• Nenhum resultado encontrado

Differences in larval emergence chronotypes for sympatric Rhagoletis brncici Frías and Rhagoletis conversa (Bréthes) (Diptera, Tephritidae)

N/A
N/A
Protected

Academic year: 2021

Share "Differences in larval emergence chronotypes for sympatric Rhagoletis brncici Frías and Rhagoletis conversa (Bréthes) (Diptera, Tephritidae)"

Copied!
4
0
0

Texto

(1)

RevistaBrasileiradeEntomologia63(2019)195–198

REVISTA

BRASILEIRA

DE

Entomologia

AJournalonInsectDiversityandEvolution w w w . r b e n t o m o l o g i a . c o m

Short

Communication

Differences

in

larval

emergence

chronotypes

for

sympatric

Rhagoletis

brncici

Frías

and

Rhagoletis

conversa

(Bréthes)

(Diptera,

Tephritidae)

Daniel

Frías-Lasserre

a,∗

,

Andrea

Luna

S

b

,

Cristian

A.

Villagra

a aUniversidadMetropolitanadeCienciasdelaEducación,InstitutodeEntomología,Santiago,Chile

bUniversidadAutónomadelEstadodeMorelos,FacultaddeCienciasAgropecuarias,CuernavacaMorelos,Mexico

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received18August2018 Accepted26April2019 Availableonline18May2019 AssociateEditor:LeonardoBarbosa Keywords: R.conversa R.brncici Sympatry Chronotypes Emergence Larvae

a

b

s

t

r

a

c

t

IncentralChile,RhagoletisbrnciciandR.conversa,canbefoundinsympatry,associatedwiththefruit oftheirnativehostplants:SolanumtomatilloandS.nigrum(Solanaceae),respectively.Third-stage lar-vaemustemergefromitshostinsearchofpupationsites,andduringthisperiodlarvaemustfindan appropriatepupationmicrohabitatwhileavoidingpredationandadverseabioticfactors.Inthisstudy, weexploredwhetherthesesympatricspeciesdifferintermsofthetimingoftheirlarvalexitfromthe hostfruitinsearchofpupationsites.Field-collectedfruitsfromhostplantswerecheckeddailyforlarval emergence,within24h,underlaboratoryconditions,inordertodeterminethetimeoftheevent.We foundthatthesespeciesdifferedsignificantlyintheirdiellarvalemergence.ForR.brncici,mostlarvaeleft thehostfruitbetweenlateeveningandpastmidnight,meanwhilelarvaefromR.conversaconcentrated theirpeakofemergencenearmidnightandearlymorning.Wediscussthesefindingsintermsofthe ecologicalandevolutionaryimplicationsofthetemporalseparationoflarvalemergenceregardingthe useofpupationsites,abioticstressandriskofpredationforthesesympatricspecies.

PublishedbyElsevierEditoraLtda.onbehalfofSociedadeBrasileiradeEntomologia.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Nichepartitioningthroughtheuseofdifferentresourcesisa factorthatpromotesthecoexistenceofecologicallysimilarspecies insympatry(LevineandHilleRisLambers,2009).Ininsects,such divergencemaybeexpressedasallochronicbehaviors:differences inthetimingofactivitypeaksthatpromotespeciesspatialoverlap (Schoener,1974;WernerandGilliam,1984).Temporal segrega-tioninforagingbehaviorfacilitatesthesympatriccoexistenceof insectspeciesfromanoak-defoliatingassemblage(Kalapanidaand Petrakis,2012).Allochronicbehavioraldifferencesinpopulations ofthesamespecies couldpromotea sympatricspeciation.Four sympatric species of ants fromthe Australian genusMyrmecia, forexample,arecapableofsharingforagingresourcesandspace by being active at different times of the day (Narendra et al., 2016).Inthesamefashion,ithasbeenfoundthatinthe dragon-flyspeciesAnax imperatorLeach,1815andA.parthenope(Sélys, 1839)(Odonata:Aeshnidae),immaturesselectsimilarsubstratesas supporttocarryoutecdysis,buttheyemergefromthewater asyn-chronouslytodoso,contributingthistemporaldifferentiationto thesympatriccoexistenceofthesespecies(Boucennaetal.,2018).

∗ Correspondingauthor.

E-mail:daniel.frias@umce.cl(D.Frías-Lasserre).

In thecase of tephritidflies(Diptera),despitemany species havingbeencarefullystudiedduetotheirimportanceaspestson severalfruitcommodities(Uchôa,2014),theinformationregarding larvalbehaviorisscarce,andresearchconcerningtemporal pat-ternsoflarvalactivityisevenlessabundant(butseeAlujaetal., 2005).

However,consideringavailablestudiesin tephritidflies, itis proposedthatamonglarvaebehaviors,thelast-stage larvalexit fromthehostfruittofindpupationsitesinthesoilisoneofthe mostcriticaleventsofthisperiod.Attheendofdevelopment,the larvaemustfindasuitablepupationmicrohabitatwithspecificsoil, temperatureandhumiditycharacteristics(Thomas,1995).

Moreover,wanderinglarvaemustavoidadverseabiotic condi-tions,suchaselevatedtemperaturesthatmaykillthemthrough dehydration(Alujaetal.,2005;Schwerdtfeger,1976).Ontopof allthis,whilelookingforpupationsite,larvaemustevadeactive predatorsandparasitoids(Fernandesetal.,2012;Thomas,1993, 1995).Ithasbeenfoundthatlarvaesearchingforpupationsites mayeventrytopreventpotentialpredationand/orparasitation duringpupation(Bressan-Nascimento,2001;WangandMessing, 2004).Thisimplies covering asmuchdistanceas possiblefrom thehost fruit’skairomones (usedby parasitoidsto findnearby pupae)andalsofromotheralreadyestablishedpupationsites,as https://doi.org/10.1016/j.rbe.2019.04.003

0085-5626/PublishedbyElsevierEditoraLtda.onbehalfofSociedadeBrasileiradeEntomologia.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

196 D.Frías-Lasserreetal./RevistaBrasileiradeEntomologia63(2019)195–198

larvalaggregationsarealsopreferentiallypredatedandparasitized (Guillénetal.,2002).

The genus Rhagoletis Loew (Diptera: Tephritidae), with 65 speciesdistributedintheNearctic,PelearcticandNeotropicalzones (Foote,1981;Thompson,1999;WhiteandElson-Harris,1994),has beenmostly studiedregarding theirreproductive behavior and ovipositionmechanisms(Frías-Lasserre, 2015;Rullet al.,2016). Littleinformationisavailableregardingotherkeylifecycleevents relatedtothelarvalstages,suchasthetimingoflarvaerhythmic behaviors.

Sofar,itisknownthatafterfemales fromRhagoletis species deposittheireggsinsidehost’sfruits,larvaehatchandfeedonthe mesocarpandseeds,requiringanapproximateminimumoftwo weeksinside theparasitized fruittogrowthand develop(Duso andLago,2006;Frías,1986).Followingthat,thethird-instar lar-vaeleavethefruitandenterthesoiltopupateandoverwinterfor severalmonthsindiapause(BollerandProkopy,1976;Bush,1992, 1966;ChristensonandFoote,1960;Frías,1992).Despitethe rele-vanceofthistemporalevent,dielpatternsoflarvalemergenceare unknownformanyRhagoletisspecies.

IntheNeotropic,mostRhagoletisspeciesareassociatedwith Solanaceae(Foote,1981;Fríasetal.,2006;Frías,2001).Incentral Chile,forexample,RhagoletisbrnciciFríasandR.conversa(Bréthes) (Diptera,Tephritidae)overlaptheirdistributionsassociatedtothe phenologicalcycleoftheirrespectivehostplants:Solanumtomatillo andS.nigrum(Solanaceae)(Fríasetal.,1984).Inthisshortpaperwe explorethecircadianclocksforlarvalemergenceintwosympatric andclosely-related species:We evaluateifthere is a diverging dielpatternforlarvaeleavingthehostplant’sfruitsanddiscuss emergencetrendsinoverlappingclosely-relatedholometabolous insects.

Observationsoflarvalemergencewerecarriedoutunder labo-ratoryconditionsat21±1◦C,65%relativehumidityand14h:10h L(3600lx):DphotoperiodatInstitutodeEntomologíaUniversidad MetropolitanadeCienciasdelaEducación,Santiago,Chile.The lar-vaeofR.brnciciandR.conversawereobtainedwiththefruitsof theirrespectivehostplants,S.nigrumandS.tomatillo(Solanaceae), inthetownofPirque(33◦3800S70◦3300W)intheCordillera Province,located21.3kmsoutheastofSantiago,atanaltitudeof 697m.a.s.l.

BetweenOctober andDecember 2017,sixperiodic fruit col-lections were made using plastic screw-top jars that had a fine mesh lid to ensure good ventilation. During this period, a total of approximately 6000 fruits of S. nigrum and 2000 fruitsofS.tomatillowerecollected.Thesefruitsweretransferred to the laboratory and placed on a thin grid on a plastic tray (40cm×35cm×8cm).Thegridallowedonlythepassageofthe larvae that left the fruits, which fell onto the plastic tray and thuscouldbecounted.Duringthe24-hlarvalemergence,records weretakenattimeintervalsof 5h(Table1);consideringdawn (06:00–11:59); midday (12:00–17:59), dusk (18:00–23:59) and

night (00:00–05:59) time intervals (CLST, Chile Summer Time, UTC/GMT −3h). Thisobservation wasrepeated22 times for R. brncici and 10 for R. conversa. For each species, at each inter-val,thelarval emergencepercentagewasdetermined.Withthe informationobtained,thepercentageoflarvaethatemergedwas estimated.

Circularstatisticalanalysiswasconductedinordertotestthe occurrenceofagivendielpatternofemergenceforthesespecies (dosSantosetal.,2017;Fisher,1993).Totesttheprevalenceof emergencetimingona24hrclockfortheRhagoletisspecies,we usedaRayleigh(z)testinordertospecifythesignificanceofmean anglefortheoccurrenceofthisbehavior.Weconsideredasanull hypothesis time intervalsfor emergence that were evenly dis-tributedaroundthedielclock.Alternatively,therecouldbeamean timeintervalwherefliesemergencesarebeingconcentrated. Fur-thermore,wecompareddielemergencebetweenR.brnciciandR. conversausingWatson–William equaldirectionstest (Morellato etal.,2010).

Therewasacleartendencyofthelarvaeofboththestudied species toemergein a timerange from18:00 PMto5:59AM. Eighty-threepercent ofR. brnciciand 77% of R.conversa larvae emergedduringthiswindow.Despitethesimilarityofthese emer-gencetimes,thelarvaeofthesespecies,duringthespecifiedtime window,displayeddifferencesintheproportionoflarvaeexiting fruitatdifferenttimes.InR.conversa,thehighestpercentageof larvaeexitingfruitwasbetweenthehoursof00:00to5:59(65% emergence),whenonly39%ofR.brncicilarvaeemerge.Between thehoursof18:00to23:59,12%ofR.conversalarvaeemerged, whiletheemergenceofR.brncicilarvaeinthesameperiodwas 44%.Duringdaylighthours(6:00–5:59),thepercentageemergence ofthelarvaeofbothspeciesdecreased(18%inR.brnciciand23%in R.conversa)(Table1A).

Themeantimeoflarvalemergenceshowedamarkeddiel pat-ternforeachRhagoletisspecieswithrcorrespondingto0.5and 0.7forR.brnciciandR.conversarespectively.Thenull hypothe-sisofuniformdistributionforbothspecieswasrejected(Table1B, Fig.1).Furthermore,R.brnciciandR.conversaalsoshowed statisti-caldifferences,disprovingthenullhypothesis(Watson–Williams test,F=168.873;p<0.0001).

ThesympatricRhagoletisspeciesR.brnciciandR.conversahave a marked diel pattern of larval eclose from their hosts’ fruits. Moreoverthecircadianrhythmsforthisactivitywerestatistically different betweenthese two closely-relatedtaxa, perhaps as a productofselectionproducedbyhostplantsthatoccupydifferent habitats.

Extrapolatingourexperimentaldatatowhatcouldhappenin nature,thescarceemergenceoflarvaeofbothspeciesduring day-timemayallowthemtoavoidthehighertemperaturesrecorded for thesetimesin thefield (reaching around30◦C),duringthe spring–summerseasonintheMatorralofcentralChile(Armesto etal.,2007;Rundel,1981),thusavoidingdehydration.

Table1

A:Larvalemergence(percentageandsamplesize)inrelationtodieltimeintervalsforRhagoletisbrnciciandR.conversa.B:Circularstatisticsuniformdistributionshowing samplesize,Raleighttestvalueandstatisticalsignificanceforbothsympatricspecies.

(A) (B)

Species TimeIntervals Larval Emergence

SampleSize MeanDirection Circular Deviation

Lengthofmean vector(r)

Rayleigh’sStat. Rayleigh’sProb.

R.brncici 00:00–05:59 39%(335) 867 23.189 4.191 0.548 558.957 <0.001 06:00–11:59 8%(69) 12:00–17:59 10%(84) 18:00–23:59 44%(379) R.conversa 00:00–05:59 65%(194) 299 2.593 3.391 0.674 302.355 <0.001 06:00–11:59 22%(66) 12:00–17:59 1%(4) 18:00–23:59 12%(35)

(3)

D.Frías-Lasserreetal./RevistaBrasileiradeEntomologia63(2019)195–198 197

Rhagoletis brncici Rhagoletis conversa

18 6 18 12 12 0 379.0 189.5 379.0 194.0 194.0 97.0 97.0 194.0 97.0 .0 194.0 379.0 379.0 189.5 189.5 189.5 6 0

Fig.1. CircularhistogramroseplotshowingRhagoletisbrnciciandR.conversalarvalemergencefromfruitina24-hclock.Forbothgraphs,thearrowshowsthemeantime ofemergence.Mainnumbersinsectionscorrespondtotimeinhours.Numbersaccompanyingcircumferencesrefertonumberofindividuallarvaereplicates.

Ithasbeendocumentedthat predationatthetimeof third-instaremergencefromfruitsisoneofthefactorsthataffectslarval survival(Alujaetal.,2005).Theotherfactor thatmayinfluence larvalemergencebehaviorinthespeciesstudiedistheevasionof potentialdiurnalpredatorsthathavebeendescribedfor Tephri-tidaelarvae,suchasmice(Thomas,1993,1995),antsandwasps (Alujaetal.,2005),andalsoseveralparasiticmicrohymenopteran species(Maier,1981; Ovruskiet al.,2000;Bomfim etal.,2007; Hernández-Ortizetal.,1994;Sivinskietal.,2001,1997;Tairaetal., 2013).

Moreover,theinterespecificallochronydetectedinlarvae emer-gence,forbothRhagoletisspecies,maybealsoberelatedtothe differencesingeographicaldistributionfoundinthesespecies;R. brncicitendstoinhabitcoolerplacesinthesub-Andeanregionof centralandsouthernChile,whereasR.conversaisdistributedin warmerlocalitiesincentralandnorthernChile(Fríasetal.,1984; Frías,2001).Thiskindofpatternhasbeenfoundinspeciesofother generaofThephritidaesuchasBactrocera(Danjumaetal.,2014) andCeratitis(DuyckandQuilici,2002).

Asafinalremark,wecancommentthatitisnecessaryto fur-therstudylarvalexittimingdifferencesinthesetwo Rhagoletis species in allopatric populations, considering climatic variables andtheirrespectiveSolanumhostplants,inordertotestif tem-poral differencebetween R. conversa and R. brncici larvae may fit to potential physiological adaptations of these flies within theirdistribution. Moreover, it would alsobe of great interest tocomparethiswithsympatricpopulationsinorder totest for differencesinemergenceregardingallopatricpopulations.These comparisonsmayallowustodisentanglewhetherchangesin lar-valexitevolvedasanisolatingmechanismwhenthesetwospecies overlap.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

ToAdrianaMoctezumaOcampo(UAEM),fortheirsupportinthe fruitcollectioninthefield.

References

Aluja,M.,Sivinski,J.,Rull,J.,Hodgson,P.J.,2005.Behaviorandpredationoffruitfly larvae(Anastrephaspp.)(Diptera:Tephritidae)afterexitingfruitinfourtypesof habitatsintropicalVeracruz,Mexico.Environ.Entomol.34,1507–1516.

Armesto,J.,Arroyo,M.,Hinojosa,L.,2007.Themediterraneanenvironmentofcentral Chile.In:Vebblen,T.,Young,K.,Orme,A.(Eds.),ThePhysicalGeographyofSouth America.OxfordUniversityPress,Oxford,USA,pp.159–180.

Boller,E.,Prokopy,R.,1976.Thebiologyandmanagementofrhagoletis.Annu.Rev. Entomol.112,289–303.

Bomfim,D.A.,Uchôa-Fernandes,M.A.,Braganc¸a,M.A.L.,2007.Hostsandparasitoids offruitflies(Diptera:Tephritoidea)intheStateofTocantins,Brazil.Neotrop. Entomol.36,984–986.

Boucenna,N.,Kahalerras,A.,Boukhemza-zemmouri,N.,Khelifa,R.,2018.Niche partitioningatemergenceoftwosympatrictop-predatordragonflies,Anax imperatorandA.parthenope(Odonata:Aeshnidae).Ann.Soc.Entomol.Fr.00, 1–8.

Bressan-Nascimento,S.,2001.EmergenceandpupalmortalityfactorsofAnastrepha obliqua(Macq.)(Diptera:Tephritidae)alongthefruitingseasonofthehost Spon-diasdulcisL.Ecol.Behav.Bionom.Neotrop.Entomol.30,207–215.

Bush, G.L., 1992. Host race formation and sympatric speciation in rhagoletis fruit flies (Diptera: Tephritidae). Psyche J. Entomol.,

http://dx.doi.org/10.1155/1992/67676.

Bush,G.L.,1966.Thetaxonomy,cytology,andevolutionofthegenusRhagoletisin NorthAmerica(Diptera,tephritidae).Bull.Mus.Comp.Zool.134,431–562.

Christenson,L.D.,Foote,R.H.,1960.Biologyoffruitflies.Annu.Rev.Entomol.5, 171–192.

Danjuma,S.,Thaochan,N.,Permkam,S.,Satasook,C.H.,2014.Effectoftemperature onthedevelopmentandsurvivalofimmaturestagesoftheCarambolaFruit Fly,Bactroceracarambolae,andtheAsianPapayaFruitFly,Bactrocerapapayae, rearedonGuavadiet.J.InsectSci.14,126.

dosSantos,S.R.,Specht,A.,Carneiro,E.,VieiradePaula-Moraes,S.V.,Martins,M., 2017.InterseasonalvariationofChrysodeixisincludens(Walker,[1858]) (Lepi-doptera:Noctuidae)populationsintheBrazilianSavanna.Rev.Bras.Entomol. 61,294–299.

Duso,C.,Lago,G.D.,2006.Lifecycle,phenologyandeconomicimportanceofthe walnuthuskflyRhagoletiscompletaCresson(Diptera:Tephritidae)innorthern Italy.Ann.Soc.Entomol.Fr.42,245–254.

Duyck,P.F.,Quilici,S.,2002.Survivalanddevelopmentofdifferentlifestagesofthree Ceratitisspp.(Diptera:Tephritidae)rearedatfiveconstanttemperatures.Bull. Entomol.Res.92,461–469.

Fernandes,W.D.,Sant’Ana,M.,Raizer,V.J.,Lange,D.,2012.Predationoffruitfly larvaeAnastrepha(Diptera: Tephritidae)byants ingrove.Psyche2012,7,

http://dx.doi.org/10.1155/2012/108389,ArticleID108389.

Fisher,N.I.,1993.StatisticalAnalysisofCircularData.CambridgeUniversityPress, Cambridge,MA,USA.

Foote,R.H.,1981.TheGenusRhagoletisLoewSouthoftheUnitedStates.

Frías-Lasserre,D.,2015.Effectsoffemalefruit-markingpheromoneson oviposi-tion,mating,andmalebehaviorintheneotropicalspeciesRhagoletisconversa BréthesandRhagoletisbrnciciFrías(Diptera:Tephritidae).Neotrop.Entomol.44, 560–564.

Frías,D.,1986.BiologíapoblacionaldeRhagoletisnova(Schiner)(Diptera: Tephriti-dae).Rev.Chil.Entomol.13,75–84.

(4)

198 D.Frías-Lasserreetal./RevistaBrasileiradeEntomologia63(2019)195–198 Frías,D.,Hernández-Ortiz,V.,Vaccaro,N.C.,Bartolucci,A.F.,Salles,L.A.,2006.

Com-parativemorphologyofimmaturestagesofsomefrugivorousspeciesoffruit flies(Diptera:Tephritidae).Isr.J.Entomol.36,423–457.

Frías,L.D.,2001.Diferenciasgenéticasymorfológicasdelosestadosinmadurosde dosrazasdeRhagoletisconversa(Bréthes)(Diptera:Tephritidae)asociadasa plantasSolanum:Distribuióngeográficayposibleorigenensimpatríadeuna nuevaespecie.Rev.Chil.Hist.Nat.74,73–90.

Frías,L.D.,1992.Genética,ecologíayevolucióndelasespecieschilenasdelgénero Rhagoletis(Diptera:Tephritidae).ActaEntomol.Chil.17,211–223.

Frías,L.D.,Malavasi,A.,Morgante,J.S.,1984.Fieldobservationsofdistributionand activitiesofRhagoletisconversa(Díptera:Tephritidae)ontwohostinnature. Ann.Entomol.Soc.Am.77,548–551.

Guillén,L.,Aluja,M.,Equihua,M.,Sivinski,J.,2002.Performanceoftwofruitfly (Diptera:Tephritidae) pupal parasitoids(Coptera haywardi [Hymenoptera: Diapriidae] and Pachycrepoideus vindemiae [Hymenoptera: Pteromal-idae]) under different environmental soil conditions. Biol. Control 23, 219–227.

Hernández-Ortiz,V.,Pérez-Alonso,R.,Wharton,R.A.,1994.Nativeparasitoids asso-ciatedwiththegenusAnastrepha(Dipt.:Tephritidae)inLosTuxtlas,Veracruz, Mexico.Entomophaga39,171–178.

Kalapanida,M.,Petrakis,P.V.,2012.Temporalpartitioninginanassemblageofinsect defoliatorsfeedingonoakonaMediterraneanmountain.Eur.J.Entomol.109, 55–69.

Levine,J.M.,HilleRisLambers,J.,2009.Theimportanceofnichesforthemaintenance ofspeciesdiversity.Nature25,205–225.

Maier,C.H.T.,1981.ParasitoidsemergingfrompupariaofRhagoletispomonella (Diptera:Tephritidae)infestinghawthornandappleinConnecticut.Can. Ento-mol.113,867–870.

Morellato,L.P.C.,Alberti,L.F.,Hudson,I.L.,2010.Applicationsofcircularstatistics inplantphenology:acasestudiesapproach.In:Keatley,I.L.H.,M.R.(Eds.), Phe-nologicalResearch:MethodsforEnvironmentalandClimateChangeAnalysis. Springer,Dordrecht,pp.339–359.

Narendra,A.,Greiner,B.,Ribi,W.A.,Zeil,J.,2016.Lightanddarkadaptation mech-anismsinthecompoundeyesofMyrmeciaantsthatoccupydiscretetemporal niches.J.Exp.Biol.219,2435–2442.

Ovruski,S.,Aluja,M.,Sivinski,J.,Wharton,R.,2000.Hymenopteranparasitoidson fruit-infestingTephritidae(Diptera)inLatinAmericaandthesouthernUnited States:diversity,distribution,taxonomicstatusandtheiruseinfruitfly biolog-icalcontrol.Integr.PestManag.Rev.5,81–107.

Rull,J.,Abraham,S.,Tadeo,E.,Rodriguez,C.L.,2016.Lifehistoryandmatingbehavior ofRhagoletissolanophaga(Diptera:Tephritidae),anon-diapausingspecieswith highlyvariablematingduration.J.InsectBehav.29,629–642.

Rundel,P.,1981.ThematorralzoneofcentralChile.In:Castri,F.,diGoodall,D.W., Specht,R.L.(Eds.),EcosystemsoftheWorld:11.Mediterranean-Type Shrub-lands.Elsevier,Amsterdam,pp.175–201.

Schoener,T.W.,1974.ResourcePartitioninginEcologicalCommunities.Science (80-.).,http://dx.doi.org/10.1126/science.185.4145.27.

Schwerdtfeger,W.,1976.ClimatesofCentralandSouthAmerica.Elsevier,NewYork, NewYork,USA.

Sivinski,J.,Aluja,M.,Lopez,M.,1997.Spatialandtemporaldistributionsof para-sitoidsofMexicanAnastrephaspecies(Diptera:Tephritidae)withinthecanopies offruittrees.Ann.Entomol.Soc.Am.90,604–618.

Sivinski,J.,Vulinec, K.,Aluja, M.,2001. Ovipositorlength ina guildof para-sitoids(Hymenoptera:Braconidae)attackingAnastrephaspp.fruitflies(Diptera: Tephritidae)insouthernMexico.Ann.Entomol.Soc.Am.94,886–895.

Taira,T.L.,Abot,A.R.,Nicácio,J.,Uchôa,M.A.,Rodrigues,S.R.,Guimarães,J.A.,2013.

Fruitflies(Diptera,Tephritidae)andtheirparasitoidsoncultivatedandwild hostsintheCerrado-PantanalecotoneinMatoGrossodoSul,Brazil.Rev.Bras. Entomol.57,300–308.

Thomas,D.B.,1995.PredationonthesoilinhabitingstagesoftheMexicanfruitfly. Southwest.Entomol.20,61–71.

Thomas,D.B., 1993.Survivorship ofthepupalstages oftheMexicanfruit fly Anastrephaludens(Loew)(Diptera:Tephritidae)inanagriculturaland nona-griculturalsituation.J.Entomol.Sci.28,350–362.

Thompson,F.C.,1999.Fruitflyexpertidentificationsystemandsystematic informa-tiondatabase.Myia.

Uchôa,M.A.,2014.Fruitflies(Diptera:Tephritoidea):biology,hostplants,natural enemies,andtheimplicationstotheirnaturalcontrol.In:Soloneski,S.(Ed.), IntegratedPestManagementandPestControl–CurrentandFutureTactics.,pp. 271–300.

Wang,Xin-Geng,Messing,R.H.,2004.Potentialinteractionsbetweenpupaland egg-orlarval-pupalparasitoidsoftephritidfruitflies.Environ.Entomol.33(5), 1313–1320.

Werner,E.E.,Gilliam,J.F.,1984.Theontogeneticnicheandspeciesinteractionsin size-structuredpopulations.Annu.Rev.Ecol.Syst.,http://dx.doi.org/10.1146/ annurev.es.15.110184.002141.

White,I.,Elson-Harris,M.,1994.Fruitfliesofeconomicsignificance:their identifi-cationandbionomics.Environ.Entomol.22,1408.

Referências

Documentos relacionados

Resumo da análise de variância valores de F para porcentagem de germinação G, índice de velocidade de germinação IVG, comprimento da parte aérea CPA, comprimento radicular CRA e matéria

Editora Revista dos Tribunais, 2016.. magistrado, poderão as partes se irresignarem valendo-se dos meios de impugnação manejáveis para desafiar a sentença

The oviposition behavior has been studied in several fruit flies species and for the Ceratitis capitata (Wied.), medfly, it happens in four steps: arriving the

Toxicity of spinosad in protein bait to three economically important Tephritid fruit fly species (Diptera: Tephritidae) and their parasitoids (Hymenoptera: Braconidae). Tests

Anastrepha (Diptera: Tephritidae) species, their hosts and parasitoids (Hymenoptera: Braconidae) in five municipalities of the state of Amapá, Brazil. Hymenopterous larval-pupal and

Tornar um site seja “amigável” e fácil de navegar por sua estrutura não é apenas tarefa do desenvolvedor do site. O jornalista também deve sempre ter em mente esses conceitos

Foram meses de muito trabalho, principalmente, para mostrar aos profissionais da saúde de Foz do Iguaçu que o serviço fica muito melhor quando estamos presentes, que somos

Isso nos faz lembrar um aforismo de Heráclito que nos diz que “Dando ouvidos não a mim, mas ao lógos, é avisado concordar que todas as coisas são uma” (Kirk-Raven, 1994,