• Nenhum resultado encontrado

Degradação de policloropreno por processo Foto-Fenton

N/A
N/A
Protected

Academic year: 2021

Share "Degradação de policloropreno por processo Foto-Fenton"

Copied!
78
0
0

Texto

(1)

ADONILSON DOS REIS FREITAS

Degradação de policloropreno por processo Foto-Fenton

MARINGÁ 2006

Dissertação apresentada como requisito parcial à obtenção do grau de Mestre em Química, Curso de Pós-graduação em Química, Universidade Estadual de Maringá

(2)

“A meus pais pelo incondicional

apoio no desenvolvimento deste

trabalho. E a todos que direta ou

indiretamente influenciaram minha

trajetória evolutiva nesses dois

anos de estudos.”

(3)

AGRADECIMENTOS

Ao Prof. Dr. Edvani Curti Muniz, pela orientação dedicada, apoio, amizade e paciência.

Ao Prof. Dr. Adley Forti Rubira, pela co-orientação, apoio, aprendizado e amizade.

Ao Prof. Dr. Gentil Jose Vidotti pelo auxílio na interpretação do CG-MS.

A todos os professores do Departamento de Química que contribuíram direta ou

indiretamente à minha formação.

Aos colegas do laboratório, pelo auxílio, atenção e paciência.

Aos colegas do Grupo de Materiais Poliméricos e Compósitos, pelo auxílio e amizade.

(4)

“Dai-me Senhor serenidade para

aceitar as coisas que não posso

mudar, coragem para mudar aquilo

que sou capaz e sabedoria para

ver a diferença.”

(5)

CONTRIBUIÇÕES EM CONGRESSOS

Freitas, Adonilson dos Reis; Vidotti, Gentil Jose; Rubira, Adley Forti; Muniz, Edvani

Curti, Degradation of polychloroprene by photo-Fenton effect. In: X International

Macromolecular Colloquium, 2005,Gramado,CD-ROM.

Freitas, Adonilson dos Reis; Rubira, Adley Forti; Muniz, Edvani Curti, Interação de

neopreno com cloreto de ferro(III) . In: XXIV Reunião Anual da Sociedade Brasileira

de Química, 2003, Poços de Caldas, CD-ROM

Freitas, Adonilson dos Reis; Rubira, Adley Forti; Muniz, Edvani Curti, Interação de

neopreno com cloreto de ferro(III) . In: IX Encontro de Química da Região Sul, 2001,

Londrina, livro de resumos.

PUBLICAÇÕES

Freitas, Adonilson dos Reis; Vidotti, Gentil Jose; Rubira, Adley Forti; Muniz, Edvani

Curti, Degradation of polychloroprene by photo-Fenton effect. Polymer Degradation

& Stability, v. 87, n. 3, p 425-432.

Freitas, Adonilson dos Reis; Rubira, Adley Forti; Muniz, Edvani Curti, Degradation of

polychloroprene by photo-Fenton effect.II a ser submetido ao Polymer Degradation &

(6)

SUMÁRIO

AGRADECIMENTOS... iii

SUMÁRIO... vi

ÍNDICE DE FÍGURAS... viii

ÍNDICE DE TABELAS... xi

ÍNDICE DE SÍMBOLOS... xii

RESUMO... 01 ABSTRACT... 02 1 –INTRODUÇÃO... 03 2 – OBJETIVOS... 15 3 – PARTE EXPERIMENTAL... 16 3.1 – Materiais... 16 3.1.1 – Reagentes... 16 3.1.2 – Equipamentos... 16

3.2 – Medidas de tempo de escoamento... 16

3.3 – Análise por FTIR... 18

3.4 – Analise por CG-MS... 19

3.5 – Influência da água e da exposição à luz na degradação de policloropre- preno... 19

3.6 – Determinação do grau de intumescimento... 20

3.7 – Medidas de condutividade... 21

3.8 – Espectroscopia de FTIR da fase orgânica... 22

3.9 – Espectroscopia de absorção atômica da fase aquosa... 23

3.10 – Análise por ressonância magnética nuclear de 13C... 23

3.11 – Calorimetria diferencial exploratória (DSC)... 24

4. – RESULTADOS E DISCUSSÕES... 25

4.1 – Medidas de tempo de escoamento... 25

4.2 – Espectros de FTIR... 29

4.3 – Estudos cinéticos da reação de foto-degradação... 32

4.4 – Influência de água e luz policromática na degradação de policloropre - em presença de FeCl3... 36

(7)

4.5 – Determinação dos resíduos de foto - degradação de policloropreno por

CG-MS... 40

4.6 – Análise do grau de intumescimento de filmes aquecidos a diferentes tem - peraturas... 45

4.7 – Condutividade... 49

4.8 – Medidas de tempo de escoamento versus condutividade... 51

4.9 – RMN 13C... 52

4.10 – Resultados obtidos por DSC... 54

5. – Conclusões... 56

6. – Próximas etapas... 58

(8)

ÍNDICE DE FÍGURAS

Figura 01 – Estrutura tridimensional para a o isopreno... 09 Figura 02 – Policloropreno na forma “chips” e a respectiva fórmula estrutural... 10 Figura 03 – Aplicações para policloropreno: A) correia de transmissão B) man - gueiras de alta pressão... 11 Figura 04 – Diagrama esquemático para a produção de policloropreno... 12 Figura 05 – Esquema de polimerização de policloropreno... 13 Figura 06 – Diagrama esquemático para o experimento de medidas de condutivi- vidade... 22 Figura 07 – Tempo normalizado de escoamento versus tempo de reação para as oito diferentes condições ( planejamento fatorial) estabelecidas nas Tabelas II e III ... 26 Figura 08 – Espectros de FTIR obtidos para PCP puro (A) ; PCP/FeCl3.6H2O após 4 horas (B) e 9 horas (C) de exposição à luz... 29

Figura 09 – Área normalizada para as bandas em 825 cm-1 e 1720 cm-1 relativas

à ligação C-Cl e ao grupo carbonílico, com o função do tempo

de reação... 31

Figura 10 – Correlação entre as áreas normalizadas para banda relativa à liga- ção C-Cl em 825 cm-1 e à nova banda em 1720 cm-1...

32

Figura 11 – Estrutura da unidade repetitiva do PCP 33

Figura 12 – Curvas de tempo normalizado de escoamento tratadas de acordo com a equação 8... 34 Figura 13 – Curvas de dados de FTIR tratados de acordo com a equação 8.a... 35

Figura 14 – Curvas de tempo normalizado de escoamento em função do tempo

de reação para: A) PCP/FeCl3.6H2O não tratada com p.m. (peneira

molecular); B) PCP/FeCl3.6H2O tratada com p.m. por 3 dias; C)

PCP/FeCl3.6H2O tratada com p.m. por 7 dias; D) PCP/FeCl3.6H2O

(9)

Figura 15 – Curvas de tempo normalizado de escoamento em função do tempo de reação para solução de PCP sem FeCl3.6H2O em presença de luz policromática... 40 Figura 16 – Cromatograma obtido para a solução de PCP/FeCl3.H2O após 25 horas de foto - exposição à luz policromática, e em menor o perfil de fragmentação para o tempo de retenção 9:36 minutos... 41 Figura 17 – Diagrama esquemático para o experimento de medidas de pH. 42 Figura 18 – Curva de pH medido na fase aquosa como função do tempo após a adição de água. A degradação de PCP ocorreu em tolueno conten - do FeCl3.6H2O e exposta à luz policromática por 24horas. Após Após foi adicionado água... 43 Figura 19 – Espectro de FTIR de um produto na fase orgânica após a degra - dação de PCP em tolueno contendo FeCl3.6H2O e exposta à luz por 24 horas e contato com água... 44 Figura 20 – Espectro de FTIR obtido de um produto na fase aquosa. Após a de - gradação de PCP em tolueno contendo FeCl3.6H2O e exposta à luz policromática por 24 horas, parte dos produtos da reação foi extraída com água... 45 Figura 21 – Curvas de grau de intumescimento em tolueno por 24 horas de fil - mes obtidos da solução de PCP com FeCl3.6H2O não foto-trata- tada,com o tempo de aquecimento, em diferentes temperaturas... 46 Figura 22 – Curvas de grau de intumescimento em tolueno por 24 horas de fil - mes obtidos da solução de PCP com FeCl3.6H2O foto-tratada, com o tempo de aquecimento, em diferentes temperaturas... 48 Figura 23 – Medidas de condutividade na fase aquosa, normalizada, versus tem- po de reação. Tempo de reação é considerado como o período de que a solução polimérica esteve em contato com a fase aquosa. A reação de degradação do PCP ocorreu em solução de tolueno con - tendo FeCl3.6H2O exposta à luz policromática... 49 Figura 24 – Espectro de FTIR de filmes de PCP obtidos de três diferentes so - luções: A) PCP/FeCl3.6H2O degradado por exposição da solução em tolueno à luz policromática; B) PCP em tolueno; e C) solução de PCP usada nas medidas de condutividade (fase orgânica), após

(10)

a separação da fase aquosa... 50 Figura 25 – Medidas de condutividade normalizada versus tempo normalizado de escoamento. Cada par de valores (x,y) se referem, a um mesmo tempo de reação coletados na Figura 2 e na Figura 15, respectiva - mente... 52 Figura 26– Espectros de RMN 13C obtidos em solução de PCP/FeCl3.6H2O em duas condições: solução não foto-tratada (A) e após 20 horas de foto-exposição (B)... 53 Figura 27 – Espectros de FTIR de filmes obtidos de solução de PCP/FeCl3.6H2O em duas condições: não foto-tradada (A) e após 20 horas de foto - -exposição (B)... 53 Figura 28 – Termogramas para filmes obtidos de solução de PCP/FeCl3.6H2O em tolueno exposta à luz policromática e de filme dessa mesma solução não exposta à luz policromática... 55

(11)

ÍNDICE DE TABELAS

Tabela I – Níveis inferior e superior e os respectivos valores atribuídos às variáveis concentração de polímero (Cp), temperatura (T) e

condições de luz (L)... 17

Tabela II – Oito diferentes condições experimentais que foram obtidas por combinações das variáveis concentração de polímero (Cp), tem - peratura(T ) e luz policromática (L) , nos níveis superior (+) e

inferior (-)... 18

Tabela III – Oito diferentes experimentos e as respectivas respostas

observadas... 27

Tabela IV – Análise de variância (ANOVA) obtida do planejamento fatorial 23

(Tabela II) e o respectivo modelo obtido... 28

Tabela V – Constantes de velocidade obtidas dos dados de tempo de escoa -

(12)

ÍNDICE DE SÍMBOLOS

PCP – Policloropreno

DSC – Calorimetria diferencial exploratória

RMN 13C – Ressonância magnética nuclear de carbono

FTIR – Infravermelho com transformada de Fourier

CG-MS – Cromatografia gasosa acoplada a espectrometria de massas

AAS – Espectroscopia de Absorção Atômica

Tg – Temperatura de transição vítrea

AOPs – Advanced oxidation process (processos de oxidação avançado)

FeCl3.6H2O – Cloreto de ferro(III) hexahidratado

Cp – Concentração de polímeros

T – Temperatura

L – Luz

TR,t – Tempo normalizado de escoamento no tempo t

Tt – Tempo de escoamento no tempo t

Tt=0 – Tempo de escoamento inicial

UV – Ultravioleta

min – Minutos

p.m. – Peneira molecular

o

C – Grau centígrado .

Mv – Massa molar viscosimétrica

φ – Grau de intumescimento

Mgel – Massa do filme intumescido

mo – Massa do filme seco

(13)
(14)

RESUMO

Neste trabalho, foi estudada a reação de degradação de policloropreno (PCP) na presença de FeCl3.6H2O. A influência das variáveis, concentração de PCP, temperatura e luz policromática no processo de degradação foi estudada utilizando um planejamento fatorial do tipo 23 completo. Foram realizadas medidas de tempo de escoamento em um viscosímetro capilar do tipo Ubbelohde e os valores de tempo normalizado de escoamento em um tempo de reação de 195 min, ( TR,195 ), foram usados como resposta. Alterações nos valores de TR,195 com tempo de reação e nos espectros de FTIR, RMN 13

C e CG-MS foram usados para caracterizar o processo de degradação. A degradação ainda foi estudada por meio de determinações de graus de intumescimento, calorimetria diferencial exploratória (DSC), medidas de condutividade e de espectroscopia de absorção atômica. Os resultados de condutividade foram combinados com os obtidos por espectroscopia no infravermelho e absorção atômica. A cinética de reação foi estudada com base nos dados obtidos do planejamento fatorial e espectroscopia no infravermelho. Também foi estudado o efeito da combinação água/luz policromática na presença de cloreto de ferro. As variáveis, concentração de polímero e luz policromática e a interação dessas duas variáveis foram consideradas significantes para o processo de degradação de PCP enquanto que a contribuição da temperatura não foi significativa. Foi verificado que a cinética de reação é de segunda ordem. Por meio de medidas de tempo de escoamento e dos dados de espectroscopia de infravermelho, a reação de degradação foi caracterizada como um processo do tipo Foto-Fenton.

(15)

ABSTRACT

The degradation of polychloroprene in presence of FeCl3.6H2O was investigated in this work. The influence of factors polymer concentration, temperature and polychromatic light presence in the degradation process was studied using the methodology of the factorial design. In this sense, a complete 23 factorial design was used. Efflux time measurements in an Ubbelohde capillary viscometer were performed and the values of normalized efflux time at a reaction time 195 minutes, (TR,195) were used as input. Alterations in the spectra of FTIR, NMR13C and GC-MS of polychloroprene were used to characterize the degradation. The degradation still was studied by swelling degree, differential calorimetric scanning (DSC), conductivity measurements and atomic absorption. The results from conductivity were combined with the obtained one from the FTIR and atomic absorption spectroscopies. From the factorial design and FTIR spectroscopy experiments, the reaction kinetic was found to be second order. The effect of combination of water/polychromatic light in presence of iron (III) chloride was also studied. It was observed that polymer concentration and the presence of light are significant factors as well as their interaction for the degradation process. Thus the temperature is not significant. Finally from the efflux time and FTIR data the reaction was characterized as Photo-Fenton process.

(16)

1. INTRODUÇÃO

A moderna sociedade encontrou nos materiais poliméricos a solução para alguns problemas antigos como a produção/comercialização de bebidas tais como água mineral e refrigerante sem ter que transportar pesados frascos armazenadores, antes confeccionada em vidro. Hoje é comum encontrar em qualquer supermercado entre outras bebidas, refrigerantes envasados em garrafas de poli(tereftalato de etileno) (PET), o que tornou o frasco armazenador muito leve.1 O mesmo é válido para a indústria automobilística onde muitas das partes dos veículos antes confeccionadas em madeira ou metal nobre (alumínio por exemplo) hoje são confeccionadas em material polimérico sintético.2 A indústria do vestuário também é beneficiária desta revolução usando de materiais poliméricos como matéria-prima na elaboração de novos tecidos aproveitando de algumas propriedades que só estes materiais possuem (durabilidade, leveza, flexibilidade, elasticidade entre outras).3 Mas esta pode ser considerada uma via de mão dupla. Ao mesmo tempo em que um problema foi solucionado um outro de igual magnitude ou até superior, foi criado. Quando descartados no meio ambiente esses materiais em sua grande maioria tem um tempo de residência muito longo.4 Pode-se tomar como exemplo o pneu que nada mais é do que uma combinação de borracha vulcanizada e alguns aditivos. Seu tempo de residência, quando descartado na natureza é indeterminado. 5 Para cada novo veículo rodando há a certeza de que muitos pneus residuais serão produzidos (carcaça).

A sociedade tem discutido muito o problema da emissão, principalmente de gases poluentes, entre outras formas de poluição. Encontros e congressos internacionais acerca desse tema têm sido realizados em diversos países. Dos acordos firmados até o momento, a expressiva maioria trata da redução na emissão de poluentes gasosos ou às vezes do despejo de efluente industrial em corpos d’água ou ainda da questão do

(17)

desmatamento das florestas (como o caso da floresta Amazônica).6,7,8 Esta é uma forma visível e clara de poluição. E quanto à poluição silenciosa que afronta-nos diariamente? Um exemplo muito simples dessa poluição silenciosa é o copinho descartável para café e/ou água, que são confeccionados geralmente em poliestireno e lançados ao lixo após o uso. Assim como o pneu, o processo de decomposição desse material é muito lento.9

A indústria dos materiais sintéticos cria, a cada dia, novas aplicações para seus materiais. Como uma forma de remediação, a reciclagem apenas ameniza o problema em alguns setores e soluciona, quase que totalmente, em outros (como o caso das latinhas de alumínio usadas para acondicionar bebidas). Mas, nem todos os materiais de interesse comercial são recicláveis ou biodegradáveis. A demanda por materiais poliméricos cresce de forma exponencial. Com a evolução das técnicas laboratoriais, desenvolver novos materiais tornou-se algo não muito difícil. A mistura física de dois ou mais polímeros constitui uma blenda polimérica, que normalmente, possui propriedades intermediárias às dos polímeros constituintes a um custo menor quando comparado ao investimento no desenvolvimento de um novo material. A blenda pode apresentar propriedades especificas não encontradas nos constituintes isolados.10

Como já mencionado, esta é uma via de mão dupla. Da mesma forma que há um incremento na produção há um aumento na geração de resíduos. A indústria da reciclagem ainda carece de tecnologias que possibilitem reciclar todos os materiais descartados. Quando se diz reciclar não é transformar um cabo de vassoura sintético em um tapete para veículos. Isso não é reciclagem, é na verdade, reutilização. Reciclar seria, por exemplo, retornar um tapete sintético aos respectivos monômeros e corantes que deram origem ao mesmo, possibilitando assim o uso desses materiais para um fim nobre.11

(18)

Entretanto, às vezes é possível a remediação. Neste contexto muitos processos foram criados e suas aplicações ainda são objetos de estudo nas mais diversas partes do mundo. Dentre estes, a reação de Fenton merece destaque, pois sua aplicação é muito ampla. Vai desde tratamento de efluentes domésticos a industriais, sendo objeto de estudo tanto na área acadêmica quanto comercial.12-15 Sua origem data de 1881 quando Fenton publicou uma breve descrição das propriedades oxidantes de uma mistura de peróxido de hidrogênio e sais ferrosos. Esta mistura tornou-se conhecida como reagente

de Fenton e a reação ficou conhecida como reação de Fenton.16 Inicialmente, Fenton

aplicou esta reação para oxidar ácidos orgânicos como os ácidos fórmico, glicólico, láctico, tartárico, málico, sacárico, glicérico, benzóico, pícrico, dihidroxitartarico, dihidroximaleico e acetilenodicarboxilico.17 Na ausência de sais ferrosos, a degradação de peróxido de hidrogênio procede mas a uma velocidade muito lenta, com pouca ou quase nenhuma oxidação dos ácidos orgânicos.18,19 Mais tarde, estudando a decomposição de peróxido de hidrogênio, Cross et al.20 verificaram que a cinética de decomposição era intensificada quando executada em presença de ácidos orgânicos. Em 1934, Haber e Weiss21 sugeriram que na decomposição de peróxido de hidrogênio, catalisada por sais de ferro, o radical hidroxil é formado como intermediário ativo via oxidação de íons ferrosos por peróxido de hidrogênio. Uma descrição simplificada para essa reação é apresentada na reação (1).

Fe2+ + H2O2 + H+ → Fe3+ + H2O + (OH)

.

( 1 )

A formação do radical hidroxil foi confirmada por Baxendale et al22

. Estes

mostraram que os reagentes de Fenton iniciam e catalisam a polimerização de olefinas via adição de radical hidroxil à dupla ligação. O fato de que este reagente foi um agente

(19)

oxidante eficiente em muitos sistemas (polimerização de metil acrilato, ácido metacrílico, metil metacrilato, acrilonitrila e estireno) suportou a idéia da formação do radical hidroxil como intermediário reativo. Numerosos íons metálicos e seus complexos em estados de oxidação menores (por exemplo, Fe(II), Cu(I), Ti(III), Cr(II), Co(II), entre outros) apresentaram as características oxidativas do reagente de Fenton.23 Desde então esta reação vem sendo aplicada nas mais diversas áreas.

O tratamento de resíduos poliméricos por meio químico e/ou por foto-oxidação tem atraído muito interesse. Pode ser encontrado na literatura que cloreto de ferro (III) ou cloreto de cobre (II) são eficientes catalisadores na foto-degradação de polímeros como poliestireno, poli(óxido de etileno), entre outros.24

A degradação de polímeros sintéticos tem sido investigada em nosso laboratório, especificamente 1,4-cis-polisopreno e 1,4-cis-polibutadieno, induzida por cloreto de ferro (III) em solução. A princípio, foi observado que a adição de cloreto de ferro (III) altera o comportamento reológico das soluções de 1,4-cis-polisopreno e também para 1,4-cis-polibutadieno causando um decréscimo na viscosidade. Baseado nos primeiros resultados pensou-se, inicialmente, que este comportamento estava relacionado a fenômenos de agregação. Novos experimentos foram realizados e foi verificado que os efeitos estavam relacionados à degradação da cadeia polimérica.25 Utset et al. 26 estudaram a influência de oxigênio na degradação de anilina por processo Fenton e Foto-Fenton e verificaram que, ainda que o oxigênio atue como um agente oxidante, há uma forte dependência dos parâmetros concentração de anilina, peróxido de hidrogênio, pH e temperatura no processo de degradação. Estudando a degradação de fenol e nitrobenzeno em meio aquoso usando uma combinação de Fe(III) e luz UV, Rodrıguez

et al. 27 verificaram que a degradação ocorre de modo muito eficiente e apresenta

(20)

de efluente industrial em grande escala, Oliveiros et al.28 verificaram que o processo Foto-Fenton representa uma opção no tratamento de 2,4-dimetilaminobenzo em relação ao carvão ativado, até então usado como principal forma de tratamento. Canton et al.29 observaram que a mineralização de fenol é mais rápida com o sistema O3/UV/Fe3+ em relação a uma simples ozonólise e que o tratamento com cobre pode ser uma opção para ambientes não ácidos. De Laat et al.30 verificaram que o processo Foto-Fenton é mais eficiente na mineralização de atrazina e acetona quando comparado a outros AOPs (Advanced Oxidation Process) (H2O2 /UV, Fe(III)/UV,Fe(III)/ H2O2 /UV, Fe(II)/ H2O2 e Fe(III)/ H2O2 ). Hsueh et al.31 estudaram a descoloração de três azocorantes comerciais (Red MX-5B, Reactive black 5 e Orange G) e verificaram que tanto o processo Fenton quanto Foto-Fenton, são eficientes na remoção de cor dos corantes e que a alta concentração de peróxido de hidrogênio pode reduzir a eficiência do processo. Resultados semelhantes também foram obtidos por Meric et al.32

estudando a

degradação de Remazol Red 120 (RR) e uma mistura de corantes contendo os corantes reativos Remazol Brillant Blue (RB) e Remazol Yellow 84 (RY).

Os trabalhos acima estão centrados no processo de Fenton e Foto-Fenton, que são os principais processos nos AOPs. AOPs são processos nos quais a geração do radical hidroxil é o objeto de interesse, visando seu uso como agente de degradação. Apesar de seu alto poder oxidante, o radical hidroxil é uma espécie não seletiva, porém o processo pode ser controlado por um ajuste de pH. De acordo com a literatura33 esta reação só é ativa em pH ácido ( 2,0 < pH < 4,0 ). Em pH acima de 4,0 o íon ferro precipita sob a forma de hidróxido terminando a reação.34 Esta é uma reação bastante controversa, pois há quem acredite que ela ocorra de acordo com o mecanismo convencionalmente descrito na literatura35, mas há quem acredite que há outros mecanismos não convencionais. De acordo com Mansano-Weiss et al35 a reação do

(21)

radical ROO.

com [Fe(H

2O)6]2+ segue preferencialmente o mecanismo da esfera interna. Sendo que a velocidade de reação para a troca do ligante água pelo radical peroxil com posterior oxidação do elemento central é várias ordens de magnitude mais rápida do que a reação de Fenton. Conforme reações abaixo:

[Fe(H2O)6]2+ + RO2 . [(H2O)5Fe(III) –OOR]2+ + H2O (2)

[(H2O)5Fe(III) –OOR]2+ + [Fe(H2O)6]2+ {(H2O)5Fe(II)-OOR-Fe(III)(H2O)5}4+ (3)

[Fe(H2O)6]3+ + ROO- [Fe(H2O)6]2+ + ROO- + [Fe(H2O)6]3+ (4)

Apesar de conhecida há mais de um século, a reação de Fenton ainda é objeto de estudo para muitos pesquisadores. Neste contexto os materiais poliméricos na grande maioria sintéticos surgem como foco de estudo. As pesquisas com materiais elastoméricos sintéticos tiveram inicio em um período não muito diferente da reação de Fenton.

A origem dos elastômeros sintéticos pode ser atribuída a primeira metade do século 19, quando tentativas foram feitas para elucidar a composição e a estrutura da borracha natural com eventual objetivo de reproduzir o material. Em 1860 o inglês Greville Williams “quebrou” a borracha em três partes por destilação – óleo, pinche e “espírito” – esta última era a fração mais volátil e o principal constituinte, o qual William denominou por isopreno.36 O francês Georges Bourchardat, com a ajuda de cloreto de hidrogênio gasoso e destilação prolongada, converteu isopreno a uma substância semelhante a borracha em 1875, e em 1882 outro Bretão, W.A.Tilden, produziu isopreno por destilação destrutiva de turpentine.37 Turpentine é um extrato

(22)

obtido de arvores coníferas, particularmente do gênero Pinus. São substâncias semi-fluídicas consistindo de resinas dissolvidas em um óleo volátil.38 Tilden também atribui ao isopreno a fórmula estrutural :

Figura 1 – Estrutura tridimensional para o isopreno.

Os esforços acima citados foram realizados no intuito de sintetizar a borracha natural. Foi somente quando a pesquisa por equivalentes químicos da borracha natural foi abandonada, e as comparáveis propriedades físicas foram enfatizadas é que a borracha sintética passou de um projeto a um fato. Neste contexto muitas empresas investiram em pesquisa para obter a borracha sintética. A empresa DuPont organizou um grupo de pesquisa e convidou o extraordinário jovem químico Wallace Carothers para comandar os trabalhos.39 Carothers então desapontado com a vida acadêmica de professor em Harvard resolveu aceitar o convite da empresa. A idéia da empresa era ter a sua própria equipe de pesquisas nos molde até então usado nas universidades, e isto foi quase uma revolução para época. 40 O primeiro grande sucesso da equipe ocorreu em abril de 1930, com o desenvolvimento de um material com características semelhantes a da borracha natural. Inicialmente o novo material foi denominado de Duprene em analogia ao nome da empresa DuPont mais tarde este nome foi substituído por Neopreno (neo = novo).41 No mesmo período o grupo desenvolveu uma outra

(23)

substância que mais tarde tornar-se-ia conhecida como nylon. Atualmente, neopreno é tido como uma borracha sintética reticulada sendo que para o material não-reticulado a correta designação é poli(2-cloro-1,4-butadieno) ou em linguagem usual policloropreno. Policloropreno é um dos mais importantes elastômeros em produção, com consumo próximo de 300.000 ton/ano em todo mundo. Cloropreno é usado em diferentes áreas, principalmente na indústria da borracha (cerca de 61%), mas também é importante como matéria prima para adesivos (adesivos a base de solventes orgânicos e água cerca de 33%) e tem diferentes aplicações na forma de látex (cerca 6%) assim como na confecção de artigos de proteção como luvas e roupas especiais para mergulho entre outras. 42,43

Policloropreno é produzido principalmente sob a forma de “chips” ( em analogia às fatias de batatas fritas) uma conseqüência do processo especial de produção.

CH2 C H C H2C Cl n

Figura 2 – Policloropreno na forma “chips” e a respectiva fórmula estrutural

(1,4-cis-policloropreno).

Policloropreno ainda pode se aplicado na produção de materiais diversos como correias transportadoras, correias de transmissão, revestimento de cabos etc.

(24)

Figura 3 – Aplicações para policloropreno: A) correia de transmissão B) mangueiras de

alta pressão.

Policloropreno não é caracterizado por uma de suas excelente propriedades, mas por um balanço de propriedades que é único entre os elastômeros sintéticos. Ele tem:

9 Boa resistência mecânica

9 Alta resistência a ozônio e a intempéries climáticos 9 Boa resistência ao envelhecimento

9 Boa resistência a químicos

9 Moderada resistência a óleos e combustíveis 9 Baixa flamabilidade

9 Adesão a muitos substratos

Policloropreno pode ser vulcanizado usando vários sistemas catalisadores e uma larga faixa de temperaturas.

Até 1960 policloropreno era produzido pelo antigo “processo acetileno”. Este processo tinha por desvantagem o uso intensivo de energia e um alto custo de investimento. Atualmente quase todos os produtores de policloropreno utilizam um processo baseado no butadieno. Butadieno é convertido em monômero 2-clorobutadieno-1,3 (cloropreno) via 3,4-diclorobutadieno-1.44 Em principio é possível polimerizar cloropreno pelas técnicas de polimerização aniônica , catiônica e

(25)

Zingler-Natta.44 Devido às propriedades do produto e considerações econômicas na atualidade a polimerização em emulsão via radical livre é usada quase que exclusivamente. Em escala comercial policloropreno é produzido por batelada ou processo contínuo.

Figura 4 – Diagrama esquemático para a produção de policloropreno.

Com a ajuda de um radical iniciador, cloropreno na forma de emulsão aquosa é convertido a homopolímero ou, na presença de comonômeros em copolímeros. O látex é coagulado a frio em grande tambor giratório, do qual é extraído sob a forma de filmes finos. Após lavagem e secagem, as lâminas são prensadas sob a forma de cordão e cortadas na forma de “chips” ou grânulos.43

Enxofre Emulsificador Modificador Cloropreno Água Reator de polimerização Agitador Ácido Neutralização Concentração de látex Lavagem Monômero não reagido Peptização Purificação

Tambor giratório para resfriamento E Resfriador de goagulação Secador Máquina de Torção Máquina de corte Comercialização

(26)

C C l H2C C H C H2 R C l C H2C C H C H2 n C l C C H2 C C H2 H C l C C H2 C H C H2 1,4-trans 1,4-cis C H C H H C CH2 Cl C H C Cl H CH CH2

Figura 5 – Esquema de polimerização de policloropreno.

Apesar de apresentar muitas vantagens, assim como a maioria dos elastômeros sintéticos policloropreno apresenta uma desvantagem à não-biodegradabilidade. Quando combinado à elevada produção anual de policloropreno e o acúmulo dos resíduos de material oriundo do pós-consumo deste o desequilíbrio ambiental é algo inevitável.

Desta forma muitos pesquisadores têm estudado meios alternativos para amenizar, senão resolver este problema. Zaikov et al.45 estudando a degradação de polibutadieno, poliisopreno e policloropreno por ozônio verificou que a eficiência do processo de degradação em termos do consumo de O3 aumenta na ordem de

(27)

1,4-cis-o term1,4-cis-o-envelheciment1,4-cis-o de p1,4-cis-olicl1,4-cis-or1,4-cis-opren1,4-cis-o e verificaram que 1,4-cis-o primeir1,4-cis-o pass1,4-cis-o na oxidação de policloropreno é a abstração de um hidrogênio alílico levando a formação de diferentes radicais. Alguns hidroperóxidos são formados e decompostos em álcoois, cetonas e cloreto de ácido. Kaminsky et al.60 Estudaram a pirólise de policloropreno em leito fluidizado e verificaram que os principais produtos de degradação são compostos aromáticos policíclicos. Dick et al.46 observaram que a degradação térmica de policloropreno ocorre em dois estágios onde no primeiro estágio há a evolução de HCl e no segundo a produção de hidrocarbonetos voláteis por meio das cisões na cadeia polimérica. P. Budrugeac47 estudando a degradação de policloropreno verificou que o tempo de vida térmico de policloropreno pode ser predito por equações cinéticas.

(28)

2. OBJETIVOS

2.1 Objetivo Geral

9 Estudar a degradação de policloropreno (PCP) em presença FeCl3.6H2O em solução.

2.2 Objetivos Específicos

9 Estudar o efeito das variáveis concentrações de polímero (Cp), temperatura (T) e luz policromática (L), no processo de degradação de policloropreno. 9 Estudar a cinética de reação, determinando a ordem de reação e valores da

constante de velocidade.

9 Aplicar técnicas instrumentais para caracterizar alguns dos resíduos oriundos do processo de degradação.

(29)

3. EXPERIMENTAL

3.1 Materiais

3.1.1 Reagentes

Policloropreno (PCP) comercial (Proquimil – SP) de massa molar viscosimétrica (Mv) igual a 2.38x104 gmol-1.

FeCl3.6H2O(Riedel-de-Haën – Alemanha), usados sem prévia purificação.

Tolueno (Sinth - Brasil ) de grau analítico foi usado como solvente após destilação. Peneira molecular (Aldrich 33,429-4) foi usada após ativação térmica.

3.1.2 Equipamentos

Lâmpada fluorescente comercial (Philips) (vapor de mercúrio e argônio de baixa pressão, 9W) foi usada como fonte de luz policromática.

Mini forno doméstico marca Walitta.

Viscosímetro capilar tipo Ubbelohde marca Cannon model J-666. Banho termostatizado marca Tecnal modelo TE-184.

Cronômetro digital marca Technos modelo Chronus com precisão 1/100. Agitador magnético marca Fisaton

3.2 Medidas de tempo de escoamento

Soluções estoque (5% m/V) de PCP e FeCl3.6H2O foram preparadas em tolueno. Foram realizadas medidas de tempo de escoamento em um viscosímetro capilar do tipo Ubbelohde Cannon (J666), imerso em banho (água) termostatizado. Após a adição de FeCl3.6H2O ao viscosímetro, onde a solução polimérica já estava previamente depositada, foram realizadas medidas de tempo de escoamento para diferentes razões polímero/sal. Neste estudo, a influência das variáveis, concentração de polímero (Cp),

(30)

temperatura (T) e luz policromática (L) no tempo de escoamento foi avaliada usando a metodologia do planejamento fatorial. Para isso, foi empregado o planejamento fatorial do tipo 23. Para os experimentos realizados na ausência de luz policromática o viscosímetro foi protegido da incidência de luz policromática por um revestimento feito em papel alumínio com duas aberturas de dimensão suficiente para a visualização dos traços de aferição (superior e inferior).

Na Tabela I são descritos os valores dos níveis inferior (-) e superior (+) utilizados para as variáveis Cp, T e L.

Tabela I – Níveis inferior e superior e os respectivos valores atribuídos às variáveis

concentração de polímero (Cp), temperatura (T) e luz policromática (L).

Variáveis Inferior (-) Superior (-)

Cp (mg/mL) 25 50

T (oC) 25 50

Luz policromática Ausente Presente

No fatorial do tipo 23 completo foi planejado, ao todo, oito diferentes experimentos. Em cada um dos experimentos foi medido o tempo de escoamento das respectivas soluções em função do tempo de reação. Entende-se por tempo de reação o período de tempo decorrido após a adição da solução de FeCl3.6H2O ao viscosímetro, como descrito anteriormente. Na Tabela II estão apresentadas todas as combinações entre as variáveis Cp, T e L que geraram os oito diferentes experimentos.

(31)

Tabela II – Oito diferentes condições experimentais que foram obtidas por

combinações das variáveis concentração de polímero (Cp), temperatura (T) e L (luz), nos níveis superior (+) e inferior (-).

Condições Experimento Cp T L 1 -(25 mgmL-1) -(25 oC ) -(Ausente) 2 +(50 mgmL-1) -(25 oC ) -(Ausente) 3 -(25 mgmL-1) +(50 oC ) -(Ausente) 4 +(50 mgmL-1) +(50 oC ) -(Ausente) 5 -(25 mgmL-1) -(25 oC ) +(Presente) 6 +(50 mgmL-1) -(25 oC ) +(Presente) 7 -(25 mgmL-1) +(50 oC ) +(Presente) 8 +(50 mgmL-1) +(50 oC ) +(Presente)

3.3 Análise por FTIR

Soluções estoque de PCP e FeCl3.6H2O foram misturadas para obter as condições experimentais descritas pelo experimento 6 do planejamento fatorial (Tabela II). Após a irradiação por luz policromática em diferentes períodos de tempo, uma amostra (1 gota obtida com uma pipeta de Pasteur) foi colhida e depositada na superfície de um cristal de NaCl polido. Após a evaporação do solvente (ou “casting”), feita a temperatura ambiente, sob pressão reduzida e na ausência de luz policromática, foram obtidos filmes de PCP/ FeCl3.6H2O. A redução de pressão foi realizada usando um dessecador pequeno, como porta-filmes e uma a célula de NaCl (dimensão da célula 25 x 10 x 3 mm ) já alocada em seu interior, após a deposição de uma gota da solução polimérica degradada (PCP/FeCl3.6H2O) sobre a superfície do cristal o dessecador foi

(32)

fechado e acionado uma bomba hidráulica elétrica acoplada a uma ”trompa d’agua” a qual por intermédio de uma mangueira de silicone esta conectada a tampa do dessecador. A bomba permaneceu ligada por um tempo médio de 10 minutos. Um filme fino foi obtido. Para controle, foi também obtido um filme de PCP/FeCl3.6H2O a partir de solução não exposta à luz policromática . Logo após a preparação dos filmes, foi obtido espectro de FTIR de cada um desses filmes. Para isso, foi utilizado um espectrofotômetro FTIR marca Bomem, modelo MB-100, utilizando 128 scans e com resolução de 2 cm-1.

3.4 Análise por CG-MS

A solução de PCP/FeCl3.6H2O, preparada de acordo com a condição do experimento 6 do planejamento fatorial, foi exposta à luz policromática por 48 horas, mantida sob agitação constante durante a exposição. Com o auxilio de uma micro-seringa, um volume apropriado da solução resultante foi injetado em um cromatógrafo gasoso acoplado a um espectrômetro de massa. A análise foi realizada em um cromatógrafo gasoso marca Shimadzu acoplado ao detector de massa modelo QP2000A equipado com uma coluna capilar SE-30 GC. A solução foi injetada a 80 oC. A coluna foi programada para permanecer a 40 oC por 6 minutos e então aquecida a 150 oC à taxa de 10 oC min-1. Hélio foi usado como gás de arraste sob um fluxo de 30 mL min-1 .

3.5 Influência da água e da exposição à luz na degradação de policloropreno

As influências da água e da exposição à luz policromática no processo de degradação de PCP em presença de FeCl3.6H2O foram investigadas por medidas de tempo de escoamento em diferentes condições. Na primeira, 2,5 g de peneira molecular previamente seca em um forno a 300 oC por 4 horas48 foi adicionada à solução de

(33)

PCP/FeCl3.6H2O, preparada em tolueno de acordo com as condições do experimento número 6 (Tabela II). A solução com a peneira molecular foi estocada por três dias a temperatura ambiente e na ausência de luz. Foi realizado procedimento similar em um outro frasco, porém, a solução (experimento 6, Tabela II) que continha 2,5 g de peneira molecular foi estocada por um intervalo de sete dias. Foram efetuadas medidas de tempo de escoamento destas duas soluções em um viscosímetro capilar do tipo Ubbelohde imerso em um banho termostatizado a 25 oC. Para controle, foram realizadas medidas de tempo de escoamento de uma outra solução de PCP (experimento 6, Tabela II) que não continha FeCl3.6H2O. Finalmente, em um outro experimento foram efetuadas medidas de tempo de escoamento de uma solução de PCP/FeCl3.6H2O análoga à preparada no experimento 6 (Tabela II) que não continha peneira molecular. Nesta última condição, o viscosímetro foi recoberto com papel alumínio para proteger a solução da luz policromática.

3.6. Determinação do grau de intumescimento

Foram preparadas soluções de PCP e FeCl3.6H2O de acordo com as quantidades dispostas no experimento 6 do planejamento fatorial (livre da incidência da luz policromática). Após a evaporação do solvente, que ocorreu no escuro, os filmes foram cortados em pequenas peças (aproximadamente 60 mg) e aquecidos às temperaturas de 80, 100 e 200 oC, em cada uma destas temperaturas, os filmes foram aquecidos durante 15, 30 e 60 minutos. Após o tratamento térmico, os filmes permaneceram em um ambiente escuro por 3 horas (este intervalo foi considerado suficiente para retornarem à temperatura ambiente). As amostras foram pesadas e posteriormente imersas em tolueno onde permaneceram pelo período de 24 horas. Conforme disposto na literatura,49,50 o período de 24 horas é suficiente para atingirem o equilíbrio de intumescimento.

(34)

Também foram preparados filmes em condições similares às anteriores, porém, durante o preparo a solução foi exposta à luz policromática por 3 horas, sob agitação. Os filmes resultantes foram cortados em pequenas peças (aproximadamente 60 mg) e expostos às temperaturas de 80, 130 e 200 oC por 30, 60 e 120 minutos. De forma similar, os filmes foram pesados e imersos em tolueno por 24 horas. Para controle, os procedimentos foram repetidos com filmes preparados a partir de solução de PCP (exposta à luz policromática), porém sem FeCl3.6H2O. Os filmes foram também aquecidos a 80, 100 e 200 oC por 15, 30 e 60 minutos. Após, os filmes foram pesados e intumescidos em tolueno por 24 horas. Na seqüência, todos os filmes, independentes de sua preparação, foram novamente pesados. O grau de intumescimento foi determinado a partir da equação (5): 50

1

)

1

(

+

=

s p o gel m m ρ ρ

φ

onde φ é o grau de intumescimento, mgel e mo são, respectivamente, a massa do filme intumescido e a massa do filme seco; ρp e ρs são, respectivamente, a densidade do polímero e solvente.

3.7 Medidas de condutividade

Foi preparada uma solução de PCP com FeCl3.6H2O em tolueno análoga à do experimento 6 (Tabela II). Esta foi adicionada em um cilindro de cerca de 8 mm de raio e cerca de 15 cm de altura que estava parcialmente imerso em 50 mL de água Milli-Q® ,conforme Figura 1. Uma cela de condutividade foi mergulhada na fase aquosa (inferior) e o sistema foi exposto à uma fonte de luz policromática (9 W, fluorescente doméstica) sendo a fonte posicionada a uma distância de 10 cm do tubo. Foram

(35)

realizadas medidas de condutividade usando um condutivímetro portátil marca Corning, modelo 311, conforme esquema da Figura 6. Foram realizadas medidas de condutividade a cada intervalo de 5 minutos por um tempo total de 195 minutos. As medidas de condutividade foram iniciadas após a adição da solução orgânica (PCP / FeCl3.6H2O em tolueno) no tubo que já continha água.

Figura 6 – Diagrama esquemático para o experimento de medidas de condutividade.

3.8 Espectroscopia de FTIR da fase orgânica

Depois de finalizado o experimento descrito na seção anterior, uma alíquota (2 gotas) da fase orgânica foi removida e depositada sobre a superfície de um cristal polido de NaCl. Após a evaporação do solvente, que ocorreu a temperatura e pressão ambientes, porém no escuro, foi obtido um filme do qual foi feito o espectro FTIR.

(36)

3.9 Espectroscopia de absorção atômica da fase aquosa

Foi utilizada a técnica de espectroscopia de absorção atômica para avaliar a presença de ferro na fase aquosa após o experimento descrito no item 3.7 ter sido finalizado. Uma alíquota da fase aquosa foi tratada com ácido clorídrico e analisada em um espectrômetro de absorção atômica, marca Varian. Uma lâmpada de catôdo oco, da mesma marca do equipamento, trabalhando com uma corrente 5 mA foi usada para medir o sinal de absorção de íons ferro. O comprimento de onda analítico usado foi de 248,3 nm que corresponde à linha de ressonância para ferro e foi selecionada uma fenda de passagem de 0,2 nm. A linha base foi corrigida com uma lâmpada de deutério. A razão ar/acetileno foi (13,5:2 L min-1). A quantidade de ferro presente na amostra foi avaliada pelo método da interpolação em curva analítica específica (não apresentada nesta dissertação).

3.10 Análise por ressonância magnética nuclear de 13C

Uma amostra de PCP em estado sólido (ca. 35 mg) foi adicionada a um tubo de RMN (de 5,0 mm de diâmetro) e a este foi adicionado 0,7 mL de tolueno-d8(ISOTEC T82-84081), resultando em uma solução de concentração final 5% (m/V). Foi obtido espectro de RMN de 13C usando um espectrômetro de ressonância magnética nuclear, marca Varian 2000 (modelo Oxford, 300 MHz). Após, foram adicionados 3,5 mg de FeCl3.6H2O no tubo contendo a solução polimérica utilizada para obter o espectro de RMN 13C do PCP. Assim, a concentração final do FeCl3.6H2O na solução final foi cerca de 0,5%. Este tubo contendo a solução foi exposto à luz policromática por cerca de 20 horas e então um novo espectro de RMN 13C foi obtido.

(37)

3.11 Calorimetria diferencial exploratória (DSC)

Uma solução de PCP/FeCl3.6H2O, preparada em tolueno de acordo com o experimento 6 do planejamento fatorial (Tabela II), esta foi exposta à luz policromática e mantida sob agitação constante por 25 horas à temperatura ambiente. Após este intervalo solução contendo o polímero degradado (PCP/FeCl3.6H2O ) foi depositado em uma placa de Petry e coberto com papel alumínio perfurado para evaporação do solvente (no escuro a temperatura e pressão ambientes). A placa de Petry contendo a solução foi mantida em reserva para secagem pelo período de uma semana transcorrido este intervalo um filme polimérico foi obtido. Um outro filme foi preparado de uma solução precursora tal qual a anterior, porém, obtido a partir de uma solução não exposta à luz policromática. Foram obtidos termogramas para os filmes em um equipamento Shimadzu DSC50, previamente calibrado e em atmosfera inerte. A massa de cada uma das amostras foi cerca de 10 mg e depositada em uma panela de alumínio que foi hermeticamente fechada. A amostra 66 foi resfriada a -80 oC a uma taxa de resfriamento de 5 oC min-1 e, em seguida, aquecida até a temperatura de 100 oC usando taxa de aquecimento de 5 ºC min-1.

(38)

4. Resultados e discussão

4.1 Medidas de tempo de escoamento

O decréscimo na viscosidade de uma solução polimérica à temperatura constante e na ausência de fenômenos de agregação está diretamente relacionado a cisões na cadeia polimérica.25,50 Neste sentido, a medida de tempo de escoamento é uma ferramenta importante na investigação da degradação de polímeros em solução. Neste trabalho, medidas de tempo de escoamento à temperatura controlada foram usadas para monitorar a degradação de PCP em solução na presença de FeCl3.6H2O. Curvas de tempo normalizado de escoamento como função do tempo de reação, obtidas em diferentes condições para o sistema PCP/ FeCl3.6H2O, são apresentadas na Figura 7. O tempo de escoamento foi normalizado usando a equação (6):

TR,t = ______

Tt

Tt=0

onde Tt=0 é o tempo de escoamento antes do processo reacional. É considerado t=0 o momento que a solução que contém o catalisador (FeCl3.6H2O) foi adicionada à solução polimérica, esta já no viscosímetro. Tt e TR,t são, respectivamente, o tempo de escoamento e o tempo normalizado de escoamento para o tempo de reação t.

(39)

0 100 200 300 0,7 0,8 0,9 1,0

2

4

6

8

5

7

3

1

Te mpo normaliza do d e escoamento Tempo de reação/min

Figura 7 – Tempo normalizado de escoamento versus tempo de reação para as oito

diferentes condições ( planejamento fatorial ) estabelecidas nas Tabelas II e III . Foi observado que quando as variáveis Cp e L são mantidas em seus níveis superiores (experimentos 6 e 8), o decréscimo em TR,t é maior quando comparado aos outros experimentos, como apresentado na Figura 7. Nas condições em que Cp e L são mantidas em seus níveis superiores (experimento 6 e 8), foi observado que 195 minutos é o tempo de reação necessário para que TR,t decaia a ≅ 70% do valor inicial. Não foram verificadas alterações significativas nos perfis da curvas de TR,t versus tempo de reação (compare 5 e 7; 6 e 8 na Figura 7) quando a temperatura foi variada de 25 para 50 oC.

Em contraste, na ausência de luz policromática (experimentos 1 a 4) o tempo normalizado de escoamento é praticamente constante e igual 1,0. Isso sugere que a reação de degradação é fortemente dependente da presença de luz policromática. A influência das variáveis Cp, T e L na degradação de PCP foi analisada usando como

(40)

resposta a quantidade TR,195 . Valores de TR,195 para os oito diferentes experimentos estão sumarizados na Tabela III.

Tabela III – Oito diferentes experimentos e as respectivas respostas observadas.

Condições Experimento Cp T L Resposta TR,195 1 -(25 mgmL-1) - (25oC) - (Ausente) 1.000 2 +(50 mgmL-) -(25oC) -(Ausente) 1.000 3 -(25 mgmL-1) +(50oC) -(Ausente) 1.000 4 +(50 mgmL-) +(50oC) -(Ausente) 1.000 5 -(25 mgmL-1) -(25oC) +(Presente) 0.775 6 +(50 mgmL-) -(25oC) +(Presente) 0.668 7 -(25 mgmL-1) +(50oC) +(Presente) 0.788 8 +(50 mgmL-) +(50oC) +(Presente) 0.677

Foi usado o software estatístico Design Expert® para analisar os dados da Tabela III. Na Tabela IV são apresentados os resultados de ANOVA (Anlyses of Variance) e o respectivo modelo para os dados gerados a partir do planejamento fatorial 23 (Tabelas II e III).

(41)

Tabela IV: Análise de variância (ANOVA) obtida do planejamento fatorial 23 (Tabela

II) e o respectivo modelo obtido.

Variável Soma quadrática Graus de liberdade Média quadrática Valor de F Probabilidade F Média 1.700 x 10-1 3 5.500 x 10-2 1921.60 < 0.0001 Cp 7.021 x 10-3 1 7.021 x 10-3 245.28 < 0.0001 L 1.500 x 10-1 1 1.500 x 10-1 5274.28 < 0.0001 Cp x L 7.021 x 10-3 1 7.021 x 10-3 245.28 < 0.0001 Resíduos 1.145 x 10-4 4 2.863 x 10-5 1921.60 < 0.0001 Total Cor 1.700 x 10-1 7 Média 0.14 Desvio padrão 5.530 x 10-3 R2 0.9993 Modelo de predição TR,200

Fonte Valor do efeito Soma

quadrática % contribuição Média 2.800 x 10-1 Cp 5.925 x 10-2 7.0211 x10-3 4.25183 Significante T -3.250 x 10-3 2.1125 x10-5 0.01279 Não significante L 2.748 x 10-1 1.5098 x10-1 91.4270 Significante Cp x T 4.250 x 10-1 3.6125 x10-5 0.02188 Não significante Cp x L 5.925 x 10-2 7.0211 x10-3 4.25183 Significante T x L -3.250 x 10-3 2.1125 x10-5 0.01279 Não significante Cp x T x L 4.250 x 10-2 3.6125 x10-5 0.02188 Não significante Modelo: TR,195 = 0,86 - 0.030 Cp - 0.14 L - 0.030 Cp L ( 7 )

(42)

Foi observado que a variável temperatura não é significante. Assim, esta variável não foi inserida no modelo. Como esperado, os efeitos principais das variáveis Cp e L e o efeito de interação entre elas são significantes. Baseados nessa análise, os valores de TR,195 como função de Cp e L podem ser preditos com 95% de confiança com a equação (7) para policloropreno de mesma massa molar e estrutura tal qual o usado nesta dissertação:

4.2 Espectros de FTIR

Neste trabalho, a foto-degradação de PCP foi monitorada também por mudanças nas bandas de FTIR em função do tempo de exposição à luz policromática. Mudanças no espectro de FTIR foram observadas e comparadas com as bandas presentes no espectro do filme obtido da solução não exposta à luz policromática. Na Figura 08 são apresentados os espectros de FTIR obtidos de filmes de solução do PCP puro (espectro A) e filmes de solução de PCP/FeCl3.6H2O em dois diferentes períodos de exposição à luz policromática (espectros B e C).

Figura 08 – Espectros de FTIR obtidos para PCP puro (A); PCP/FeCl3.6H2O após 4 horas (B) e 9 horas (C) de exposição à luz.

3500 3000 2500 2000 1500 1000 B C A T ra s m it â ncia u.a. Numero de onda / cm-1

(43)

O espectro do PCP puro apresenta algumas bandas características como estiramento simétrico para CH2 em 2858 cm-1 e assimétrico em 2927 cm-1, estiramento =C–H em 3028 cm-1 também foi verificado a presença de uma banda e 1693 cm-1 a qual foi atribuída a um produto de degradação de policloropreno, o que foi considerado normal uma vez que este é um produto comercial e usado sem prévia purificação. Também foi observada banda em 1660 cm-1, a qual foi atribuída a insaturação C=C, em 1445 cm-1 atribuída a deformação de CH2 , em 1303 cm-1 atribuída a vibração de deformação do tipo wagging para CH2, em 1202 cm-1 atribuída vibração de deformação do tipo twisting para CH2 , banda em 1118 cm-1 pode será atribuídas ao estiramento da ligação C–CH2 , assim como a banda em 825 cm-1 foi atribuída a vibração de deformação para a ligação C-Cl.51,68,70 Após 4 horas de exposição à luz policromática (espectro B), surgiu uma banda larga com um máximo em 3430 cm-1 a qual foi atribuída à formação de grupos hidroxila ou hidroperóxidos. Após 9 horas de exposição à luz policromática (espectro C), a área da banda em 3430 cm-1 é reduzida de forma significante e bandas atribuídas à formação de grupos carbonilados aparecem entre 1720 e 1880 cm-1. Também foi verificado que a banda atribuída a ligação =C–H (3028 cm-1) após 9 horas de exposição da solução de PCP/FeCl3.6H2O à luz policromática desaparece. Algumas bandas que já estavam presentes no espectro B, se intensificam no espectro C (como a abanda em 1720 cm-1 ) e outras quase desapareceram (como a banda em 1660 cm-1 atribuída a insaturaçãoC=C e a banda atribuída a ligação C-Cl em 825 cm-1).

De acordo com a literatura, cloretos de ácidos podem ser derivados de β-cisão em hidroperóxidos terciários ou peróxidos cíclicos.52 Os resultados obtidos apontam para essa direção. Como os hidroperóxidos são muito instáveis quando expostos à luz UV ou aquecidos, eles podem ser decompostos em álcoois e/ou em compostos

(44)

carbonílicos como cloreto de ácido (1790 cm-1), ácido carboxílico (1715 cm-1), anidridos (1818 cm-1), cetonas (1725 cm-1), etc.52 Isto explicaria porque quando há uma redução na área da banda atribuída a hidroperóxidos a região característica a grupos carbonilados tem um incremento, conforme é verificado nos espectro de FTIR apresentados na Figura 8. Na Figura 9 é mostrado: i) o decréscimo na área da banda C-Cl em função do tempo de reação após exposição à luz policromática por diferentes períodos e ii) o aumento simultâneo na área da nova banda observada em 1720 cm-1. Na Figura 10 é apresentada uma correlação linear entre a área da nova banda em 1720 cm-1 e o decréscimo na área da banda C-Cl (825 cm-1). Assim, há evidências de que o decréscimo na área da banda C-Cl em 825 cm-1 e o aparecimento de outras bandas no intervalo1720-1820 cm-1 estão correlacionados.

Figura 09 – Área normalizada para as bandas em 825 cm-1 e 1720 cm-1 relativas à ligação C-Cl e ao grupo carbonílico, em função do tempo de reação.

0 10 20 30 40 0,0 0,2 0,4 0,6 0,8 1,0 0,0 0,2 0,4 0,6 0,8 1,0 A R , 1720 c m -1 A R, 82 5 c m -1 Tempo de reação/dias

(45)

Figura 10 – Correlação entre as áreas normalizadas para banda relativa à ligação C-Cl

825 cm-1 e à nova banda em 1720 cm-1.

4.3 Estudos cinéticos da reação de foto-degradação

Neste trabalho, a ordem da reação para a foto-degradação de PCP na presença de FeCl3.6H2O foi determinada por meio de medidas de tempo normalizado de escoamento (método 1) e espectroscopia de FTIR (método 2).

Método 1: A cinética de reação foi estudada baseada no fato de que:

i) se a contribuição de entrelaçamento das cadeias poliméricas, em solução, não for considerada;

ii) se a temperatura for constante;

iii) se o processo ocorrer em solução e na ausência de fenômenos de agregação, o tempo de escoamento deverá ser proporcional à massa molar do polímero.4 Então, o decréscimo no valor de TR,t com a evolução da reação equivale à extensão da

0,2 0,4 0,6 0,8 1,0 0,0 0,2 0,4 0,6 A R, 1 720 cm -1 AR, 825 cm-1

(46)

degradação. Tomando-se o valor TR,t igual a 1,0 para t=0, ou seja, logo após a adição da solução de FeCl3.6H2O ao viscosímetro, a ordem da reação pode ser avaliada pelo uso das curvas apresentadas na Fig. 7 e verificando-se a correlação destas com os modelos clássicos53, sendo as equações

x -a a ln t k o o ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ = ( 8 ) ) x - a ( a x t k o o = ( 9 )

usadas, respectivamente, como modelo para o processo cinético de primeira e segunda ordem. Sendo ao a concentração inicial de reagente, (ao – x) a concentração de reagente no tempo t, e k a constante de velocidade. Por analogia, neste trabalho a seguinte relação foi usada: ao é o equivalente a 1,0; o valor de x para o tempo de reação t é equivalente a (1,0 – TR,t) e o valor de (ao – x) é equivalente a TR,t. Assim, as equações (8) e (9) tornam-se, respectivamente, iguais às equações

⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = t R T kt , 1 ln ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − = t R t R T T kt , , 1

Os resultados obtidos usando a equação (11) são apresentados na Figura 12.

Método 2: A analogia usada aqui foi baseada no monômero do PCP.

CH2 C H C H2C Cl n

Figura 11 – Estrutura da unidade repetitiva do PCP.

(11) (10)

(47)

Considerou-se que a degradação do PCP ocorre por quebra da ligação C-Cl,42,43 e que existe uma única ligação C-Cl em cada unidade repetitiva do PCP, cuja vibração característica é localizada em 825 cm-1,51 a variação da área desta banda no espectro de FTIR pode equivaler, proporcionalmente, à variação da massa molar do polímero. A área relativa à banda C-Cl (825 cm-1) no tempo t foi normalizada em relação à área desta banda presente no espectro obtido no tempo inicial t=0, ou seja, para filme obtido da solução PCP/FeCl3.6H2O não exposta à luz policromática. Assim, a área normalizada para a banda C-Cl é igual a 1,0 no tempo t=0, e igual a (A825 cm-1)R,t para o tempo de reação igual a t. As condições experimentais são as mesmas descritas no experimento 6 do planejamento fatorial disposto na Tabela II. A ordem de reação foi avaliada usando os valores de (A825 cm-1)R,t na equação

( )

RRt t A A

kt

, , 1−

=

Os resultados obtidos utilizando a equação (11.a) são apresentados na Figura 13.

Figura 12 – Curvas de tempo normalizado de escoamento tratadas de acordo com a

equação 11. (11.a) 0 50 100 150 200 250 300 0,0 0,1 0,2 0,3 0,4 0,5 8 6 7 5 (1 T R,t )/ T R, t Tempo de reação/min

(48)

0 5000 10000 15000 20000 25000 0,0 0,4 0,8 1,2 1,6 ( 1- A R, t ) / A R, t Tempo de reação/min

Figura 13 – Curvas de dados de FTIR tratados de acordo com a equação 11.a .

Na Tabela V são apresentados os valores para as constantes de velocidade. As constantes de velocidade foram determinadas aplicando-se a equação (11) ao tempo normalizado de escoamento para os experimentos 6 e 8 (Tabela III) obtidas a 25 e 50 oC, e aplicando a equação (11.a) aos dados de FTIR (como os da Figura 3), obtidos à temperatura ambiente. Foi possível observar que o valor obtido para a constante de velocidade, baseado nos dados de FTIR a 25oC, é cerca de 40 vezes menor do que o obtido a partir das medidas de tempo de escoamento. Este fato pode ser compreendido levando-se em consideração que o enovelamento das cadeias do polímero tem significativa contribuição no tempo de escoamento conforme disposto na literatura.4 Assim, o fato dos dados de medidas de tempo de escoamento em função do tempo de reação resultar em curvas de cinética de segunda ordem, de acordo com a equação (11) é fortuito, ainda que os dados estejam bem ajustados àquela equação.

(49)

Tabela V – Constantes de velocidade obtidas dos dados de tempo de escoamento e de

espectroscopia de FTIR.

Temperatura (oC) Constantes de velocidade L/mol min-1 Tempo de escoamento Espectroscopia de FTIR

25 2.49 x 10-3 5.91 x 10-5

50 2.50 x 10-3 -

Como já discutido em um trabalho anterior4, com o avanço da reação de degradação, a capacidade de enovelamento dos resíduos de baixa massa molar é significantemente reduzida, se comparada ao polímero original. Se a variável Cp é mantida no nível mínimo, o tempo normalizado de escoamento não produz um ajuste linear quando a equação (11) é aplicada. Neste caso, a ordem da reação é afetada pela quantidade de novelos poliméricos na solução. De fato, as constantes determinadas usando os dados de tempo de escoamento poderiam ser consideradas mais propriamente como aparentes, enquanto que a constante de velocidade determinada a partir dos dados de espectroscopia de FTIR poderia seria uma quantidade mais realística da cinética do processo.

4.4 Influência de água e luz policromática na degradação de policloropreno em pre - sença de FeCl3

A habilidade de FeCl3 para gerar radicais livres à temperatura ambiente é menor do que sua habilidade para atuar como ácidos de Lewis.44 O FeCl3 é higroscópico e pode gerar prótons na presença de traços de água, de acordo como a equação (12):

(50)

FeCl3 + H2O → FeCl3OH- + H+ ( 12 )

Neste caso, os prótons poderiam reagir com a dupla ligação do polidieno independentemente da exposição à luz.44 Em contraste, água em presença de FeCl3 combinado com exposição à luz ultravioleta (luz UV) e pH ácido (2,5 < pH < 4,0) 35 pode gerar radicais hidroxis.Os radicais orgânicos são gerados por fotólise do substrato orgânico ou por reação com os radicais hidroxis.58 Esses são levados, via radicalar, a peroxila e/ou peróxidos e intensificam a degradação e eventualmente podem levar a completa mineralização.59

Teoricamente, a reação de degradação de PCP pode ocorrer por esses dois caminhos. Após o tratamento com a peneira molecular por três e por sete dias, um volume comum de cada solução foi colhido e, após separação da peneira molecular, adicionada ao viscosímetro. Medidas de tempo de escoamento foram executadas para ambas as soluções resultantes expostas à luz policromática. O tempo normalizado de escoamento para a solução tratada por três dias exibiu apenas um pequeno decréscimo no tempo de escoamento em função do tempo de reação. Por outro lado, o tempo normalizado de escoamento medido para a solução tratada com peneira molecular por sete dias foi constante e igual 1,0, como mostrado na Figura 8.

(51)

0 50 100 150 0,6 0,7 0,8 0,9 1,0 A B C D T e m po no rm al iz a d o d e es c oam ent o Tempo de reação/min

Figura 14 – Curvas de tempo normalizado de escoamento em função do tempo de

reação para: A) PCP/FeCl3.6H2O não tratada com p.m. (peneira molecular); B) PCP/FeCl3.6H2O tratada com p.m. por 3 dias; C) PCP/FeCl3.6H2O tratada com p.m.

por 7 dias; D) PCP/FeCl3.6H2O exposta à luz policromática.

Foi observado que as medidas de tempo de escoamento para a solução não tratada com peneira molecular, porém sem exposição à luz policromática não apresentaram modificação ao longo de 150 minutos (Figura 14), o intervalo de tempo utilizado para execução das medidas.

Este resultado permite concluir que a reação de degradação é dependente de dois parâmetros principais, a exposição à luz policromática e a presença de água. Também foi verificado que somente a presença de água ou de luz policromática não é suficiente para promover decréscimo no tempo de escoamento, ou seja, causar degradação de PCP

(52)

na presença de FeCl3. Assim, para que ocorra a degradação de PCP, nas condições estudadas nesta dissertação, é necessária a presença de água e de luz policromática, ou seja, uma combinação destes dois fatores. Estes fatos caracterizam o processo de degradação do PCP nas condições aqui estudadas como um processo Foto-Fenton, ou seja, a degradação do polímero não pode ser atribuída aos prótons descritos na reação (12). De acordo com a literatura 52,59 o primeiro passo na foto-degradação de PCP é provavelmente a abstração de um hidrogênio alílico na cadeia polimérica, a qual pode ocorrer devido a defeitos ou impurezas que atuam inicialmente como cromóforos extrínsecos e a radicais que podem ser formados no material exposto a luz. Radicais podem tanto abstrair ou adicionar hidrogênios à dupla ligação. Portanto, radicais poliméricos favorecem o processo de degradação na presença de radicais hidroxilas, estes formados por reação Foto-Fenton. Foi verificado que o tempo normalizado de escoamento para solução de PCP sem FeCl3.6H2O não se alterou ao longo do intervalo de tempo estudado, conforme apresentado na Figura 15, mesmo quando exposta à luz policromática, ou seja, somente a abstração do hidrogênio alílico não é suficiente para provocar a degradação de policloropreno como função da exposição da solução à luz policromática. Uma descrição simplificada da reação de Foto-Fenton é dada na reação (13):

Fe3+ + H2O + hv → Fe2+ + H+ + (OH)

.

(53)

0 50 100 150 200 250 300 350 400 0,0 0,5 1,0 1,5 2,0 Temp o normal iz a do de e s coame n to Tempo de reação/min

Figura 15 – Curvas de tempo normalizado de escoamento em função do tempo de

reação para solução de PCP sem FeCl3.6H2O em presença de luz policromática.

4.5 Determinação dos resíduos de foto-degradação de policloropreno por CG-MS

No cromatograma, Figura 16, obtido da solução de PCP em tolueno com FeCl3.6H2O previamente exposta à luz foram observados muitos picos. Isto mostra que são formados muitos produtos durante a foto-degradação de PCP na presença de FeCl3.6H2O. De acordo com Delor et al52, cloretos de ácido saturados e insaturados podem ser formados durante a degradação foto-oxidativa de PCP. Kamisnky et al60 observou a presença de clorobutenos entre os diferentes produtos obtidos por pirólises de PCP a 593 oC.

(54)

Figura 16 – Cromatograma obtido para a solução de PCP/FeCl3.H2O após 25 horas de foto - exposição à luz policromática.E em menor o perfil de fragmentação para o tempo de retenção 9:36 minutos.

Neste trabalho, um dos resíduos obtidos via foto-degradação de PCP na presença de FeCl3.6H2O é provavelmente o cloreto de ácido (C3H5ClO) com m/z = 92. Baseado nos sinais observados no espectro de CG-MS, o perfil de fragmentação desta substância sugere a seguinte seqüência:

m/z = 92 m/z = 69 m/z = 57 m/z = 41

C3H5ClO Æ CClO

(55)

Outros produtos formados pela foto-degradação também foram observados no cromatograma, entre eles o C4H7Cl com m/z = 89 o qual também foi relatado por Kaminska et al 24. A formação do cloreto de ácido (R-COCl) foi investigada usando o seguinte procedimento: a solução PCP/FeCl3.6H2O foi preparada nas condições do experimento 6 do planejamento fatorial e exposta à luz policromática por 24 horas sob agitação constante. Transcorrido este tempo a solução foi adicionada em um tubo de ensaio preenchido até meia altura com água de grau Milli-Q® e completado com a solução de PCP/FeCl3.6H2O em tolueno (esquema descrito na Figura 17).

Figura 17 – Diagrama esquemático para o experimento de medidas de pH.

O pH da fase aquosa foi medido como função do tempo de contato com a água. Quando em contato com a água, cloreto de ácido se hidrolisa produzindo o respectivo ácido e cloreto de hidrogênio, conforme descrito na reação da equação (14). Na Figura 18 é mostrada a curva de pH medido na fase aquosa em função do tempo após a adição do meio reacional à água. Por meio do ponto de inflexão da curva foi possível determinar o pKa para a solução aquosa (pKa = 4.6), valor que corresponde ao pKa do

Referências

Documentos relacionados

Por fim, na terceira parte, o artigo se propõe a apresentar uma perspectiva para o ensino de agroecologia, com aporte no marco teórico e epistemológico da abordagem

Apesar do Decreto de Lei nº118/2013 ter sido lançado em 2013, fazia falta o lançamento de um despacho que definiria a forma de calculo de Qusable e SPF. Apenas em dezembro de 2015

O objetivo do curso foi oportunizar aos participantes, um contato direto com as plantas nativas do Cerrado para identificação de espécies com potencial

Penalidades: suspensão imediata da conduta vedada, quando for o caso; multa no valor de R$ 5.320,50 a R$ 106.410,00 aos agentes responsáveis, aos partidos políticos, às

Users who join Reddit earlier post more and longer comments than those who join later, while users who survive longer start out both more active and more likely to comment than

No Estado do Pará as seguintes potencialidades são observadas a partir do processo de descentralização da gestão florestal: i desenvolvimento da política florestal estadual; ii

Esta ação consistirá em duas etapas. Este grupo deverá ser composto pela gestora, pelo pedagogo e ou coordenador pedagógico e um professor por disciplina

Mestrado em: Nutrição Humana ou Nutrição Clínica ou Saúde Coletiva ou Ciências da Saúde ou Ciências ou Saúde ou Alimentos e Nutrição e Desenvolvimento na