• Nenhum resultado encontrado

On new class of analytic functions defined by using differintegral operator

N/A
N/A
Protected

Academic year: 2016

Share "On new class of analytic functions defined by using differintegral operator"

Copied!
8
0
0

Texto

(1)

ISSN: 2347-2529

Available online atwww.ijaamm.com

International Journal of Advances in

Applied Mathematics and Mechanics

On new class of analytic functions defined by using

differintegral operator

Research Article

Jumana Hekma Salman

1

, Ahmed Sallal Joudah

2,

1Department of Statistical and Informatics,College of Computer Science and Mathematics, University of Al-Qadisiya,

Diwiniya-Iraq

2Department of Medical Mathematics,College of Computer Science and Mathematics, University of Al-Qadisiya, Diwiniya- Iraq

Received 22 May 2014; accepted (in revised version) 23 August 2014

Abstract:

Making use a fractional differintegral operator .We introduce a new class of univalent analytic functions in the unit diskU.Among the results investigated for this class of functions include the coefficient inequalities ,star-likenees,convexity,close -to-convexity,extreme points and Integral means inequalities.

MSC:

30C45• 30C50• 26A33

Keywords:

Fractional Calculus(fractional integral and fractional derivative)•Univalent functions•Principle of subordina-tion

c

2014 IJAAMM all rights reserved.

1.

Introduction

Letℑdenote the class of analytic functions in the open unit diskU ={zC :|z|<1},and of the form:

f(z) =z+

X

n=2

anzn, (n∈N ={1, 2, 3, . . .}) (1)

LetHdenote the subclass of the classℑwhich is the functions defined by:

f(z) =z

X

n=2

anzn, (an≥0,nN) (2)

A function fH is said to be in the class of starlike functions of orderβ(0≤β <1)inU, denoted byδ∗(β),if

R e

§z f(z)

f(z)

ª

> β (zU) (3)

Forβ=0 the classδ∗(0) =δ∗is the class of starlike functions inU. (for details, see[1,2])

Iff andgare two analytic inU , then we say that the functionf(z)is subordinate tog(z)inUand writef(z)≺g(z)

,if there exits a Schwarz functionw(z)(analytic inU withw(0) =0,a n d|w(z)|<1),such thatf(z) =g(w(z)),zU. In particular .if the function g(z)is univalent inU , the above subordination is equivalent to f(0) = g(0) and

f(U)⊂g(U).[3–5]

We recall here the following definition of fractional calculus (that is fractional integral and fractional derivative of an arbitrary order)consider by Owa[6]. See also[7–10]

Corresponding author.

E-mail address:ahmedhiq@yahoo.com

(2)

Definition 1.1.

The fractional integral of orderλ(λ >0)is defined for a function f(z)analytic in a simply-connected region of the complex plane containing the origin by

Dzλf(z) = 1

Γ(λ)

Zz

0

f(ξ)

(z−ξ)1−λdξ, (4)

where the multiplicity(z−ξ)λ−1is removed by requiringl o g(zξ)to be real when(zξ >0).

Definition 1.2.

Under the hypothesis of definition1.2the fractional derivative operator of orderλ(λ≥0)is defined by :

Dzλf(z) =

   

  

1

Γ(λ) d d z

Z z

0

f(ξ)

(z−ξ)λdξ (0

λ <1)

dn

d znD

λn

z f(z) (n−1¶λ <n;nN0=N∪ {0})

(5)

where the multiplicity(z−ξ)−λis removed as in definition1.2

For the purpose of this paper, we define here a fractional differintegral operator

Ωλz:HH (−∞< λ <2;nN),

for a functionf(z)of the form(2)by:

Ωλzf(z) =z

X

n=2

Γ(2−λ)Γ(n+1)

Γ(n−λ+1) anz

n=

Γ(2−λ)zλDzλf(z) (−∞< λ <2;zU), (6)

Definition 1.3.

A functionf(z)in H is in the classH(λ,γ,β,α,µ)if it satisfies the condition

R e

¨

(1−γ)−γ βΩ

λ

zf(z) + (1−β)z

+ (1−γ)z2 Ωλ

zf(z) ′′

z Ωλ

zf(z) ′

« >1

2(α+µ), (7)

where 0≤αµ <1; 0≤β,γ≤1;−∞< λ <2;zU.

Lemma 1.1.

see[11]Ifζis any complex number, then R e(ζ)> τif and only if|ζ−(1+τ)|<|ζ+ (1−τ)|whereτ≥0.

Some of the following properties have been found on other classes in[12–14].

2.

Main results

Theorem 2.1.

Let the functions fH be given by(2).Then fH(λ,γ,β,α,µ)if and only if

X

n=2 •

n



(1−γ)n−1

2(α+µ) ‹

+γ⠘

Γ(2−λ)Γ(n+1)

Γ(n−λ+1) an≤1−

1

2(α+µ). (8)

The result is sharp for the function

f(z) =z− 1−

1 2(α+µ)

n (1−γ)n−12(α+µ)+γβΓ(2Γ(nλ)Γλ(n++1)1)z

(3)

Proof. Suppose thatfH(λ,γ,β,α,µ)by Using Lemma1.1and letting

ζ=(1−γ)z

λ

zf(z) ′

γ β(λ

zf(z)) + (1−β)z

+ (1−γ)z2 Ωλzf(z) ′′

z Ωλ

zf(z)

′ =

A(z) B(z).

Then it is sufficient prove that

A(z)−

 1+1

2(α+µ) ‹ B(z) < A(z) +

 1−1

2(α+µ) ‹ B(z) = −1

2(α+µ)z−

X

n=2

anzn

Γ(2−λ)Γ(n+1)

Γ(n−λ+1)

•

n2(1−γ) +γβn

 1+1

2(α+µ) ‹˜ < 

2−1 2(α+µ)

‹

z

X

n=2

anzn

Γ(2−λ)Γ(n+1)

Γ(n−λ+1)

•

n2(1−γ) +γβ+n

 1−1

2(α+µ) ‹˜

which is equivalent to

∞ X n=2 • n 

(1−γ)n−1

2(α+µ) ‹

+γ⠘

Γ(2−λ)Γ(n+1)

Γ(n−λ+1) an

 1−1

2(α+µ) ‹

≤0.

Conversely, assume that

R e

¨

(1−γ)−γ βΩ

λ

zf(z) + (1−β)z

+ (1−γ)z2 Ωλzf(z) ′′

z Ωλ

zf(z) ′

«

=R e

¨

(1−γ)z Ωλzf(z)′−γ β(λ

zf(z)) + (1−β)z

+ (1−γ)z2Ωλzf(z)′′ z Ωλ

zf(z) ′

«

=R e

       z− ∞ P n=2

Γ(2−λ)Γ(n+1)

Γ(n−λ+1) anzn

n2(1−γ) +γβ

z

P n=2

Γ(2−λ)Γ(n+1)

Γ(n−λ+1) n anzn

       (10)

We can choose the value 0fzon the real axis , so thatz Ωλ

zf(z) ′

is real .Letz→1. through real value , so we can write (10)as ∞ X n=2 • n 

(1−γ)n−1

2(α+µ) ‹

+γβ

˜Γ(2λ)Γ(n+1)

Γ(n−λ+1) an≤1−

1 2(α+µ).

Finally, sharpness follows if we take

f(z) =z− 1−

1 2(α+µ)

n (1−γ)n−12(α+µ)+γβΓ(2Γ(nλ)Γλ(n++1)1)z

n,n2. (11)

The proof is complete.

Corollary 2.1.

Let the function fH be given by(2). If fH(λ,γ,β,α,µ), then

an

1−1 2(α+µ)

n (1−γ)n−12(α+µ)+γβΓ(2Γ(nλ)Γλ(n++1)1)z

n,n2. (nN) (12)

The result is sharp for the function given by(9).

(4)

3.

Radius of starlikeness and convexity and close-to-convexity

Theorem 3.1.

Let fH(λ,γ,β,α,µ).Then f is starlike of orderρ, 0ρ <1in|z|<r=r1(λ,γ,β,α,µ,ρ),where

r1(λ,γ,β,α,µ,ρ) =i n fn ¨

(1−ρ)n (1−γ)n−12(α+µ)+γβΓ(Γ2(nλ)Γλ(n++1)1) 1−1

2(α+µ)

(n−ρ)

«n1−1

,n=2, 3, . . . .

The estimate is sharp for the function

f(z) =z− 1−

1 2(α+µ)

n (1−γ)n21(α+µ)+γβΓ(2Γ(nλ)Γλ(n++1)1)z n,

n≥2 (13)

Proof. f is starlike of orderρ, 0ρ <1 if

R e

§z f(z)

f(z)

ª

> ρ (14)

that is if

z f′(z) f(z) −1

≤1−ρ, (15)

which simplies to

X

n=2

(n−ρ)an|z|n−1

(1−ρ) ≤1. (16)

By Theorem2.1, we have

an

1−1 2(α+µ)

n (1−γ)n−12(α+µ)+γβΓ(Γ2−(nλ)Γλ(n++1)1),n≥2. (17)

Using(16)and(17), we get

|z|n−1≤(1−ρ)

n (1−γ)n−21(α+µ)+γβΓ(Γ2−(nλ)Γλ(n++1)1) 1−1

2(α+µ)

(n−ρ) (18)

thus

|z|<r1(λ,γ,β,α,µ,ρ) =i n fn ¨

(1−ρ)n (1−γ)n−12(α+µ)+γβΓ(2Γ(nλ)Γλ(+n1+)1) 1−1

2(α+µ)

(n−ρ)

«n1−1

,n=2, 3, . . . .

Theorem 3.2.

Let fH(λ,γ,β,α,µ).Then f is convex of orderρ, 0ρ <1in|z|<r=r2(λ,γ,β,α,µ,ρ),where

r2(λ,γ,β,α,µ,ρ) =i n fn ¨

(1−ρ)n (1−γ)n−12(α+µ)+γβΓ(Γ2(nλ)Γλ(n++1)1) 1−1

2(α+µ)

n(nρ)

«n1−1

,n=2, 3, . . . .

The estimate is sharp for the function

f(z) =z− 1−

1 2(α+µ)

n (1−γ)n−12(α+µ)+γβΓ(2Γ(nλ)Γλ(n++1)1)z

(5)

Proof. fH(λ,γ,β,α,µ)is convex of orderρ, 0ρ <1 if

R e

§ 1+z f

′′(z)

f(z)

ª

> ρ (20)

that is if

z f′′(z) f(z)

≤1−ρ, (21)

which simplies to

X

n=2

n(nρ)an|z|n−1

(1−ρ) ≤1. (22)

By Theorem2.1, we have

an

1−1 2(α+µ)

n (1−γ)n−21(α+µ)+γβΓ(2Γ(nλ)Γλ(n++1)1)

,n≥2. (23)

Using(22)and(23), we get

|z|n−1≤

(1−ρ)n (1−γ)n−12(α+µ)+γβΓ(Γ2(nλ)Γλ(n++1)1) 1−1

2(α+µ)

n(nρ) (24)

thus

|z|<r2(λ,γ,β,α,µ,ρ) =i n fn ¨

(1−ρ)n (1−γ)n−12(α+µ)+γβΓ(2Γ(nλ)Γλ(n++1)1) 1−1

2(α+µ)

n(nρ)

«n1−1

,n=2, 3, . . . .

Theorem 3.3.

Let fH(λ,γ,β,α,µ).Then f is close -to-convex of orderρ, 0ρ <1in|z|<r=r3(λ,γ,β,α,µ,ρ),where

r3(λ,γ,β,α,µ,ρ) =i n fn ¨

(1−ρ)n (1−γ)n−12(α+µ)+γβΓ(Γ2(nλ)Γλ(n++1)1) 1−1

2(α+µ)

«n1−1

,n=2, 3, . . . . (25)

The estimate is sharp for the function

f(z) =z− 1−

1 2(α+µ)

n (1−γ)n−12(α+µ)+γβΓ(2Γ−(−)Γλ(n++1)1)

zn,n≥2 (26)

Proof. LetfH(λ,γ,β,α,µ).Then by Theorem2.1,

X

n=2

n (1−γ)n−12(α+µ)+γβΓ(2Γ(nλ)Γλ(+n1+)1) 1−1

2(α+µ)

an≤1, (27)

for 0≤ρ <1, we need to show thatf′(z)−1

≤1−ρfor|z|<r=r3(λ,γ,β,α,µ,ρ), when is given by(25). Now

f′(z)−1 =

X

n=2

n anzn−1

X

n=2

n an|z|n−1. (28)

Thusf′(z)−1

≤1−ρif

X

n=2

n

1−ρan|z|

n−11, (29)

but by Theorem2.1above inequality holds true if

|z|n−1≤

¨

(1−ρ)n (1−γ)n−12(α+µ)+γβΓ(2Γ(nλ)Γλ(n++1)1) 1−1

2(α+µ)

«

,n=2, 3, . . . ,

and this completes the proof.

(6)

4.

Extreme points for the function class

H

(

λ

,

γ

,

β

,

α

,

µ

)

Theorem 4.1. Let

f1(z) =z (30)

and

fn(z) =z

1−1 2(α+µ)

n (1−γ)n−1 2(α+µ)

+γβΓ(2Γ(nλ)Γλ(n++1)1)z

n,(nN\{1}). (31)

Then fH(λ,γ,β,α,µ)if and only if it can be expressed in the following form :

f(z) =

X

n=2 χnfn(z)

whereχn≥0and P∞

n=2χn=1.

Proof. Suppose that

f(z) =

X

n=2

χnfn(z) =z

X

n=2 χn

1−1 2(α+µ)

n (1−γ)n−12(α+µ)+γβΓ(Γ2−(nλ)Γλ(+n1+)1)z n.

The from Theorem2.1, we have

X

n=2 •

n



(1−γ)n−1

2(α+µ) ‹

+γβ

˜Γ(2λ)Γ(n+1)

Γ(n−λ+1)

1−1 2(α+µ)

n (1−γ)n−12(α+µ)+γβΓ(Γ2−(nλ)Γλ(+n1+)1)χn

=

• 1−1

2(α+µ) ˜X

n=2 χn=

• 1−1

2(α+µ) ˜

(1−χn)≤1− 1 2(α+µ).

Thus ,in view of Theorem2.1, we find thatfH(λ,γ,β,α,µ).

Conversely,let us suppose thatfH(λ,γ,β,α,µ). Then, since

an

1−1 2(α+µ)

n (1−γ)n−12(α+µ)+γβΓ(2Γ(nλ)Γλ(+n1+)1) (n∈N\{1}), we may set

χn=

n (1−γ)n−21(α+µ)+γβΓ(2Γ(nλ)Γλ(n++1)1) 1−1

2(α+µ)

an, (n∈N\{1})

andχn=1− P∞

n=2χn. Thus clearly we have

f(z) =z

X

n=2

χnfn(z).

This completed the proof of Theorem4.1

Corollary 4.1.

(7)

5.

Integral means inequalities for the function class

H

(

λ

,

γ

,

β

,

α

,

µ

)

In the year 1925, Littlewood[15]prove the following subordination theorem.

Theorem 5.1.

If the functions f and g are analytic in U with f(z)≺g(z),(z∈U),

then ,forδ >0and z=r eiϑ,(0<r<1),

Z2Π

0 f(z)

δdϑ

Z 2Π

0 g(z)

δdϑ.

We now make use of Theorem5.1to prove Theorem5.2below.

Theorem 5.2.

Let fH(λ,γ,β,α,µ).Suppose also that fnis defined be equation(31). If there exists an analytic function w(z)given

by

[w(z)]n−1=

n (1−γ)n−21(α+µ)+γβΓ(2Γ(nλ)Γλ(n++1)1) 1−1

2(α+µ)

X

n=2

anzn−1,

there for z=r eiϑand(0<r<1),

Z2Π

0 f(r e)

δdϑ

Z2Π

0

fn(r e)

δdϑ (δ >0).

Proof. We must show that

Z2Π

0

1−

X

n=2

anzn−1

δ

≤ Z 2Π

0

1− 1− 1 2(α+µ)

n (1−γ)n21(α+µ)+γβΓ(2Γ(nλ)Γλ(n++1)1)z n−1

δ

dϑ.

By applying Littlewood´s subordination theorem (Theorem5.1above), it would suffice to show that

1−

X

n=2

anzn−1≺1−

1−1 2(α+µ)

n (1−γ)n−12(α+µ)+γβΓ(2Γ(nλ)Γλ(n++1)1)z

n−1 (zU).

By setting

1−

X

n=2

anzn−1=1−

1−1 2(α+µ)

n (1−γ)n−12(α+µ)+γβΓ(2Γ(nλ)Γλ(n++1)1)[w(z)] n−1,

we find that

[w(z)]n−1=

n (1−γ)n−21(α+µ)+γβΓ(2Γ(nλ)Γλ(n++1)1) 1−1

2(α+µ)

X

n=2

anzn−1,

which readily yieldsw(0) =0.

Next by using equation(9), we obtain

|w(z)|n−1≤

n (1−γ)n−21(α+µ)+γβΓ(2Γ(nλ)Γλ(n++1)1) 1−1

2(α+µ)

X

n=2

anzn−1

n (1−γ)n−21(α+µ)+γβΓ(2Γ(nλ)Γλ(n++1)1) 1−1

2(α+µ)

X

n=2

an zn−1

≤ |z|n−1<1.

This completes the proof of Theorem5.2.

(8)

References

[1] Ch. Pommerenke, Univalent Functions, Vanderhoeck and Ruprecht, G´lottingen, 1975.

[2] H. M. Srivastava, S. Owa, Current Topics in Analytic Function Theory. World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.

[3] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften Band259,Springer â ˘A¸SVer-lag, New York, Berlin, Heidelberg and Tokyo, 1983.

[4] S. S. Miller, P. T. Mocanu , Differential subordinations and univalent functions, Michigan Math. J. 28 (1981) 157-171.

[5] S. S. Miller, P. T. Mocanu, Differential subordinations: Theory and Applications , Series on Monographs and Text Books in pure and Applied Mathematics 225, Marcel Dekker, New York and Basel, 2000.

[6] S. Owa, On the distortion theorem .I, kyungpook Math.J. 18 (1978) 53-59.

[7] J. Dziok, Applications of the Jack Lemma, Acta Math. Hungar. 105(1-2) (2004) 93-102.

[8] S. Owa, H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39 (1987) 1057-1077.

[9] H. M. Srivastava, M. K. Aouf, A certain fractional derivative operator and its applications to a new class of ana-lytic and multivalent functions with negative coefficient .I and II, J. Math. Anal. Appl. 192 (1995) 673-688. [10] H. M. Srivastava, S. Owa, Univalent Functions, Fractional Calculus and Their Applications, Halsted press, Ellis

Horwood Limited, Chichester and John Wiley and Sons, New York, Chichester and Toronto, 1989.

[11] E. S. Aqlan, S. R. Kulkarni, Subclass of k-uniformly starlike and convex functions with negative coefficients II,Tamkang J. Math. 35(4) (2004) 111-120.

[12] S. Kanas, A. Wisniowska, Conic regions and K-uniformly convexity II, Folia Sci. Tech. Reso. 178 (1998) 65-78. [13] S. Shams, S. R. Kulkarni, Certain properties of the class of univalent functions defined by Ruscheweyh derivative,

Bull. Cal. Math. Soc. 97 (2005)35-48.

Referências

Documentos relacionados

We introduce new classes of meromorphic multivalent quasi-convex functions and find some sufficient differential subordination theorems for such classes in punctured unit disk

The distribution of the values of an entire function whose coefficients are independent random variables (II) // Math.. Some classes of entire functions in which the

Thus, in this research work, we consider properties of an operator aforementioned involving subordinations with new results briefly highlighted.. Key words: analytic

In this paper, we introduce and study the notion of Z α -open sets and some properties of this class of sets are investigated.. Further, by using these sets,

Using these inequalities we have proved an analogue of the Pólya-Schoenberg conjec- ture, and finally we have showed the preserving prop- ertie of the Bernardi integral operator

Based on literature and on the results of this study, we believe that the packable composite resins represent a promising new class of direct esthetic restorative materials

Recently, various differential operators have been introduced for certain class of analytic univalent functions in the unit disk.. In this article, we follow the similar approach

This way, facing the little technical material or the shortage in scientific research about mega-sport events and sustainability, this article aims at bringing some light upon