.81

I = 1.0

0 3.68 3.80 4.86

0.2 6.03 6.09 7.12

0.4 7.19 7.50 8.23

0.6 8.21 8.34 8.98

0.8 8.81 8.95 9.53

1.0 9.70 9.76 9.70

I = 2.0

0 1.77 4.48 5.79

0.25 6.01 6.70 8.19

0.5 8.05 8.82 10.3

1.0 9.78 10.41 12.13

1.5 11.29 11.65 13.04

2.0 12.14 12.17 12.15

I = 3.0

0 4.73 4.73 7.84

0.5 7.10 8.67 13.49

1.0 8.64 10.37 14.29

1.5 8.12 11.23 12.30

2.0 10.33 11.90 14.38

2.5 9.23 11.67 12.77

3.0 11.47 11.50 11.47

I = 4.0

0 3.45 4.09 8.03

0.5 5.94 8.50 13.77

1.0 7.06 10.40 14.26

2.0 8.50 11.49 13.80

3.0 9.44 11.07 12.42

4.0 10.60 10.65 10.68

,

(2)

:

.

HSO

Sr

H

SrSO

solv 4solv

2 solv 4

 

(5)

:

1 4

2

1

[

Sr

][

HSO

][

H

]

   

s

.

(6)

,

-,

:

1 0 1

1

(

)

   

(5)

(1

)

(

6)

(

L

)

]).

H

[

)

(

1

(

]

Sr

[

])

[

1

](

SO

[

]

][

SO

[

]

SO

[

]

HSO

[

]

SO

[

1 0 1 1 2 0 1 2 4 2 4 1 2 4 4 2 4                

s s s

H

H

L

(8)

Sr

2+

S0

4

2–

,

,

,

SЫS

O

4

,

Д

Sr

2+

] =

L

.

])

H

[

1

(

]

H

[

0 1

1 0

2

 

 

s s

s

L

,

(9)

-

( )

,

)

exp(

1

]

H

[

])

H

[

exp(

1

H H 1 1 1 1 2 0 2  

   

C

C

L

L

(10)

L0

;

α0

(1)

α1

(5).

.

(10)

,

lg

]

)

(

)

1

Φ

lg[(

H 1

1

1 H

 

C

C

(11)

β

1

α

1

.

Д6Ж

SrS

4

( , ) ,

Li

+

, Na

+

,

+

Б –

Br

, CI

.

β

1

,

,

(

α

1

),

.

. 3 4.

α

1

0.5÷4.0,

.

-.

,

.

-

-

,

-SrSO

4

.

I

= 0.5;

1.0 2.0

;

,

3,

,

.

.

+

(6)

. 3 α1, lgβ1  (Li, H)Br, (Na, H)Br, (K, H)Br

= 298

I (Li, H)Br (Na, H)Br (K, H)Br

1 ±

0.03 lgβ1

±

0.04

±

0.06

1 ±

0.03 lgβ1

±

0.04

±

0.06

1 ±

0.06 lgβ1

± 0.04  ± 0.06 0.5 1 2 3 4 0.11 0.09 0.08 0.11 0.09 1.12 0.80 0.40 0.23 0.40 5.11 4.84 4.67 4.63 4.60 0.17 0.14 0.14 0.14 0.18 1.08 0.90 0.63 0.75 1.50 5.20 4.85 4.69 4.63 4.62 0.22 0.27 0.20 0.29 0.20 1.23 0.94 0.63 0.42 0.86 5.20 4.89 4.75 4.64 4.64

1 0.09 0.15 0.24

. 4 α1, lgβ1  (Li, H)CI, (Na, H) CI, (K, H)CI

= 298

I (Li, H) CI (Na, H)CI (K, H)CI

1 ±

0.05

lgβ1 ±

0.04

±

0.06

1 ±

0.03

lgβ1 ±

0.04

±

0.06

1 ±

0.06

lgβ1 ±

0.04  ± 0.06 0.5 1 2 3 4 0.35 0.19 0.09 0.08 0.11 1.13 0.94 0.80 0.44 0.63 5.07 4.87 4.75 4.65 4.92 0.33 0.24 0.16 0.19 0.20 1.16 0.95 0.83 0.77 1.93 5.10 4.84 4.70 4.65 4.78 0.51 0.30 0.24 0.39 0.38 1.12 0.78 0.73 0.78 0.79 4.97 4.63 4.47 4.21 4.19

1 0.12 0.20 0.33

,

.

(

+

)

I

=

4 (

.

1).

,

-

-

.

1

(

Li, H)Br

;

LiBr, NaBr, KBr

α

1

,

(

. 5).

,

-,

-,

.

lg

β

1

 

,

Д7Ж:

, lg 6 . 1 1

lg 10

2

1 bI

I I A

Z

  



(12)

. P 6 . 1 1 0 2 bI I I A

Z

  

(13)

Z

2

,

-,

4

lg

β

1

0

8

0

(7)

. 1. +

-I = 4

. 5

(α1) (Li, H)Br,

(Na, H)Br, (K, H)Br (Li, H)CI, (Na, )CI, (K, H)CI

(Li, H)Br (Na, H)Br (K, H)Br

α1

0.09 0.15 0.24

(Li, H)CI (Na, )CI (K, H)CI

0.12 0.20 0.33

,

,

,

,

lg

β

1

0 0

( ,

)

Br (1.07

±

0.02; 6.52

±

0.07) (

M, H)CI

(1.62

±

0.05; 6.45

±

0.08

)

-.

,

--

-,

я

.

(8)

и

1. Ш Е. .

IIIA // . . . – 2008. –

.81, № 9. – . 1428–1431.

2. И. .

-. – : - , 2003. – 238 .

3. Ф . ., .И., . .

SO42– - // . . . –

2006. – . 80, № 2. – . 263–268.

4. Bjerrum J. Determination of small stability constants. A spectrophotometric study of copper(II) chloride complexes in hydrochloric acid // Acta Chem. Scand. A. – 1976. – V. 41, No 6. – P. 328–334.

5. Fletcher A.N. Bisulphate dissociation quotient in mixed electrolytic solutions // J. Inorg. Nucl. Chem. – 1964. – V. 26, No 6. – P. 955–960.

6. . . -

-: . … . . . – , 2006. – 117 .

7. . . . – .: . ., 1982. –

317 .

04.06.16

в в и в , ,

-. , . 79, . , 660041,

E-mail: Lera0727@yandex.ru

в и в и ви , ,

-. -. « », . 31, . , 660049,

E-mail: chem@sibstu.kts.ru

и и ви , ,

-. , . 79, . , 660041,

E-mail: Vladimirganzha@yandex.ru

Ш в ви , ,

-. , . 79, . , 660041,

E-mail: shram18rus@mail.ru

и в и в , ,

-. , . 79, . , 660041,

(9)

ISSN 1815-6169 (Print) ISSN 2500-218X (Online)

UCHENYE ZAPISKI KAZANSKOGO UNIVERSITETA. SERIYA ESTESTVENNYE NAUKI

(Proceedings of Kazan University. Natural Sciences Series)

2016, vol. 158, no. 3, pp. 381–390

Formation of Hydrogen-Ion in Isomolar Solution of Hydrochloric and Hydrobromic Acids and Their Salts

M.A. Kovalevaa*, V.A. Fedorovb**, V.A. Ganjaa***,

V.G. Shrama****, N.N. Lysyannikovaa***** a

Siberian Federal University, Krasnoyarsk, 660041Russia

bSiberian State Technological University, Krasnoyarsk, 660049Russia

E-mail:*Lera0727@yandex.ru, **chem@sibstu.kts.ru, ***Vladimirganzha@yandex.ru,

****

shram18rus@mail.ru, *****nataly.nm@mail.ru

Received June 4, 2016

Abstract

Despite the presence of a large amount of factual material on thermodynamic parameters of com-plexation of agents in different solvents, including mixed ones, obtained knowledge is specific in nature. In order to identify more general patterns, studies are relevant that would allow to interpret the obtained data taking into account the interaction between chemical forms in solutions.

This paper presents a general approach to studying weak ionic interactions in solutions that allows to simultaneously determine the constants of these interactions and the parameters characterizing the influence of changes in the ionic environment on these constants by the example of chlorides and bromides of alkali metals.

The obtained constants for hydrosulfate-ion formation and the imperfection parameters can be a reference material for more accurate calculation of the concentration of hydrogen ions in sulfuric acid solutions. The developed approach and patterns identified in the work can be used to study the balanced states for formation of low and medium stable complexes.

Keywords: solubility, hydrosulfate ion, environmental effects

Figure Captions

Fig. 1. Dependence of the complexation function F on + for the bromide and chloride system atI = 4. References

1. SСФoХ’nТФoЯ E.V. Thermodynamic calculation of the solubility of solid hydroxides of group IIIa elements in water and aqueous media. Russ. J. Appl. Chem., 2008, vol. 81, no. 9, pp. 1503–1507. 2. Mironov. I.V. The Effect of Environment and Complex Formation in Solutions of Electrolytes.

Novosibirsk, Izd. INKh Sib. Otd. Ross. Akad. Nauk, 2003, 238 p. (In Russian)

3. Fedorov V.A., Belevantsev V.I., Batalina L.S. Secondary environment effects on the first step of the protonation of SO4

in saline aqueous solutions. Russ. J. Phys. Chem., 2006, vol. 80, no. 2, pp. 200–204.

4. Bjerrum J. Determination of small stability constants. A spectrophotometric study of copper(II) chloride complexes in hydrochloric acid. Acta Chem. Scand., Ser A, 1976, vol. 41, no. 6, pp. 328–334. 5. Fletcher A.N. Bisulphate dissociation quotient in mixed electrolytic solutions. J. Inorg. Nucl.

Chem., 1964, vol. 26, no. 6, pp. 955–960.

6. Batalina L.S. Effects of environment in the formation of hydrosulphate ion in water-salt solutions.

(10)

7. VКЬТХ’ОЯ V.P. TСОЫmoНвnКmТМ PЫopОЫЭТОs of Electrolytes. Moscow, Vyssh. Shk., 1982. 317 p. (In Russian)

Для цитир ва ия: . ., Ф . ., . ., Ш . ., я

-. -. -

// . . . - . . . . –

2016. – .158, .3. – . 381–390.

For citation: Kovaleva M.A., Fedorov V.A., Ganja V.A., Shram V.G., Lysyannikova N.N.

Referências

Documentos relacionados

Este modelo permite avaliar a empresa como um todo e não apenas o seu valor para o acionista, considerando todos os cash flows gerados pela empresa e procedendo ao seu desconto,

[r]

Este artigo discute o filme Voar é com os pássaros (1971) do diretor norte-americano Robert Altman fazendo uma reflexão sobre as confluências entre as inovações da geração de

This log must identify the roles of any sub-investigator and the person(s) who will be delegated other study- related tasks; such as CRF/EDC entry. Any changes to

Além disso, o Facebook também disponibiliza várias ferramentas exclusivas como a criação de eventos, de publici- dade, fornece aos seus utilizadores milhares de jogos que podem

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

É nesta mudança, abruptamente solicitada e muitas das vezes legislada, que nos vão impondo, neste contexto de sociedades sem emprego; a ordem para a flexibilização como

Provar que a interseção de todos os subcorpos de E que são corpos de decomposição para f sobre F é um corpo de raízes fe