• Nenhum resultado encontrado

Monochromatic path/cycle partitions

N/A
N/A
Protected

Academic year: 2022

Share "Monochromatic path/cycle partitions"

Copied!
130
0
0

Texto

(1)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Monochromatic path/cycle partitions

Maya Stein University of Chile

based on joint work with David Conlon, Richard Lang, Oliver Schaudt

FoCM Graphs and Combinatorics Session, Montevideo

December 11, 2014

(2)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

OVERVIEW OF THE PROBLEM

(3)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Problem

How many disjoint monochromatic cycles do we need to cover any 2-edge-coloured Kn?

function ofn?

Cycles may be empty, singletons, single edges.

(4)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Problem

How many disjoint monochromatic cycles do we need to cover any 2-edge-coloured Kn?

function ofn?

Cycles may be empty, singletons, single edges.

(5)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Problem

How many disjoint monochromatic cycles do we need to cover any 2-edge-coloured Kn?

function ofn? actually 2

Cycles may be empty, singletons, single edges.

(6)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Problem

How many disjoint monochromatic cycles do we need to cover any 2-edge-coloured Kn?

function ofn? actually 2

Cycles may be empty, singletons, single edges.

(7)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Problem

How many disjoint monochromatic cycles do we need to cover any r-edge-coloured Kn?

function ofn and r?

Cycles may be empty, singletons, single edges.

(8)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Problem

How many disjoint monochromatic cycles do we need to cover any r-edge-coloured Kn?

function ofn and r? actually a function ofr

Cycles may be empty, singletons, single edges.

(9)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Problem

How many disjoint monochromatic cycles do we need to cover any r-edge-coloured Kn?

function ofn and r? actually a function ofr

Cycles may be empty, singletons, single edges.

(10)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Problem

How many disjoint monochromatic paths do we need to cover any r-edge-coloured Kn?

function ofn and r? actually a function ofr

Cycles may be empty, singletons, single edges.

(11)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Problem

How many disjoint monochromatic paths do we need to cover any r-edge-coloured Kn?

function ofn and r? actually a function ofr

Cycles may be empty, singletons, single edges.

(12)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Problem

How many disjoint monochromatic paths do we need to cover any r-edge-coloured Kn,n?

function ofn and r? actually a function ofr

Cycles may be empty, singletons, single edges.

(13)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Problem

How many disjoint monochromatic paths do we need to cover any r-edge-coloured Knk?

function ofn and r? actually a function ofr

Cycles may be empty, singletons, single edges.

(14)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

COMPLETE GRAPHS

(15)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

E (K

n

) coloured with 2 colours

An observation of Gerencser and Gy´arf´as ’67:

Take a longest red/blue path

Does it cover all vertices?

yesit does!

⇒ ∃partition of Kn into .

(16)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

E (K

n

) coloured with 2 colours

An observation of Gerencser and Gy´arf´as ’67:

Take a longest red/blue path

Does it cover all vertices?

yesit does!

⇒ ∃partition of Kn into .

(17)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

E (K

n

) coloured with 2 colours

An observation of Gerencser and Gy´arf´as ’67:

Take a longest red/blue path

Does it cover all vertices? Suppose it doesn’t.

yesit does!

⇒ ∃partition of Kn into .

(18)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

E (K

n

) coloured with 2 colours

An observation of Gerencser and Gy´arf´as ’67:

Take a longest red/blue path

Does it cover all vertices? Suppose it doesn’t.

yesit does!

⇒ ∃partition of Kn into .

(19)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

E (K

n

) coloured with 2 colours

An observation of Gerencser and Gy´arf´as ’67:

Take a longest red/blue path

Does it cover all vertices? Suppose it doesn’t.

yesit does!

⇒ ∃partition of Kn into .

(20)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

E (K

n

) coloured with 2 colours

An observation of Gerencser and Gy´arf´as ’67:

Take a longest red/blue path

Does it cover all vertices? Suppose it doesn’t.

yesit does!

⇒ ∃partition of Kn into .

(21)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

E (K

n

) coloured with 2 colours

An observation of Gerencser and Gy´arf´as ’67:

Take a longest red/blue path

Does it cover all vertices? yesit does!

⇒ ∃partition of Kn into .

(22)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

E (K

n

) coloured with 2 colours

An observation of Gerencser and Gy´arf´as ’67:

Take a longest red/blue path

Does it cover all vertices? yesit does!

⇒ ∃partition of Kn into .

(23)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

E (K

n

) coloured with 2 colours

Footnote (Gerencser and Gy´arf´as ’67): Any 2-coloured Kn has a partition into two monochromatic paths, of distinct colours.

Thm (Bessy and Thomass´e ’10): Any 2-coloured Kn has a partition into two monochromatic cycles, of distinct colours.

conjectured by Lehel (’79)

proved for very large n by Luczak, R¨odl, Szemer´edi ’98, and for largen by Allen ’08

Generalization:

Thm (Conlon, St ’14+): The same holds for 2-local colourings.

(24)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

E (K

n

) coloured with 2 colours

Footnote (Gerencser and Gy´arf´as ’67): Any 2-coloured Kn has a partition into two monochromatic paths, of distinct colours.

Thm (Bessy and Thomass´e ’10): Any 2-coloured Kn has a partition into two monochromatic cycles, of distinct colours.

conjectured by Lehel (’79)

proved for very large n by Luczak, R¨odl, Szemer´edi ’98, and for largen by Allen ’08

Generalization:

Thm (Conlon, St ’14+): The same holds for 2-local colourings.

(25)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

E (K

n

) coloured with 2 colours

Footnote (Gerencser and Gy´arf´as ’67): Any 2-coloured Kn has a partition into two monochromatic paths, of distinct colours.

Thm (Bessy and Thomass´e ’10): Any 2-coloured Kn has a partition into two monochromatic cycles, of distinct colours.

conjectured by Lehel (’79)

proved for very large n by Luczak, R¨odl, Szemer´edi ’98, and for largen by Allen ’08

Generalization:

Thm (Conlon, St ’14+): The same holds for 2-local colourings.

(26)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

E (K

n

) coloured with 2 colours

Footnote (Gerencser and Gy´arf´as ’67): Any 2-coloured Kn has a partition into two monochromatic paths, of distinct colours.

Thm (Bessy and Thomass´e ’10): Any 2-coloured Kn has a partition into two monochromatic cycles, of distinct colours.

conjectured by Lehel (’79)

proved for very large n by Luczak, R¨odl, Szemer´edi ’98, and for largen by Allen ’08

Generalization:

Thm (Conlon, St ’14+): The same holds for 2-local colourings.

(27)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

E (K

n

) coloured with 2 colours

Footnote (Gerencser and Gy´arf´as ’67): Any 2-coloured Kn has a partition into two monochromatic paths, of distinct colours.

Thm (Bessy and Thomass´e ’10): Any 2-coloured Kn has a partition into two monochromatic cycles, of distinct colours.

conjectured by Lehel (’79)

proved for very large n by Luczak, R¨odl, Szemer´edi ’98, and for largen by Allen ’08

Generalization:

Thm (Conlon, St ’14+): The same holds for 2-local colourings.

(28)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

E (K

n

) locally coloured with 2 colours

Thm (Conlon, St ’14+): Any 2-local colouredKn has a partition into 2 cycles.

r-local colouring:

arbitrary many colours, but each vertex sees≤r colours.

(29)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

E (K

n

) locally coloured with 2 colours

Thm (Conlon, St ’14+): Any 2-local colouredKn has a partition into 2 cycles.

proof idea:

we get one of the following two:

1)colour that sees all vertices 2) there is no such colour

(30)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

E (K

n

) locally coloured with 2 colours

Thm (Conlon, St ’14+): Any 2-local colouredKn has a partition into 2 cycles.

proof idea:

we get one of the following two:

1)colour that sees all vertices 2) there is no such colour

(31)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

E (K

n

) coloured with r colours

need at least r paths/cycles

(32)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

E (K

n

) coloured with r colours

need at least r paths/cycles

(33)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Lower bound: r paths/cycles needed:

(34)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Lower bound: r paths/cycles needed:

(35)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Lower bound: r paths/cycles needed:

(36)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Lower bound: r paths/cycles needed:

(37)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

E (K

n

) coloured with r colours

need at least r paths/cycles

cannot hope for paths of distinct colours

Conjecture (Gy´arfas ’89): Any r-coloured Kn has a partition into r monochromatic paths.

inspired by a result of Rado ’78 forK

Conjecture (Erd˝os, Gy´arfas, Pyber ’91): Any r-coloured Kn has a partition intor monochromatic cycles.

they show that partition intocr2logr cycles SPOILER ALERT

second conjecture not true

(38)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

E (K

n

) coloured with r colours

need at least r paths/cycles

cannot hope for paths of distinct colours

Conjecture (Gy´arfas ’89): Any r-coloured Kn has a partition into r monochromatic paths.

inspired by a result of Rado ’78 forK

Conjecture (Erd˝os, Gy´arfas, Pyber ’91): Any r-coloured Kn has a partition intor monochromatic cycles.

they show that partition intocr2logr cycles SPOILER ALERT

second conjecture not true

(39)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

E (K

n

) coloured with r colours

need at least r paths/cycles

cannot hope for paths of distinct colours

Conjecture (Gy´arfas ’89): Any r-coloured Kn has a partition into r monochromatic paths.

inspired by a result of Rado ’78 forK

Conjecture (Erd˝os, Gy´arfas, Pyber ’91): Any r-coloured Kn has a partition intor monochromatic cycles.

they show that partition intocr2logr cycles SPOILER ALERT

second conjecture not true

(40)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

E (K

n

) coloured with r colours

need at least r paths/cycles

cannot hope for paths of distinct colours

Conjecture (Gy´arfas ’89): Any r-coloured Kn has a partition into r monochromatic paths.

inspired by a result of Rado ’78 forK

Conjecture (Erd˝os, Gy´arfas, Pyber ’91): Any r-coloured Kn has a partition intor monochromatic cycles.

they show that partition intocr2logr cycles SPOILER ALERT

second conjecture not true

(41)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

E (K

n

) coloured with r colours

need at least r paths/cycles

cannot hope for paths of distinct colours

Conjecture (Gy´arfas ’89): Any r-coloured Kn has a partition into r monochromatic paths.

inspired by a result of Rado ’78 forK

Conjecture (Erd˝os, Gy´arfas, Pyber ’91): Any r-coloured Kn has a partition intor monochromatic cycles.

they show that partition intocr2logr cycles

SPOILER ALERT

second conjecture not true

(42)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

E (K

n

) coloured with r colours

need at least r paths/cycles

cannot hope for paths of distinct colours

Conjecture (Gy´arfas ’89): Any r-coloured Kn has a partition into r monochromatic paths.

inspired by a result of Rado ’78 forK

Conjecture (Erd˝os, Gy´arfas, Pyber ’91): Any r-coloured Kn has a partition intor monochromatic cycles.

they show that partition intocr2logr cycles SPOILER ALERT

second conjecture not true

(43)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

E (K

n

) coloured with r colours

need at least r paths/cycles

cannot hope for paths of distinct colours

Conjecture (Gy´arfas ’89): Any r-coloured Kn has a partition into r monochromatic paths.

inspired by a result of Rado ’78 forK

Conjecture (Erd˝os, Gy´arfas, Pyber ’91): Any r-coloured Kn has a partition intor monochromatic cycles.

they show that partition intocr2logr cycles SPOILER ALERT

second conjecture not true

(44)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

E (K

n

) coloured with r colours

need at least r paths/cycles

cannot hope for paths of distinct colours

Conjecture (Gy´arfas ’89): Any r-coloured Kn has a partition into r monochromatic paths.

inspired by a result of Rado ’78 forK

Conjecture (Erd˝os, Gy´arfas, Pyber ’91): Any r-coloured Kn has a partition intor monochromatic cycles.

they show that partition intocr2logr cycles

SPOILER ALERT

second conjecture not true

(45)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Bounds for cycles: E (K

n

) coloured with r colours

Conjecture (EGP ’91): partition intor monoχ cycles.

Partitions intof(r) cycles (for large n):

• ∃partition intoO(r2logr) cycles (EGP ’91)

• ∃partition into 100rlogr cycles (Gy´arfas, Ruszink´o, Sark¨ozy, Szemer´edi ’06)

for r-local colourings, partition intoO(r2logr) cycles (Conlon, St ’14+)

Three colours:

cover all but o(n) vertices with 3 disjoint cycles (GRSS ’12)

cover all vertices with 17 disjoint cycles, for large n (GRSS ’12)

r cycles are not enough:

counterexample, for all r 3 (Pokrovskiy ’14)

(46)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Bounds for cycles: E (K

n

) coloured with r colours

Conjecture (EGP ’91): partition intor monoχ cycles.

Partitions intof(r) cycles (for largen):

• ∃partition intoO(r2logr) cycles (EGP ’91)

• ∃partition into 100rlogr cycles (Gy´arfas, Ruszink´o, Sark¨ozy, Szemer´edi ’06)

for r-local colourings, partition intoO(r2logr) cycles (Conlon, St ’14+)

Three colours:

cover all but o(n) vertices with 3 disjoint cycles (GRSS ’12)

cover all vertices with 17 disjoint cycles, for large n (GRSS ’12)

r cycles are not enough:

counterexample, for all r 3 (Pokrovskiy ’14)

(47)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Bounds for cycles: E (K

n

) coloured with r colours

Conjecture (EGP ’91): partition intor monoχ cycles.

Partitions intof(r) cycles (for largen):

• ∃partition intoO(r2logr) cycles (EGP ’91)

• ∃partition into 100rlogr cycles (Gy´arfas, Ruszink´o, Sark¨ozy, Szemer´edi ’06)

for r-local colourings, partition intoO(r2logr) cycles (Conlon, St ’14+)

Three colours:

cover all but o(n) vertices with 3 disjoint cycles (GRSS ’12)

cover all vertices with 17 disjoint cycles, for large n (GRSS ’12)

r cycles are not enough:

counterexample, for all r 3 (Pokrovskiy ’14)

(48)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Bounds for cycles: E (K

n

) coloured with r colours

Conjecture (EGP ’91): partition intor monoχ cycles.

Partitions intof(r) cycles (for largen):

• ∃partition intoO(r2logr) cycles (EGP ’91)

• ∃partition into 100rlogr cycles (Gy´arfas, Ruszink´o, Sark¨ozy, Szemer´edi ’06)

for r-local colourings, partition intoO(r2logr) cycles (Conlon, St ’14+)

Three colours:

cover all but o(n) vertices with 3 disjoint cycles (GRSS ’12)

cover all vertices with 17 disjoint cycles, for large n (GRSS ’12)

r cycles are not enough:

counterexample, for all r 3 (Pokrovskiy ’14)

(49)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Bounds for cycles: E (K

n

) coloured with r colours

Conjecture (EGP ’91): partition intor monoχ cycles.

Partitions intof(r) cycles (for largen):

• ∃partition intoO(r2logr) cycles (EGP ’91)

• ∃partition into 100rlogr cycles (Gy´arfas, Ruszink´o, Sark¨ozy, Szemer´edi ’06)

for r-local colourings, partition intoO(r2logr) cycles (Conlon, St ’14+)

Three colours:

cover all but o(n) vertices with≤3 disjoint cycles (GRSS ’12)

cover all vertices with 17 disjoint cycles, for large n (GRSS ’12)

r cycles are not enough:

counterexample, for all r 3 (Pokrovskiy ’14)

(50)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Bounds for cycles: E (K

n

) coloured with r colours

Conjecture (EGP ’91): partition intor monoχ cycles.

Partitions intof(r) cycles (for largen):

• ∃partition intoO(r2logr) cycles (EGP ’91)

• ∃partition into 100rlogr cycles (Gy´arfas, Ruszink´o, Sark¨ozy, Szemer´edi ’06)

for r-local colourings, partition intoO(r2logr) cycles (Conlon, St ’14+)

Three colours:

cover all but o(n) vertices with≤3 disjoint cycles (GRSS ’12)

cover all vertices with 17 disjoint cycles, for large n (GRSS ’12)

r cycles are not enough:

counterexample, for all r 3 (Pokrovskiy ’14)

(51)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Bounds for cycles: E (K

n

) coloured with r colours

Conjecture (EGP ’91): partition intor monoχ cycles.

Partitions intof(r) cycles (for largen):

• ∃partition intoO(r2logr) cycles (EGP ’91)

• ∃partition into 100rlogr cycles (Gy´arfas, Ruszink´o, Sark¨ozy, Szemer´edi ’06)

for r-local colourings, partition intoO(r2logr) cycles (Conlon, St ’14+)

Three colours:

cover all but o(n) vertices with≤3 disjoint cycles (GRSS ’12)

cover all vertices with 17 disjoint cycles, for large n (GRSS ’12)

r cycles are not enough:

counterexample, for all r 3 (Pokrovskiy ’14)

(52)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Cycles: E (K

n

) coloured with r colours

Conjecture (EGP ’91): There is a partition of all vertices of Kn into r monochromatic cycles.

(still possible) Conjecture: There is a partition of all vertices ofKn into monochromatic cycles.

Conjecture (Gy ’89): There is a partition of all vertices of Kn into r monochromatic paths.

true forr 3, open forr >3

(53)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Cycles: E (K

n

) coloured with r colours

Conjecture (EGP ’91): There is a partition of all vertices of Kn into r monochromatic cycles.

(still possible) Conjecture: There is a partition of all vertices ofKn into monochromatic cycles.

Conjecture (Gy ’89): There is a partition of all vertices of Kn into r monochromatic paths.

true forr 3, open forr >3

(54)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Cycles: E (K

n

) coloured with r colours

Conjecture (EGP ’91): There is a partition of all vertices of Kn into r monochromatic cycles.

(still possible) Conjecture: There is a partition of all but 1 vertices ofKn into r monochromatic cycles.

Conjecture (Gy ’89): There is a partition of all vertices of Kn into r monochromatic paths.

true forr 3, open forr >3

(55)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Cycles: E (K

n

) coloured with r colours

Conjecture (EGP ’91): There is a partition of all vertices of Kn into r monochromatic cycles.

(still possible) Conjecture: There is a partition of all but c vertices ofKn into r monochromatic cycles.

Conjecture (Gy ’89): There is a partition of all vertices of Kn into r monochromatic paths.

true forr 3, open forr >3

(56)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Cycles: E (K

n

) coloured with r colours

Conjecture (EGP ’91): There is a partition of all vertices of Kn into r monochromatic cycles.

(still possible) Conjecture: There is a partition of all but cr vertices ofKn into r monochromatic cycles.

Conjecture (Gy ’89): There is a partition of all vertices of Kn into r monochromatic paths.

true forr 3, open forr >3

(57)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Cycles: E (K

n

) coloured with r colours

Conjecture (EGP ’91): There is a partition of all vertices of Kn into r monochromatic cycles.

(still possible) Conjecture: There is a partition of all but o(n) vertices ofKn into r monochromatic cycles.

This is known forr = 3.

Conjecture (Gy ’89): There is a partition of all vertices of Kn

into r monochromatic paths. true forr 3, open forr >3

(58)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Cycles: E (K

n

) coloured with r colours

Conjecture (EGP ’91): There is a partition of all vertices of Kn into r monochromatic cycles.

(still possible) Conjecture: There is a partition of all vertices ofKn into r+ 1 monochromatic cycles.

Conjecture (Gy ’89): There is a partition of all vertices of Kn into r monochromatic paths.

true forr 3, open forr >3

Referências

Documentos relacionados

The article focuses attention on tumours as a whole although it is also partially based on the evolu- tion of the melanocytic naevi (concretely) in the direc- tion of a

Ao Professor doutor Raymundo Vento Tielves (Cubano) pelo grande apoio com as bibliografias e conteúdo na estrutura da tese e pela amizade, carinho e atenção dispensada

Tratando-se de um texto de viagem que relata a primeira travessia nocturna do Atlân- tico Sul realizada a bordo do avião da Aeronáutica militar portuguesa Argos, comandado por

O facto destes apresentarem características marcadamente distintas das observadas na maioria dos trabalhadores portugueses na mesma faixa etária (Fernandes, 2007)

Estamos intencionalmente distanciando o recorte da nossa pesquisa das análises que debatem a expansão do ensino superior privado nos governo do PT (2003 – 2016), das

Conseqüentemente, se a linguagem utilizada para descrever o programa for estendida, não é necessária a criação de novas regras de inferência, como ocorre com o cálculo de Hoare,

Gastrina- Celulas G, potencializam a liberação de Histamina pela ECS, aumentando cálcio intracelular.. Inibe a liberação de gastrina, histamina e ácido pelas

Construct the shortest path tree edge by edge; at each step adding one new edge, corresponding to construction of shortest path to the current new vertex... The algorithm will