• Nenhum resultado encontrado

Comunicação acústica do lobo-guará: evidências de discriminação individual via playback...

N/A
N/A
Protected

Academic year: 2017

Share "Comunicação acústica do lobo-guará: evidências de discriminação individual via playback..."

Copied!
60
0
0

Texto

(1)

UNIVERSIDADE DE SÃO PAULO 

FACULDADE DE FILOSOFIA, CIÊNCIAS E LETRAS DE RIBEIRÃO PRETO 

 

 

 

 

FLORA SILVEIRA BALIEIRO 

 

 

 

 

 

The voice of the not so lonely maned wolf: evidence of individual 

discrimination via playback of the long­distance extended­bark 

 

 

 

 

 

 

 

 

 

 

 

(2)

FLORA SILVEIRA BALIEIRO 

 

 

 

The voice of the not so lonely maned wolf: evidence of individual 

discrimination via playback of the long­distance extended­bark  

 

 

 

 

 

 

 

 

 

Dissertação apresentada à Faculdade de

 

   

 

 

Filosofia, Ciências e Letras de Ribeirão Preto

 

   

   

 

 

da Universidade de São Paulo, como parte dos

 

   

 

 

 

 

 

requisitos para obtenção do grau de Mestre

 

 

   

   

 

em Ciências. 

 

Área de concentração: Psicobiologia 

 

Orientadora: Profª. Dra. Patrícia Ferreira

 

 

 

 

 

Monticelli 

 

 

 

 

(3)

Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio  convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte. 

   

 

Balieiro, Flora Silveira 

The voice of the not so lonely maned wolf: evidence of individual discrimination via        playback of the long­distance extended­bark . Ribeirão Preto, 2015. 

60p. : il. ; 30 cm   

Dissertação de Mestrado, apresentada à Faculdade de Filosofia Ciências e Letras, Ribeirão        Preto/USP. Área de concentração: Psicobiologia. 

Orientadora: Ferreira Monticelli, Patrícia.   

 1. Comportamento Animal. 2. Comunicação Acústica.   

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(4)

Nome: Balieiro, Flora Silveira 

Titulo: The voice of the not so lonely maned wolf: evidence of individual discrimination via        playback of the long­distance extended­bark 

     

Dissertação apresentada à Faculdade de Filosofia,        Ciências e Letras de Ribeirão Preto da        Universidade de São Paulo, como parte dos        requisitos para obtenção do grau de Mestre em        Ciências. 

             

Aprovado em:   

 

   

Banca Examinadora   

 

Prof. Dr. ___________________________________________________________________  Instituição: _________________________________ Assinatura: ______________________  Prof. Dr. ___________________________________________________________________  Instituição: _________________________________ Assinatura: ______________________  Prof. Dr. ___________________________________________________________________  Instituição: _________________________________ Assinatura: ______________________ 

(5)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To the Maned Wolf, this amazing canid, that        deserves to be understood, respected and        protected. 

(6)

  ACKNOWLEDGMENTS 

 

I am thankful to the ones who contributed to my “unique history” as a scientist.   

À minha orientadora Patrícia pela oportunidade de trabalho e pelo apoio durante esses        primeiros passos rumo à minha carreira acadêmica. A toda a equipe do Laboratório de        Etologia e Bioacústica, em especial à Juliana pelas gravuras impecáveis e às companheiras de        campo, Lilian e Laís, cujas presenças durante as campanhas sem dúvida tornaram muito mais        curtas as longas horas de espera na madrugada. À minha família, em especial à minha irmã        Lara pela primorosa revisão e consultoria linguística durante o processo árduo da redação        final; à minha irmã Lia pela paciência e compreensão durante minhas ausências justificadas        pelo trabalho; ao meu marido Rafael por me apoiar sempre e facilitar meu cotidiano, bem        como todas as outras dimensões da minha vida; aos meus pais Ari e Valéria, que me        ensinaram a pensar como cientista e a agir com justiça. 

 

Também agradeço aos estagiários de campo, de pós­campo e aos juízes voluntários da minha        “gestalt”. Aos Professores Luiz Carlos Vulcano e Carlos Roberto Teixeira pelas imagens de        tomografia computadorizada do lobo­guará e do cão doméstico. Aos zoológicos: Parque        Ecológico de São Carlos, Parque Zoológico Municipal Quinzinho de Barros, Zoo Bosque        Ribeirão Preto, Zoológico Municipal de Americana, Zoológico Municipal de Catanduva,        Zoológico Municipal de Paulínia, Zoológico Municipal de Piracicaba, Zoológico Municipal        de São José do Rio Preto, pela permissão de acesso aos lobos. À CAPES, pela concessão da        bolsa de mestrado, à Universidade de São Paulo e ao Programa de Pós­Graduação em        Psicobiologia pelo apoio na realização deste trabalho. 

(7)

                                             

   

“The scientist, like any organism, is the product of        a unique history” (Skinner, 1956) 

(8)

  ABSTRACT 

 

The acoustic channel is an efficient long­distance signaling system that may be especially        effective for animals with crepuscular/nocturnal habits. The maned wolf is a threatened canid        with crepuscular/nocturnal habits that is thought to be a solitary species in common sense. As        a matter of fact, it would be better defined as a gregarious species, since male and female        share the same wide territory and the spatial distance between them varies according to the        female’s reproductive period. The maned wolf’s extended­bark is a long­distance vocalization        that functions as a mechanism to increase spatial distance among conspecifics as well as to        enable pair­mates to find each other. Individual variations in this vocalization have been        reported, but the possibility that they can be perceived and used by the species has never been        tested. One should expect these individual variations to be perceived by the species, since        only in this scenario it would be plausible for the extended­bark to have the dual function        stated above. If this individual variability is not perceived by conspecifics, the efficiency of        this vocalization at long distances, at least for the hypothesized functions, would be        compromised, as the hearer would not be able to identify if the sender is its reproductive        partner or a possible rival. In our study we used playbacks to test if these individual variations        can be perceived by captive wolves and have concluded that they can.  To our knowledge, this        is the first time it has been demonstrated that the maned wolf is capable of discriminating        among  extended ­barks of different individuals. 

 

Key Words: habituation­discrimination;       Chrysocyon brachyurus   ; individual discrimination;      vocal communication; acoustic structure; acoustic variability. 

(9)

 

  SUMMARY 

 

ABSTRACT 

1 INTRODUCTION 

2 METHODS 

2.1 Study Sites and Animals 

2.2 Animal ethics and Welfare 

2.3 Recordings 

2.4 Acoustic Analysis 

2.4.1 Measurements 

2.4.2 Potential for Individuality Coding (PIC) 

2.5 Pilot Phase 

2.6 Description of the Maned Wolf's vocal tract 

2.7 Hypothesis Test 

2.7.1 Habituation–discrimination paradigm 

2.7.2 Playback Procedure 

2.7.3 Standard Playback Protocol 

2.7.3.1 Criteria of Response 

2.7.3.2 Procedure 

2.7.4 Ethogram 

2.7.5 Complementary Playback Protocol 

2.7.5.1 Criteria of Response 

(10)

2.7.6 Other Procedures 

2.7.6.1 Reproductive pair discrimination test 

2.7.6.2 Background noise effect evaluation 

2.7.6.3 Stimulus control test 

2.7.6.4 Playback tracks preparation 

2.7.6.5 Equipment Quality Procedure Test 

3 RESULTS 

3.1 Hypothesis Test 

3.1.1 Standard Playback Protocol 

3.1.2 Complementary Playback Protocol 

3.1.2.1 Response to stimuli 

3.1.2.2 Validity of  the “gestalt” Disturbance 

3.1.3 Other Results 

3.1.3.1 Reproductive pair discrimination test 

3.1.3.2 Background noise effect evaluation 

3.1.3.3 Stimulus control test 

3.1.3.4 Equipment Quality Procedure Test 

3.1.3.5 Recordings 

3.1.3.6 Acoustic Analysis 

3.1.3.7 Pilot Phase 

3.1.3.8 Description of the Maned Wolf's vocal tract 

4 DISCUSSION 

5 REFERENCES 

(11)

 

  1 INTRODUCTION 

 

The maned wolf (       Chrysocyon brachyurus   , Illiger, 1815) is the largest South American        canid inhabiting open vegetation areas, mainly savanna’s phytophysiognomy (Batalha, 2011)        of Cerrado (Dietz, 1985; Bueno, 2002). It occurs in Argentina, Brazil, Bolivia, Paraguay, Peru        and Uruguay in a distribution range estimated in 5 million square kilometers (Dietz, 1985;        Bueno, 2002). The species is listed as “Nearly Threatened” by the International Union for        Conservation of Nature (IUCN) red list of threatened species (Rodden et al., 2008) and as        “Vulnerable” in the Species List of the Brazilian Fauna Threatened with Extinction Species        List ( MMA, 2014 ). In Brazil, the main threats to the species are the loss of the original        Cerrado areas (Myers       et al   ., 2000) due to the expansion of agriculture and livestock (Fonseca        et al.   , 1994; Klink & Moreira, 2002), the roadkills on highways, diseases spread by domestic        dogs and illegal hunting committed by farmers to protect their livestock (Dietz, 1984; Rodden        et al., 2008).  

The maned wolf is thought to be a solitary species in common sense. It is a        monogamous species and male and female usually share the same wide territory (Kleiman,        1972; Dietz, 1984), ranging from 20 to 115 km² (Dietz, 1984, 1985; Carvalho & Vasconcellos,        1995; Melo     et al.   , 2007). As a matter of fact, the species would be better defined as gregarious        species with level two of sociality (       i.e.   aggregation for at least one activity,         sensu Lee, 1994),    since the members of a reproductive pair are scarcely found together during activity periods        (Dietz, 1984), but still may share resting places and sleep together in natural areas (Melo         et  al. , 2007). The spatial distance between male and female varies according to the female’s        reproductive period, as the proestrus is a social oncoming period and anestrous is        characterized by mutual avoidance (Dietz, 1984). 

(12)

signals, including the loud "single­bark" and the "roar­bark" (called "single­bark" by Kleiman,        1972; and "extended­bark" by Dietz, 1984, which is the term we chose to adopt in our work).        The extended­bark resembles an extended variation of the bark of a large domestic dog (Dietz,        1984; see Figure 6 in Methods) and is emitted in sequences both by males and females.        Kleiman (1972) has suggested that the extended­barks function as a spacing mechanism        among individuals, such as the roars of the great cats. It has also been noticed to be produced        in duets between couples (Dietz, 1984; personal observations). Since its emission rate        increases during the breeding season, it has been suggested that it may also have a role in        aiding the localization between pair­mates (Dietz, 1984). 

The maned wolf's body is large and requires a lot of energy supply. As its food is        scarce and dispersed (mostly fruits and small vertebrates such as rodents and birds ­ Bueno         et  al. , 2002) the best strategy for this species is to hunt alone and use mutually exclusive        foraging areas. It has been suggested that the lack of exposure to factors promoting sociality        has made this social structure relatively inflexible and turned to be a genetic constraint to the        extent of cooperative social interaction among individuals (Dietz, 1984). If a strict        territoriality has increased the survival of individuals, then natural selection must have        favoured characteristics which emphasize the property of an area (Dietz, 1984). In fact, the        maned wolf exhibits scent­marking behaviours with urine and faeces and produces a long        distance vocalization (the extended­bark), which are related to territorial defense in close        proximity and at longer range, respectively (Dietz, 1984; Kleiman, 1972). 

(13)

2002). It has been demonstrated that individuals of some species are capable of distinguishing        familiar vocalizations from unfamiliar ones, even when they are far away from the sender        ( e.g. Gray wolf     Canis lupus   : Tooze     et al   ., 1990; Rhesus monkey         Macaca mulatta   : Rendall     et  al ., 1996; Lion        Panthera leo   : Grinnell & McComb, 2001; African Elephant         Loxodonta  africana : McComb     et al   ., 2000). It has even been reported foraging group signature in the        social and cooperative spear­nosed bat           Phyllostomus hastatus   (Boughman, 1997), favoring      membership pertencement signaling and pair recognition. 

The extended­bark of the maned wolf is a loud vocalization whose abrupt start and        broadband frequency favor its perception and its location source (McGregor, 2005). Thereby,        we hypothesized that the extended­bark of the maned wolf might have sufficient individual        variations if involved in provision of clues about the sender’s identity, either to permit        reproductive partner recognition or to signal territory property. In fact, Brady (1981) has        reported individual variations in maned wolf extended­barks and stated that a human would        distinguish individual differences in extended­barks at a distance of 1 km. Nevertheless, the        possibility that this variability can be used by wolves for individual recognition has never        been tested. One should expect these individual variations to be perceived by the species, for        only in this scenario it would be plausible for the extended­bark to function as a mechanism to        increase spatial distance among conspecifics as well as to enable pair­mates to find each other.        If this individual variability is not perceived by conspecifics, the efficiency of this        vocalization at long distances would be compromised, as the hearer would not be able to        identify if the sender is its reproductive partner or a possible rival. We used playbacks to test if        these individual variations can be perceived by the species.  To our knowledge, this is the first        time it has been demonstrated that the maned wolf is capable of discriminating among        extended ­barks of different individuals. 

 

  2 METHODS 

 

2.1 Study sites and animals 

 

(14)

total number of wolves visited in different zoos of São Paulo state, Brazil, were 16 (Table 1).        As not all of them produced extended­barks, our results are related to extended­barks        produced by 6 adult wolves (four males and two females) and playback trials were conducted        with 10 (one couple and eight solitary males). The enclosures in the zoos were often open for        visitors, hence the wolves were accustomed to human presence (exceptions are presented in        footnotes of Table 6). 

 

2.2 Animal ethics and welfare 

 

The maned wolf is catalogued as “Nearly Threatened” by the IUCN red list of        threatened species (2015), and we obtained official research license from the Brazilian        government (Sisbio, permit number 41028­3). The research was approved by the Ethics        Commission for the Use of Animals in research (CEUA) of University of São Paulo (Protocol        number 14.1.153.53.8), and permissions were obtained from the person in charge of each zoo.        Both recording and playback procedures were conducted in accordance with the Guidelines of        the American Society of Mammalogists (Sikes  et al. , 2011). 

 

Table 1. Wolves that participated in this study. They were held in captivity in different zoos of São Paulo state,        Brazil, isolated or in pairs. Sexes are presented as M = male, F = female. The contribution of each animal in the        different phases of the research is presented in the last column. 

CITY  /  STATE  HEADQUARTERS  OF 

DATA  GATHERING  

SUBJECT (INITIALS)  SEX  

PHASE OF STUDY IN  WHICH PARTICIPATED AS 

SUBJECT 

Botucatu/ SP  Wolverine (WO)  M  Playback 

Botucatu/ SP  Logan (LO)  M  Playback 

Catanduva/ SP  Mel (ME)  F  Recording  

Ribeirão Preto/ SP  Orfeu (OR)  M  Recording  

São Carlos/ SP  Frutti (FR)  F  Recording  

São Carlos/ SP  Tutti (TU)  M  Pilot, Recording and Playback 

(15)

São José do Rio Preto/ SP  Mostarda (MO)  M  Recording  

Sorocaba/ SP  Fantasma (FA)***  M  Pilot, Recording and Playback 

Sorocaba/ SP  Nymeria (NY)***  F  Pilot, Recording and Playback 

Sorocaba/ SP  Perônio (PE)***  M*  Playback 

Sorocaba/ SP  Tíbio (TÍ)***  M*  Playback 

Americana/SP  Colombo (CO)  M  Recording and Playback 

Paulínia/SP  Pluto (PL)  M  Playback 

Piracicaba/SP  Lupin (LU)  M  Recording and Playback 

Itirapina/SP  Mogli (MOG)  Unknown  Pilot 

*All the subjects, except Perônio and Tíbio, marked with a star, were more than 2 years old and, therefore, are        considered adults (Rodden       et al.   , 2004). **Subject Hortelã was a free­living male (unofficial information from        Zoo’s employees and personal verification) at the cerrado reserve bordering the Zoo of São Carlos that        occasionally visited Tutti and Frutti's enclosure. For further details, see topic on pilot phase. *** The only wolves        that shared the same enclosure were: (1) FA and NY; (2) TÍ and PE. TU and FR were kept apart most of the time,        but shared the same enclosure during part of the day. The rest of the wolves did not share enclosures. 

 

2.3 Recordings 

 

(16)

Cesar Ades (FOCA), the neotropical mammals sound library of our institution, for future        reference. 

Field work took place from 2013 to 2015 in 13 short field trips of approximately two        weeks each. Recording sessions were taken in each zoo continuously from 17:00 to 07:00        (UTC­3) within the period of greatest activity of the species, as described in literature (Dietz,        1984). Daylight saving time was disregarded. Vocalizations of interest were recorded         ad  libitum   at a minimum distance of 7 to no more than 15 meters, except for FR that was        impossible to be approached to less than 40 meters. Whenever possible, we made sound        pressure level measurements (of vocalizations and environmental noise in dB) using a sound        level meter (Instrutemp, ITDEC­4080; range 30dB to 130dB). At the end of each recording I        dictated the following information: (1) date and time; (2) distance from the subject; (3) place        and geographic coordinates; (4) environment (captivity); (5) temperature and relative        humidity (when possible); (6) scientific and common name of the species (       Chrysocyon  brachyurus , Maned Wolf); (7) subject identity; (8) gender; (9) female’s estrous stage; (10) age        (adult or juvenile); (11) detailed behavioural description of the individual that vocalized        (before, after and during vocalization), and a description of the behaviors presented by        enclosure mates (when applicable); (12) equipments used. 

In order to complement information about vocal activity of the subjects, we also made        remote sound recordings using automated digital recorders (Wildlife Acoustics, SongMeter        2+). Each mobile unit can be programmed to record automatically on a schedule, so it does        not require the researcher's presence for gathering data. The recorders were settled inside the        enclosures and adjusted to work continuously from 17:00 to 07:00. Each two­channel unit        holds two omnidirectional microphones (Wildlife Acoustics, SMX­II) whose gains can be set        independently. To protect recordings from distortion of the signal through clipping , we      1    always let a difference of at least 6 dB between the gain of both microphones. Other recording        parameters were the same as used in manual recordings (see above). The amount of data        collected was then scanned manually in Song Scope software (Wildlife Acoustics). We also        used some of these vocalizations automatically acquired as stimuli for some of the playback        tests (see “Standard Playback Protocol” for details). 

 

1 Clipping is a distortion of the signal due to severe over loading during sound recording or further                                  analysis and it can be easily detected in the oscillogram. (Wilden  et al. , 1998). 

(17)

   

2.4 Acoustic Analysis 

 

Brady (1981) stated that  the acoustic structure of the extended­bark notes vary        between wolves, but is fairly constant at individual level. He has  reported sharp and consistent        differences in the number of emphasized frequencies among individuals’ extended­barks, but        has not deeply  investigated what other possible acoustic variables can contribute to the vocal        individuality.  We explored the potential to promote vocal individuality of four acoustic        variables selected in both temporal and frequency domains (Table 2). 

 

Table 2 ­ Description of the acoustic variables for measured to investigate the potential for individual coding        (PIC). All measurements were made in Raven Pro version 1.4. Delta Time and 3rd Quartile Frequency are        considered “robust signal measurements”, which means that they do not vary much based on the exact bounds of        the selection created by the user (Cornell Lab of Ornithology, 2014). 

 

Variable  Description 

Average Entropy  The degree of disorder ( i.e.  chaos) in the note. 

Delta time (s)  Duration of the note ( the end of the note).         i.e.   the temporal difference between the beginning and       

3rd Quartile Frequency (Hz)  The frequency that divides the note into two frequency intervals containingrespectively 75% and 25 % of the energy distribution.        

Max Frequency (Hz)  The frequency at which the maximum energy occurs ( frequency or F0).       i.e. the fundamental   

   

2.4.1 Measurements 

 

(18)

21.5 Hz (frequency grid spacing); 70% (brightness); 30% (contrast). The accuracy of the        automated measurements extracted by Raven Pro was confirmed by visual assessment        (Fischer   et al.   , 2013) and all note selections (       i.e.   the rectangle displayed in the software that        delimits the area to be measured) were done by the same researcher. For each note Raven Pro        generated: (1) an audio file containing the note alone; (2) a table in “txt” format containing all        measures and the identity of the wolf that vocalized. These tables were automatically unified        with a software made at the Ethology and Bioacoustics Research Laboratory (EBAC) for this        purpose. Taking the advice of Fischer and colleagues (2013) we used a hierarchical naming        system to the files. Such system allows every note to be tracked back to the sequence and the        original file it came from. Only notes with a good signal­to­noise­ratio entered the analysis        and, to avoid pseudoreplication, we picked notes from different recording sessions whenever        possible. We filtered two frequency bands that appeared in a recording from a duet between        FR and TU using Raven Pro (Bandstop Filters: Lower Limit = 2250 Hz; Upper Limit = 2550        Hz; Lower Limit = 4000 Hz; Upper Limit = 4650 Hz) ­ none of these sequences of notes were        used in the playback phase. 

 

2.4.2 Potential for Individuality Coding (PIC) 

 

For each acoustic parameter measured, the between­individual and within­individual        coefficients of variation (CVb and CVw) were calculated according to the following formula:  

 

CV = 100 

   

×

(

1+14N

)

 

×

 

(

 

X SD

)

 

 

For each parameter, CVw was evaluated as the mean value of individual CVs. Then we        defined the potential for individuality coding (PIC) as the CVb/CVw ratio. For a given        parameter, a PIC value greater than 1 indicates that this parameter has potential to be used in        individual recognition, this is because its intra­individual variability is smaller than the        inter­individual variability (de la Torre           et al.   , 2015). Calculations were made on R program        version 3.1.3 (see Appendix 1 for script details). 

(19)

   

2.5 Pilot Phase 

 

The first step of our ethological analysis started with extensive observation of maned        wolf behaviour. For logistical reasons we could not make preliminary observations of every        wolf that participated as subject in the playback phase. Despite that, we gathered enough        hours of observation (400 hours approximately) to accurately describe behaviour patterns of        the species. The observations were made mostly at night (together with the recording phase),        including a photic period from 17:00 to 19:00 and another one from 06:00 to 07:00 ­ in some        occasions the field work had to be extended to later hours in the morning, since the wolves        were still active. The subjects on which we made the preliminary behavioural observations        were the reproductive pair FA and NY, from Sorocaba’s Zoo (which had artificial lighting at        night) and TU from São Carlos’ Zoo (in which we used a flashlight and counted on full moon        illumination). Sampling rules chosen to preliminary observation were “ad libitum” (Altmann,        1974), together with behaviour sampling for vocalization events. We used “all occurrences” as        recording rule in both cases (Martin et al., 1993). 

In addition to the captivity wolves, we also had the chance to observe two wild        individuals. The first (HOR) is a free animal that lives in the cerrado reserve bordering the        Zoo of São Carlos and often entered the Zoo through a hole in the outer fence. We assume it is        a male from observation and unofficial information from Zoo’s employees. The second wolf        (MOG) inhabits the Ecological Station of Itirapina and its surroundings. 

 

2.6 Description of the Maned Wolf's vocal tract 

 

(20)

   

2.7 Hypothesis Test 

 

For the maned wolf to be capable of distinguishing its reproductive partner from a        possible competitor through the extended­bark, there might be individual variations in this        vocalization that provide clues about the sender’s identity.  

H 1 : In case our hypothesis is valid, one can expect that the wolves will be able to distinguish       

among different conspecifics’ extended­barks. 

: The wolves will not be able to distinguish among different conspecifics’ extended­barks.   

2.7.1 Habituation–discrimination paradigm 

 

In order to test the prediction that maned wolves are able to discriminate among        extended­barks of different individuals, we used the habituation­discrimination paradigm        (Friedman, 1972; Cheney & Seyfarth, 1988; Rendall         et al   ., 1996; “habituation­dishabituation”      Hauser, 1998;  Reby & McComb, 2003; “habituation­dishabituation” Mumm         et al.   , 2014;    Palacios   et al.   , 2015). Habituation is defined as a gradual decrease in the magnitude and/or        frequency of the response due to repeated presentations of a stimulus (Catania, 1999;  Rankin        et al.   , 2009 ). When the response is extinct ­ or, at least, decreased enough in magnitude to        consider the subject habituated ­ in the presence of a stimulus and maintained or recovered in        the presence of another stimulus, one can say that discrimination occurred (Holland &        Skinner, 1975). 

The typical habituation­discrimination paradigm consists on presenting repeatedly a        given stimulus (     i.e.   habituation stimulus;     e.g. extended­bark from individual ‘A’) at fixed time        intervals until the subject habituates to it, followed by the presentation of a different stimulus        ( i.e.   test stimulus;     e.g. extended­bark from individual ‘B’). If this subsequent exposure to the        test stimulus immediately increases the magnitude and/or frequency of the response,        discrimination between stimuli A and B occurred. 

 

2.7.2 Playback Procedure 

(21)

Sessions started within the period of activity of the species (Dietz, 1984), in early        morning (6:00), to take advantage of photoperiod for video documentation. We waited        approximately 10 minutes in silence before starting each test, to familiarize the subjects to the        equipments and to our presence. Acoustic stimuli were played back using a power speaker        (Boxer M­10; output power 100 W; impedance 4­8 Ω; frequency range 0,05 kHz ­ 20 kHz).        The speaker was positioned 30 m away from the subjects and out of their sight. Volume level        was adjusted to ensure the stimuli were audible by the subjects and simulated the vocalization        contexts we witnessed during the recording phase. In order to prevent sound attenuation by        atmospheric absorption (Wiley & Richards, 1978), we avoided days with high humidity. And        to prevent changes in the wavesound caused by ground attenuation (Wiley & Richards, 1978),        we placed the powered speakers at a distance of approximately 0.5 m from the ground        (simulating a typical context of vocalization). During the tests, we documented the wolves’        behaviours with a Sony Handycam ­ for couple FA and NY we used two cameras, one for each        wolf. After each test we made sound pressure level measurements of the playback sound and        without it (Sound Level Meter Instrutemp, ITDEC­4080; range: 30dB to 130dB). 

 

2.7.3 Standard Playback Protocol 

 

To test whether the maned wolf is able to discriminate among extended­barks of        different individuals (A and B) we adopted the following playback protocol (modified from        Rendall  et al. , 1996): 

(1) Habituation phase: we used a sequence of 6 extended­barks (A       , A   , A   , A      , A , A )  from wolf A as the habituation stimulus. The sequence was presented to the subject        repeatedly until it was habituated (for details see Criteria of Response). We chose to        use a sequence as stimulus, rather than a single extended­bark, to expose the subject to        six different samples of stimulus from class A. Thus, the subject was habituated to the        individual content of wolf A's extended­barks, not to the particular acoustic        characteristics of a single note, which is more faithful to the natural situation of        emission. 

(22)

subject does not recover from habituation, we assume it is habituated to the acoustic        features virtually present in all stimuli from class A. Otherwise, our postulate is        discarded and we conclude that the subject has only habituated to the habituation series        ( i.e.       A , A , A , A , A , A ). We chose to use three new stimuli rather than a single one.        This way we avoid the possibility of the subject not having heard the new stimulus.  (3) Discrimination phase: after the habituation control phase, we broadcast a single       

stimulus from wolf B. Stimulus B is also new, it only does not share the acoustic        characteristics to which the subject is habituated (       i.e. those virtually present in class A        stimuli). Therefore, if stimulus B elicits a response similar to that obtained in the        beginning of the habituation phase (       i.e.   before the wolf was habituated), we assume it        has discriminated between extended­barks from wolves A and B. 

(4) Re­habituation phase: at last we present a new stimulus from class A (       i.e.   A 10 ). If the      subject re­habituates (     i.e.  we observe a  diminution of response magnitude or no        response anywise), we endorse the statement that the subject is able to discriminate        between A and B. Albeit we could re­exposure the subject to a stimulus of type A that        had already been used, we preferred to broadcast a new one (A       10 ) as a way to increase        experimental control. 

To avoid violating the intervals found between extended­barks from a natural sequence        or duet, the intervals between two stimuli were no longer than 10 seconds (Figure 1). 

(23)

difference among the types of background noise each track contained, we inserted background noise extracted        from track B (background noise B) in the habituation soundtrack and just before stimulus B. This strategy        allowed us to know if the subjects’ behaviour altered in response to the change of stimulus (        i.e.   from A to B) or          due to the background noise change. If the subject did not react to the inserted fragments of background noise,        but to the stimulus B, we assumed there had been discrimination between A and B. Only soundtracks played to        the subjects TU, FA and NY contained stimuli recorded with different equipments. The spectrogram was        generated in Raven Pro 1.4. (       Window type     = Hann;   Window Size     = 900 samples;     3dB filter Bandwidth       = 70.5 Hz;    Overlap   = 99.7;   Hop Size       = 3 samples;   Frequency Grid DFT size         = 2048 samples;     Grid Spacing   21.5 Hz; Screen      brightness = 50; Screen Contrast = 50) and the marks were made with Photoshop CS6. 

 

2.7.3.1 Criteria of Response   

During the habituation phase of each playback trial we studied the responses shown by        the subjects in order to judge which could be elected as good estimators of the wolves’        reaction to the stimuli. We adopted the following criteria: 

(1) the response must have followed an habituation pattern (       i.e. gradually decreased in      magnitude and/or frequency after repeated presentations of a stimulus); 

(2) the occurrence of the response must have been easy to identify by an untrained observer;  (3) the duration of the response must be brief (less than 10 seconds), since the interval        between the discrimination stimulus and the re­habituation stimulus was of about 10 seconds. 

The response that best fulfilled all requirements was “Oriented Attention” (see        Ethogram for description). 

 

2.7.3.2 Procedure   

In order to comply with the habituation­discrimination paradigm we only analyzed        tests in which the subjects displayed the response Oriented Attention in the beginning of the        habituation phase. However, any response to the test stimulus (       i.e.   B) might have been      influenced by the fact that the subject had already heard extended­barks. Thus, to consider the        subject habituated during playback procedures, both the frequency of the Oriented Attention        response and the magnitude of the subject’s overall “disturbance state” should decrease. 

S ince we used Oriented Attention as a measure of the response, we only played the        test soundtrack (     i.e.          A , A , A ,  B, A 10 )  when the subject was not facing the speaker and when        no other noticeable acoustic stimuli was present. 

(24)

the audio’s waveforms on the same screen, which allowed us to accurately visualize the        timing between stimulus (sound) and response (image). To measure the subjects’ responses to        the stimuli we used a single measure: if the behaviour Oriented Attention occurred or not.        Thus, discrimination between A and B happened if the subject displayed Oriented Attention        only in the beginning of the habituation phase  and during/immediately after B. We could also        have measured latency and/or duration of Oriented Attention or even included more        behaviours as responses. However, since experimental conditions widely vary among subjects        and trials, it would only give us extra information about the subject and/or individual trials.        Since we are interested in understanding if the subject responds more than  how it responds to        the stimuli, other measures did not reach significance. 

The magnitude of the wolves overall “disturbance state” were examined under the        concept of “gestalten”, proposed by Konrad Lorenz (1962, 1960         apud Hutt & Hutt, 1974),        which is the notion of certain responses seeming to follow a pattern that can be easily        recognized. The practical notion of a “gestalt” comes with experience on behavioural        observation. The experience leads to the ability of identifying natural units and grouping them        according to some regularity. Thus, “gestalten” are groups whose natural units are highly        redundant in some way. In our work one “gestalt” corresponds to a set of responses that        characterizes a state of general perturbation in the animal’s regular state, labelled here        “Disturbance”. Therefore, each animal presents a particular set of responses that characterizes        its Disturbance (see Ethogram). During habituation, the magnitude of the “gestalt”        Disturbance must decrease.  

To prevent “experimenter bias” we elected five untrained observers to judge the

       

validity of our “gestalt” Disturbance. Each judge watched video excerpts from CO’s playback        tests. Four of the excerpts corresponded to moments in which we considered the subject was        “very perturbed” (     i.e. high magnitude level of Disturbance). The other four excerpts were        from moments we considered it “less perturbed” (       i.e. lower magnitude level of Disturbance).          We randomly mixed the video excerpts and, as a result, we obtained four pairs of video        containing excerpts we judged as different “gestalten”, one of them corresponding to the        transition from stimuli A to stimuli B. 

(25)

mute mode ­ the original audio contained the researcher’s narration of the test, which could        induce their judgement. To determine inter­observer agreement, we used Fleiss’ Kappa        statistic calculated with and without author’s scores. Fleiss’ Kappa statistic (k) varies from 0        (no agreement or agreement exactly as expected by chance) to 1 (full agreement), while equal        to 0 indicates no agreement or that the agreement was exactly as expected by chance. To        determine the strength of agreement, we adopted Landis & Koch (1977) benchmarks (Table        3). 

 

Table 3 ­ Strength of agreement of Fleiss’ Kappa statistic (k) by Landis & Koch (1977). The second column        gives the interpretation for the k value. 

 

Kappa Statistic   Interpretation 

      < 0.00  Poor agreement 

       0.00­0.20  Slight agreement 

       0.21­0.40   Fair agreement 

       0.41­0.60   Moderate agreement 

0.61­0.80   Substantial agreement 

0.81­1.00   Almost Perfect agreement 

   

2.7.4 Ethogram 

 

We built the ethogram based on observations from pilot and playback phases (Table        4).  

 

Table 4 ­ Behaviours and their assumed disturbance value as defined during preliminary observations of a        captive wolf and following the literature. The third column indicates the contribution of the response to the        “gestalt” disturbance, as evaluated by 5 untrained judges, being positive when it increases and negative when        decreases in its magnitude.  

 

Natural Unit  Description  Disturbance 

(26)

Piloerection  When body hair is spiky ­ noticeable in video (Figure 2).  + 

Relaxed Pelage  When body hair is not spiky ­ noticeable in video.  ­ 

Oriented Attention 

Wolf turns its head towards the speaker and remains with ears raised,        eyes wide open and outer ears facing the speaker during at least 1 s.        The reaction can occur just after the stimulus or have a latency of        maximum 4 seconds. (Adapted from Palacios  et al ., 2015) (Figure 3). 

Attention  Wolf turns its head towards any direction but the speaker’s and       

remains with ears raised and eyes wide open during at least 1 s.  + 

Ear scan  Wolf turns one or both ears towards the speaker (Figure 4).  + 

Fast Walk 

Wolf suddenly increases speed of walk. It differs from running or trote        since it is a locomotion without an in­air phase, in which hindlegs do        not extend forward past the midline of the body (Adapted from        Fletchall  et al. , 1995). 

Pacing 

Wolf comes and goes compulsively in a small space describing a        predictable route, with no apparent function. Mouth is usually half        open and tail is relaxed (Vasconcellos, 2009). 

­ 

Perambulate  The animal walks through an apparently random route. Mouth is       

usually half open and tail is relaxed.  ­ 

Approach speaker  Wolf walks towards speaker.  + 

Move away from 

speaker  Walks away from speaker.  + 

Marking  Urinates, defecates, or rubs itself on the enclosure’s vegetation       

(Coelho  et al ., 2011).  + 

Lick the nose  Passes tongue over the nose.  + 

Sniff the air  Draws air into the nose supposedly to smell something, nose is up and       

ears are usually facing forwards.  + 

Sniff enclosure  Draws air into the nose supposedly to smell a specific place of the       

enclosure.  ­ 

(27)

Eat  Self­explanatory.  ­ 

Yawn 

Involuntarily opens its mouth widely and inhales deeply, ears are        usually back. Could happen on playback context supposedly due to        anxiety. 

Rest  Lies down with raised body or not, occasionally moving the ears ,       

with closed or semi­enclosed eyes.  ­ 

Rest alert  Lies down with raised body, ears turning forwards or moving laterally       

and eyes wide open.  + 

Charge/lunge*  Advances towards another wolf, piloerection, stiff forelegs, ears back       

( Fletchall  et al. , 1995 ).  + 

Gape*  Open mouth, ears back, oriented towards other wolf; often       

accompanies charge ( Fletchall  et al. , 1995 ).  + 

Growl*  Growls at conspecific ( Fletchall  et al. , 1995 ).  + 

Hunt 

Jumps over something on the ground with both forelegs, ears towards        the ground. Considered as a ludic activity and assigned as negative        value for our purposes. 

­ 

Self­groom  Scratches or licks its own body (Adapted from Fletchall  et al. , 1995 ).  ­ 

Play **  Manipulates objects with front paw or mouth.  ­ 

Refuge  Runs or walks fast towards the enclosure’s den.  + 

Harassed  Posture in which the hip is slightly lowered relatively to the line of the       

back, leading the tail to be partially between the legs.  + 

Bark  (Extended­bark) 

Wolf emits a sequence of extended­barks. The wolf is usually standing        up with its tail relaxed. Between one note and another its ears rotate in        a back and forth movement as if searching for sounds (Figure 5). 

Whine  Wolf whines. Ears can be raised or flattened and turned backwards. If       

the wolf is standing up its tail is usually up.  + 

  * Valid only for the wolves FA and NY that were held in the same enclosure. ** Valid only for TU session, in        which there was a tire as enrichment object. 

(28)

 

 

Figure 2 ­ Piloerection.  The spiky hair is specially pronounced in the wolf’s mane, lower back and tail (Drawing        made by Juliana Takata based on video excerpts of our playback tests). 

 

(29)

   

       

Figure 4 ­ Ear Scan.  Wolf turns one or both ears towards the speaker.        The ear movement is indicated by the arrow in the drawing  (Drawing        made by Juliana Takata based on video excerpts of our playback        tests). 

     

 

Figure 5 ­ Bark. Wolf emits a sequence of extended­barks. The wolf is usually standing up with its tail relaxed.        Between one note and another its ears rotate in a back and forth movement as if searching for sounds  (Drawing        made by Juliana Takata based on  author’s verbal description). 

(30)

2.7.5 Complementary Playback Protocol  

 

The first playback session of the subject CO was harmed by confounding variables:        loud background noise, frequent human interference, dog barking and others. Under such        adverse conditions the subject did not show clear response to the stimuli change in the        standard protocol. One of the possible reasons to the absence of response was that the subject        did not perceive the B stimulus along the track, since there were too many distractions during        the test. Another possibility was that the subject did not have enough time to react to B        stimulus, since there was about 5 seconds between it and the next stimulus (       i.e. A ). Thus,    even if it had started to react to B, the following stimulus (       i.e. A ) could have interrupted it.          We could not elongate the interval between notes, since the silence itself could be a        confounding factor. Thus, in order to see if the subject could perceive the stimuli change, we        ran a new test: (1) we played a series of stimulus from wolf A (A       , A          , A , A , A , A ), and    then (2) a series of stimulus from wolf B (B       , B          , B , B , B , B ). This approach gave the          subject time to perceive the stimulus change and react. 

 

2.7.5.1 Criteria of Response   

During the playback tests we noticed that each subject responded to the stimuli in a        particular way. For already stated reasons, the wolf CO did not display Oriented Attention in        response to the stimuli change on the first playback session. To solve the difficulty of        objectively evaluate its responses, we adopted again the “gestalten”. Discrimination happened        when the “gestalt” Disturbance reappears in the presence of the new stimulus. 

 

2.7.5.2 Procedure   

We watched the playback videos (Camtasia Studio software ­ version 8.0; TechSmith        Corporation) and evaluated the subject’s responses to the stimuli. 

(31)

2.7.6 Other Procedures 

 

2.7.6.1 Reproductive pair discrimination test   

During FA and NY vocalization recordings it was observed that the female reacted        with a “whine” most of the times in which the male emitted an extended­bark sequence        (Kleiman, 1972; Brady, 1981). With that in mind, we ran a playback test to verify if the        female NY could distinguish its pair’s extended­barks from unknown ones. The procedure        adopted was: (1) we isolated the female in the enclosure den and kept the male out of her        visual range, in the open enclosure; (2) we then played back an extended­bark sequence from        FA. To simulate a natural context of vocalization, we adjusted the sound intensity and        positioned the power speaker out of the subject's sight; (3) a few minutes later, we played a        male’s extended­bark sequence which had been previously recorded in another zoo, being        unfamiliar to NY. The purpose of this test was to verify if the female would react to the FA’s        playback emitting whines and would not have the same reaction when extended­barks of an        unknown male were played. If the female whined only to FA’s extended­barks, it would be        possible to consider that discrimination occurred between stimuli. 

 

2.7.6.2 Background noise effect evaluation   

Since recordings were made in uncontrolled environments, the background noise can        differ from one recording to another. That difference is especially pronounced between the        recordings automatically obtained by the Song Meter remote recorder and the ones acquired        manually with Sennheiser microphone attached to Marantz recorder (Figure 1). The        recordings obtained by Song Meter are much noisier (       i.e.   more background noise is captured          with the signal of interest), which is mainly due to the nature of its microphones (see        Recordings for details) and this difference cannot be eliminated. To guarantee that the        subjects’ responses occurred due to the change in the stimuli and not to the difference among        the types of background noise contained in each track, we used two forms of control: 

(32)

the background noise change. If the subject did not react to the inserted fragments of        background noise, we assumed there had been discrimination between A and B. The duration        of each background noise fragment was of approximately 5 seconds. 

(2) We also held a playback trial with subjects NY and FA using only noise as stimuli        to test their responses to the difference in background noise alone. The protocol we used was        simpler than the standard one: we played a track which contained an excerpt of noise        extracted from the stimulus A recording (background noise A), followed by an excerpt of        noise extracted from the stimulus B recording (background noise B). Our expectation was that        the subject would not react to any of the noises or, if there was a reaction, the behaviours        presented would differ from the ones that occurred in the presence of the extended­barks. For        this test we used only background excerpts that evidently differed from each other, such as        background from Song Meter recordings against background from Marantz recordings. 

 

2.7.6.3 Stimulus control test    

With one of the subjects (male TU), we had the opportunity to play an audio track        comprising 15 minutes of surround sound which had been previously recorded before        initiating the extended­barks playback tests. This control­track allowed us to evaluate the        animal’s reaction to artificially played sounds. If the subject responded in some way to the        playback of surround sound it would have been harder to guarantee that its reaction to the        other playback tests (all artificially played) were due to the stimuli. 

We also had the opportunity to test the reaction of the subjects TU, FA and NY to a        domestic dog’s barks playback to ascertain if they would respond differently from the way        they did during the extended­barks presentation phases. The dog barks were played after the        subject was habituated to the extended­barks. A large dog (Pit Bull American breed of         Canis  lupus familiaris   ) bark that resembled extended­bark notes (Figure 6) was chosen to test if the        subjects would notice any difference. 

(33)

  Figure 6 ­ Spectrogram showing a maned wolf’s bark to the right (        i.e. single note of an extended­bark sequence)        and a domestic dog’s bark to the left. The image was made on Raven Pro 1.4 using the following spectrograph        parameters:   Window type     = Hann;   Window Size     = 900 samples;     3dB filter Bandwidth       = 70.5;   Overlap   = 99.7;  Hop Size       = 3 samples;   Frequency Grid DFT size         = 2048 samples;     Grid Spacing     = 21.5 Hz;       Brightness   = 70;  Contrast  = 50. 

     

2.7.6.4 Playback tracks preparation    

To avoid any possible influences of the females’ estrous stage in the vocalizations, and        as we do not know if there is a perceptible difference between the vocalizations of both sexes,        we decided to use only male vocalizations as stimuli. Thus, our soundtrack stimuli were        restricted to three wolves: FA, TU and OR, which were the only males of which we had        vocalizations at the time. We avoided using the same test stimuli  (       i.e.          A , A , A ,  B, A 10 ) in    more than one test soundtrack and for each playback session we used new test soundtracks.        That approach increases the consistency of our results by preventing simple pseudoreplication        ( i.e. when a simple stimulus is used to represent a class of stimuli ­ Kroodsma et al., 2001),        since we used as many test stimuli as possible. 

(34)

2.7.6.5 Equipment Quality Procedure Test    

In one of the tests we recorded a playback to attest the quality of the sound played by

       

our equipment. The recording was made analogously to the recordings made during the field        trips of acoustic data gathering. We stood near the same spot where the subject was during the        playback to record the sound from the animal’s perspective. 

 

  3 RESULTS 

 

3.1 Hypothesis Test 

 

Our experimental results showed that the wolves are able to distinguish among        different conspecifics’ extended­barks, leading us to reject H 

 

3.1.1 Standard Playback Protocol 

 

We ran 19 playback sessions with 10 different subjects from six different zoos.        Sessions on a single zoo were separated by at least 1 week from one another ­ except the ones        carried out in Sorocaba’s Zoo which were separated by only 1 day from each other for        logistical reasons. We ran the test more than once in several sessions to test habituation to B.        However, we only considered the first trial of each session as valid, since the habituation        control phase stimuli (A       , A    , A ) and the re­habituation stimuli (A       ) were no longer new after        the first trial. Therefore, the response to B, or even its absence, would not be reliable as a        result, since there would have been a lack in experimental control. 

We discarded 9 of the sessions, which did not fulfill minimal experimental conditions        (Table 6). In two of the 10 valid trials, the subjects (FA and NY) did not respond as expected. 

(35)

Table 5 ­ List of the valid playback trials. We considered that the subject discriminated between stimulus B and        stimuli A only if they displayed “Oriented Attention” only in the beginning of the habituation phase  and        during/immediately after B. We considered the results from the second playback session of the couple FA and        NY as “Inconclusive”, since the subjects failed discrimination in the second trial, but responded as expected in        the first trial (see Discussion for details).  

 

    DID IT DISPLAY ORIENTED ATTENTION?   

SUBJECT  TRIAL  A 1  ­ A 6  (BEGINNING) 

A 1  ­ A 6  (END) 

A 7  ­ A 9  B  A 10  RESULT 

CO  2 nd  Yes  No  No  Yes  No  Discriminated 

FA  1 st  Yes  No  No  Yes  No  Discriminated 

FA  2 nd  Yes  No  No  No  No  Inconclusive 

LO  1 st  Yes  No  No  Yes  No  Discriminated 

LU  1 st  Yes  No  No  Yes  No  Discriminated 

NY  1 st  Yes  No  No  Yes  No  Discriminated 

NY  2 nd  Yes  No  No  No  No  Inconclusive 

TU  1 st  Yes  No  No  Yes  No  Discriminated 

TU  2 nd  Yes  No  No  Yes  No  Discriminated 

TU  3 rd  Yes  No  No  Yes  No  Discriminated 

   

Table 6 ­ List of the invalidated playback trials. We considered as invalid every trial in that: the subject did not  displayed Oriented Attention in the beginning of the habituation phase; was harmed by confounding variables;  the magnitude of the subject’s overall disturbance state did not decrease (see “gestalt” Disturbance).  

 

SUBJECT  TRIAL  REASON FOR INVALIDATION 

CO  1 st  Did not habituate. Test harmed by confounding variables.  1, 2 

FA  3 rd  Did not habituate. Test harmed by confounding variables.  1  

LU  2 nd  Did not habituate. Test harmed by confounding variables.  1, 3 

(36)

PE  1 st  Did not habituate. Test harmed by confounding variables.  1, 4 

PL  1 st  Did not habituate. Test harmed by confounding variables.  1, 5, 6, 7 

PL  2 nd  Did not habituate. Test harmed by confounding variables.  1, 5, 7 

TI  1 st  Did not habituate. Test harmed by confounding variables.  3 

WO  1 st  Did not habituate.  5, 8 

  1  Loud background noise, frequent human interference;               2 Dog barking ­ for this session we ran the                  Complementary Playback Protocol (see Methods);             3 Presence of caretaker during part of the test;                   4 Test  suspended before the end by the Zoo’s biologist;                   5The wolf had recently undergone surgery and was limping;                     6 Presence of veterinary during part of the test;                   7The subject was not used to unfamiliar humans, since the zoo had                        been closed to visitors for more than one year before the test;                           8 Subject had been recently rescued from nature              and was not used to human presence. 

 

3.1.2 Complementary Playback Protocol 

 

3.1.2.1 Response to stimuli 

 

The first playback session with CO was harmed by confounding variables (see        Methods). When we ran the standard protocol to see if any reaction would appear, the wolf        did not respond to the test stimulus in the first try and responded with “attention” (i.e. turning        its head, but not towards the sound source) in the second one. Since the response was not        clear, we ran the Complementary Playback Protocol (see Methods). This time the response        was clear: the magnitude of the “gestalt” Disturbance suddenly increased in the presence of        the B stimuli (excerpts from Video­B). 

 

3.1.2.2 Validity of  the “gestalt” Disturbance 

 

The judgment on validity of our “gestalt” Disturbance indicated moderate agreement        without the author as judge (Fleiss’ kappa statistic: k = 0.56; n judges = 5; P­value 0.001) and        substantial agreement with the author as judge (Fleiss’ kappa statistic: k = 0.625; n judges =        6; P­value 0.001). The agreement in the increase of Disturbance magnitude from stimuli A to        stimuli B was unanimous in both cases (Table 7). 

(37)

Table 7 ­ Evaluation of the “gestalt” Disturbance based on video excerpts of the subject CO by 5 naive adult  judges of both sexes. The author’s ratings were judged by five untrained observers. 

    Author  Judge 1  Judge 2  Judge 3  Judge 4  Judge 5 

Video­A  Increases  Increases  Increases  Increases  Decreases  Increases 

Video­B*  Increases  Increases  Increases  Increases  Increases  Increases 

Video­C  Increases  Increases  Increases  Increases  Decreases  Increases 

Video­D  Decreases  Decreases  Decreases  Decreases  Decreases  Decreases    *Video­B corresponds to the transition from stimuli A to stimuli B and the agreement among judgments was        unanimous. 

 

3.1.3 Other Results 

 

3.1.3.1 Reproductive pair discrimination test 

 

The female NY did not “whine” in response to either of the playbacks. During the test        NY was lying down inside the den with a raised body and its ears were moving forwards and        backwards (see “Ear Scan” and “Rest” in Ethogram). Moreover, its ears moved many times in        the direction of the enclosure where the male FA was ­ which was not the same direction of        the sound source. The male responded to the playbacks (including its own extended­barks)        with “Piloerection” and “Oriented Attention”. 

 

3.1.3.2 Background noise effect evaluation 

 

The difference of background noise did not produce any response in the subjects. We        used the first type of control in four playback soundtracks (two with TU; two with FA and        NY) and the subjects did not show any response to the fragment of background noise        preceding the test stimulus (see Methods for details). Also, the subjects FA and NY did not        react to the second type of control (see Methods for details). 

(38)

3.1.3.3 Stimulus control test 

 

The subject TU did not show any response to the playback of surround sound. It        remained resting (see “Rest” in Ethogram) before, during and after the test, which increases        the credibility of the other playback tests’ results. The responses of the subjects (TU, FA and        NY) to the playback of a domestic dog barks varied. The wolf TU, that was resting alert (see        “Rest Alert” in Ethogram) when the extended­bark sequence was replaced by the domestic        dog’s barks, got up and walked towards the speaker. The male FA did not show any clear        response to the stimulus and NY responded with “Attention” (see Ethogram). 

 

3.1.3.4 Equipment Quality Procedure Test 

 

The spectrogram analysis of the recorded playback showed no distortion or anomaly in        the notes (Figure 7). 

 

    Figure 7 ­ Spectrogram (below) and oscillogram (above) of extended­barks. The audio file is the result of the        recording of a playback (see Methods for details). The image was made on Raven Pro 1.4 using the following        spectrograph parameters:     Window type     = Hann;   Window Size     = 900 samples;     3dB filter Bandwidth       = 70.5;  Overlap   = 99.7;   Hop Size       = 3 samples;   Frequency Grid DFT size         = 2048 samples;     Grid Spacing     = 21.5 Hz;      Brightness  = 70;  Contrast  = 50. 

 

3.1.3.5 Recordings 

 

(39)

registered 5 duet events between the couples FA­NY (n = 3) and FR­TU (n = 2) (Figure 8).        Male and female were out of each other’s sight just before and during the events (Table 9). 

During field work in São Carlos’ Zoo, we registered two very long sequences with an        automatic recorder (Wildlife Acoustics, SM2+). The first sequence contained 712        extended­barks emitted in a row and the second one contained 208. Both sequences were        emitted in the same day ­ 20 minutes apart from each other. There are no records of such long        sequences in the literature ­ neither in captivity nor in the wild. Unfortunately, we could not        include the recorded notes in the acoustic analysis, since the sampling frequency was adjusted        to only 16 kHz (an error that went unnoticed at the time). The animal that emitted these        sequences is also uncertain, since we were not present during the event ­ all we can infer is        that it was not TU, since it was locked in its enclosure, far away from the recorder. This        problem also happened to the sequences automatically recorded in the enclosure of FA and        NY.  

All notes emitted by CO (n = 34) and most of the notes emitted by LU (n = 42) were        ruined by aliasing. 

 

Table 8 ­ Information about the recording samples acquired during 13 field trips. Recording sessions were taken        in each zoo continuously from 17:00 to 07:00 (UTC­3) within the period of greatest activity of the species. The        4 th column indicates the recording procedure: automatic (recorded with SongMeter 2+) or manual (recorded with                            Marantz).  

TOTAL  NUMBER OF 

NOTES 

NUMBER OF  SEQUENCES 

AVERAGE OF  NOTES PER  SEQUENCE 

RECORDING  PROCEDURE 

DATA  GATHERING 

EFFORT 

ZOO’S 

LOCATION  SUBJECT 

337  8  42,1  Automatic  37:52 h  R. Preto  OR 

0  0  0  Automatic  111:40 h  Catanduva  ME 

0  0  0  Automatic  181:58 h  S. J. R. Preto  MO 

111  12  9,2  Manual  221:00 h  Sorocaba  NY 

145  33  4,4  Manual  221:00 h  Sorocaba  FA 

54  7  7,7  Manual  120:00 h  São Carlos  FR 

32  3  10,7  Manual  120:00 h  São Carlos  TU 

Referências

Documentos relacionados

No centro conceptual das redes está a formação de Capital Social assente num quadro de normas de reciprocidade, informação e confiança presentes na rede e que se estruturam a partir

Como objetivo deste trabalho é a apresentação em um ambiente simulado, no programa PSIM, o controle de um sistema formado por um conversor CC-CC de alto

São comuns os registros, hoje históricos, do uso do verde-de-paris no Brasil, frequentes até metade do século XX, mesmo sendo classificado como altamente

1999, 11 subprojetos/subatividades des- se ministério realizavam a parte mais pe- sada da política agrícola como as Aqui- sições do Governo Federal, o Custeio Agropecuário, Programa

Ou seja, o esquecimento visto como um negativo no combate pela rememoração põe em xeque mesmo a dialética de presença e ausência da representação do passado, tão

Assim como trabalho de Schmitt (2009), onde apresenta um cálculo de liquidação de sentença a partir de um caso prático e destaca a função e importância do contador,

ada ao citrato de ródio (MRC) em diferentes linhagens tumorais de câncer de mama, a avaliar o comportamento das nanopartículas em tempo prolon- gado de exposição e comparar

Nevertheless, long-only weights or shrinkage to equal weights are good options to curb estimation error in any scenario, even though optimal portfolios may become out of reach