• Nenhum resultado encontrado

Diagnostic and treatment for linear mixed models Julio M Singer

N/A
N/A
Protected

Academic year: 2022

Share "Diagnostic and treatment for linear mixed models Julio M Singer"

Copied!
64
0
0

Texto

(1)

Diagnostic and treatment for linear mixed models

Julio M Singer

in collaboration with

Francisco M.M. RochaandJuvˆencio S Nobre Departamento de Estat´ıstica

Universidade de S˜ao Paulo, Brazil www.ime.usp.br/∼jmsinger

(2)

Outline

Two examples

Gaussian linear mixed models (LMM) Diagnostic tools

Residual analysis Global influence analysis Local influence analysis Treatment

Fine tuning of the model

LMM with elliptically-symmetric random effects LMM with skew-symmetric random effects Generalized linear mixed models (GLMM) Generalized estimating equations based models

Practical issues

Where do we go from here

(3)

Ozone example

Ozone concentration: measured with expensive instruments Alternative: reflectance in passive filters / calibration curve

(4)

Ozone example

Experiment LPAE/FMUSP: predict period expected reflectance (latent value) accounting for possible outliers

Period Reflectance Period Reflectance

1 27.0 6 47.9

1 34.0 6 60.4

1 17.4 6 47.3

2 24.8 7 50.4

2 29.9 7 50.7

2 32.1 7 55.9

3 35.4 8 54.9

3 63.2 8 43.2

3 27.4 8 52.1

4 51.2 9 38.8

4 54.5 9 59.9

4 52.2 9 61.1

5 77.7

5 53.9

5 48.2

(5)

Ozone example

Linear mixed model:

yij =µ+ai+eij, i= 1, . . . ,9, j= 1,2,3

aiN(0, σ2a)independent eijN(0, σ2)independent ai andeij independent

Consequently

V(yij) =σ2a+σ2 Cov(yij, yik) =σa2 Cov(ylj, yik) = 0

Reliability of the mean: ρm=σa2/(σa2+σ2/3)

(6)

Kcal intake example

Study conducted at FMUSP

Compare average daily kcal intake during pregnancy

Após a exclusão das gestantes com consumo maior que 4000 Kcal:

4000 3000 2000 1000 0

3 2

1 4000 3000 2000 1000 0

3 2

1 1

Trimestre

Energia

2

3 4

Panel variable: IMC_C

Valores de estatísticas descritivas para Energia

Trimestre N Média Desvio padrão Mínimo Mediana Máximo 1 160 1973,2 689,5 584,4 1903,7 3905,0 2 146 2148,8 598,1 699,4 2107,0 3754,1 3 135 2124,8 649,4 509,2 2038,5 3820,2

(7)

Kcal intake example

Linear mixed model

yijkji+aijk+eijk, α1 = 0

iindexesBM I (1 =BM I <24.9kg/m2,2 =BM I24.9kg/m2) j indexes period (1 = 1st trimester and2 = 2ndor 3rdtrimesters) kindexes women (k= 1, . . . , ni)

bik= (ai1k, ai2k, ai3k)>∼N3(0,G) independent

G=

σ21 σ12 σ13

σ12 σ22 σ23 σ13 σ23 σ32

eij = (ei1k, ei2k, ei3k)>∼N3[0, σ2I3] independent bik and eik independent

(8)

Preterm neonates example

Aorta diameter per unit weight (mm/kg)

Weeks post conception

Weight 27 28 29 30 31 32 33 34 35 36 37 38 39 40

AGA 9.4 10.3 8.7 8.2 6.7 6.1 5.6 5.1 4.9

AGA 6.1 6.1 6.2 5.4 5.2 4.9

AGA 5.8 6.3 5.8 5.1 4.9 4.6

AGA 9.7 9.2 9.5 7.3 6.1 5.4 4.8 4.5

AGA 6.4 5.8 5.2 4.7

AGA 5.4 4.9 4.6 4.3

AGA 8.3 8.5 8.6 7.9 6.2 5.5 4.2

AGA 7.7 8.6 7.9 6.6 5.7

AGA 5.9 6.1 5.4 4.1

AGA 7.0 6.5

AGA 5.2 4.8 4.2 4.1 3.7

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

AGA 6.2 6.1 6.2 6.0 5.3

SGA 7.2 6.8 5.5 4.7

SGA 7.1 8.0 7.7 6.5 5.6

SGA 7.4 8.3 9.4 10.0 9.2 8.0

SGA 7.7 6.6 5.5 4.6

SGA 6.5 4.4

SGA 7.6 8.6 9.3 8.0 6.6 5.0 4.7

SGA 6.6 8.4 8.2 7.6 6.6

SGA 7.1 6.3 6.1 5.9 5.7 4.8

SGA 8.5 8.4 4.9

SGA 8.3 7.4 6.2 4.6 3.8

SGA 9.8 9.1 7.3 5.3

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

SGA 8.5

SGA 10.9 10.7 9.4 8.0 5.8 4.9

(9)

Preterm neonates example

Profile plots for the Preterm neonates example

Mean Profile in bold

Aorta diameter (mm/kg)

4 6 8 10

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 AGA

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 SGA

Loess in bold Weeks

Aorta diameter (mm/kg)

4 6 8 10

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 AGA

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 SGA

JM Singer (USP) EMR 2013, Maresias, SP 9 / 64

(10)

Preterm neonates example

Objective: evaluate evolution of aorta diameter of preterm neonates from birth to 40-th week post conception

Linear mixed model suggested via exploratory analysis (Rocha &

Singer, 2013, under revision)

yijki1(t1jk−26) +γ2(t2jk−26)2+aij+bij(tijk−26) +eijk iindexes group (1=AGA and 2=SGA)

j indexes neonates (j= 1, . . . , ni) kindexes week (k= 1, . . . , mij)

bij = (aij, bij)>∼N2(0,Gi) independent Gi=

σ2ai σabi

σabi σ2b

i

eij = (eij1, . . . , eijmij)>∼Nmij[0, σ2Imij]independent bij andeij independent

(11)

Gaussian LMM

yi =Xiβ+Zibi+ei, i= 1, . . . , n yi: (mi×1) response profile fori-th unit

β: (p×1) (fixed effects)

Xi: (mi×p) fixed effects specification matrix Zi: (mi×q) random effects specification matrix bi: (q×1) random effects,bi∼Nq(0,G) independent ei: (mi×1) random errors,ei ∼Nmi(0,Ri) independent bi andei independent

G=G(θ)and Ri=Ri(θ),θ: covariance parameters Marginal variance: V(yi) =Vi =ZiGZ>i +Ri

Usually Ri2Imi: homoskedastic conditional independence model

(12)

Gaussian LMM

Compactly

y=Xβ+Zb+e with

y= (y1>,· · ·,yn>)> (N ×1, N =Pn i=1mi) X= (X>1,· · ·,X>n)> (N ×p)

Z=⊕ni=1Zi (N ×nq) b= (b>1,· · · ,b>n)> (nq×1) e= (e>1,· · · ,e>n)> (N×1) Γ=In⊗G(θ) (nq×nq) Σ=⊕ni=1Ri(θ) (N ×N) Consequently

V(y) =V=ZΓZ>

(13)

Covariance matrix structure

1 Uniform

Ri(θ),G(θ) =

σ2 τ τ τ σ2 τ τ τ σ2

2 Unstructured

Ri(θ),G(θ) =

σ21 σ12 σ13

σ12 σ22 σ23 σ13 σ23 σ32

3 AR(1)

Ri(θ),Gi(θ) =σ2

1 φ φ2

φ 1 φ

φ2 φ 1

(14)

Inference for Gaussian LMM

Given θ [Γ(θ),Σ(θ) andV(θ)]

BLUEof β: βb = X>V−1X−1

X>V−1y BLUP of b: bb=ΓZ>V−1[I−X X>V−1X−1

X>V−1]y Ozone example BLUP

ybij=y+k(yiy) Shrinkage constant

k= σ2a σa2+σ2/3

SubstitutingΓb andΣb in the expressions forβb and bb we obtain empirical BLUE and BLUP

(15)

Inference for Gaussian LMM

Restricted maximum likelihood (REML) for θ (Γ, Σ, V):

1 2

N

X

i=1

tr{V−1i (bθ) ˙Vi(bθ)} − 1 2

N

X

i=1

[∂Qi(θ)/∂θj|θ=bθ]

1 2

N

X

i=1

tr{V−1i (bθ)X>i V−1i (bθ) ˙Vi(bθ)V−1i (bθ)Xi}= 0,

V˙i(bθ) = [∂Vi(θ)/∂θj]>

θ=bθ

Qi(θ) = [yiXiβ(θ)]b >V−1i (θ)[yiXiβ(θ)]b Newton-Raphson algorithm:

θ(l)(l−1)−H−1(l−1)]u[θ(l−1)], l= 1,2, . . . Score function: u(θ) =∂l[bβ(θ),θ]/∂θ

Hessian matrix: H(θ) =2l[bβ(θ),θ]/∂θ∂θ>

Stopping rule: (l)θ(l−1)k< ε,ε >0

Fisher Scoringalgorithm: H(θ) replaced by its expectation EM algorithm

(16)

Statistical properties of estimators

β(θ)b ∼N{β,Vβb(θ)}with Vβb(θ) = [PN

i=1X>i V−1i (θ)Xi]−1 bθ≈N{θ,V

bθ(θ)}with V

bθ(θ) denoting an (m×m) matrix for which the element (r, s), r, s= 1, . . . , m, is

[Vbθ(θ)]rs= 12PN

i=1tr{V−1i (θ) ˙Vir(θ)Vi−1(θ) ˙Vis(θ)}

β(b bθ)≈N{β,V

βb(θ)}

Vβb(θ) andV

bθ(θ) may be estimated by the inverse of Fisher’s information matrix

Asymptotic results hold even without normality provided nis sufficiently large

(17)

Types of residuals in Gaussian LMM

Three types of residuals that accommodate theextra sourceof variability present in linear mixed models, namely:

i) Marginal residuals,bξ=yXbβpredictors of marginal errors, ξ=yE[y] =y=Zb+e

ii) Conditional residuals,be=yXbβZbbpredictors ofconditional errorse=yE[y|b] =yZb

iii) BLUP,Zbb, predictors ofrandom effects,

Zb=E[y|b]E[y] = (yZb)(yXβ)

(18)

Confounded Residuals

Hilden-Minton (1995, PhD thesis, UCLA): residual is purefor an error if it depends only on fixed components and on error it is supposed to predict

Otherwise: confoundedresiduals Given that

bξ = [I−X(X>Vb−1X)−1X>Vb−1]ξ, be = ΣbQeb +ΣbQZb,b

Zbb = ZbΓZ>QZbb +ZbΓZ>Qe,b whereQ=V−1−V−1X X>V−1X−1

X>V−1, we have beis confoundedwith bb

Zbb isconfounded withbe

Exception: columns ofZbelong to the space generated by the columns of X

(19)

Marginal Residuals

Sincey=Xβ+ξ, plots of marginal residuals (bξij) versus explanatory variables or fitted values (ybij =x>ijβ) tob check for linearity

Index plots ofbξij todetect outlying observations

Lesaffre and Verbeke (1998, Biometrics): (unit) index plots of Ri =Vb−1/2ii useful tocheck appropriateness of the within-unit covariance matrix

WhenVi=||ImiRiR>i ||2is small, within-units covariance matrix is acceptable for uniti [E(bξibξ>i ) =Vbi ??]

In lieu ofVbi, we suggest usingVbi(ξ), thei-th diagonal block of

Vb(bξ) = [Vb X(XVb−1X)−1X>] Also, we suggest using (unit) index plots ofVi =Vi/Pn

i=1Vi to allow comparison among different models

(20)

Conditional Residuals

Conditional studentized residuals (Nobre and Singer, 2007, Biometrical Journal): beij =beij/p

pbij

pij: ij-th element of the main diagonal ofVb(be) =ΣbQbΣb

We suggestbei = [Vbi(be)]−1/2ebi where Vbi(be)is thei-th block ofVb(be) Index plot ofebij to detect outlying observations

Plot of beij versus predicted values (ybij =x>ijβb+z>ijbbi) tocheck for homoskedasticity of conditional errors: (Ri2Imi)

Check for normality of conditional errors Must take confounding into consideration

bemay not be adequate to check for normality ofe

Whenbis non-normal,bemay not be normal even wheneis

(21)

Conditional Residuals

Hilden-Minton (1995, PhD thesis, UCLA): ability to check for normality of e, using be,decreasesasV[ΣQZ>b] =ΣQZΓZ>QΣ increases in relation to V[ΣQe] =ΣQΣQΣ

Fraction of confounding for the ij-th conditional residualbeij

0≤Fij = u>ijΣQZΓZ>QΣuij

u>ijΣQΣuij = 1− u>ijΣQΣQΣuij

u>ijΣQΣuij ≤1 whereuij is ij-th column of IN

Least confounded residuals: linear transformationCbethat maximizes λij = c>ijΣQΣQΣcij

c>ijΣQΣcij , i= 1, . . . , n, j= 1, . . . , mi

Least confounded residuals: homoskedastic, uncorrelated, varianceσ2 QQ plots and histograms to check for normality of conditional residuals

(22)

EBLUP

EBLUP: reflects the difference between the predicted expected response (latent value) for i-th unit and population average Unit index plots of Mi =bb>i {Vb[bbi]}−1bbi to detect outlying units We suggest (unit) index plots of Mi =Mi/Pn

i=1Mi to allow comparison among different models

To assess normality of random effects:

No confounding: χ2q QQ plot of Mi

With confounding: ?

(23)

Residual diagnostics for Gaussian LMM

Diagnostic for Residual Plot

Linearity of effects fixed (E[y] =Xβ) Marginal bξij vsfitted values or explanatory variables Presence of outlying observations Marginal bξij vsobservation indices Within-subjects covariance matrix (Vi) Marginal Vi vsunit indices Presence of outlying observations Conditional beij vsobservation indices Homoskedasticity of conditional errors (ei) Conditional beij vspredicted values Normality of conditional errors (ei) Conditional Gaussian QQ plot forbeij

orc>ijbe

Presence of outlying units EBLUP Mi vsunit indices Normality of the random effects (bi) EBLUP χ2q QQ plot forMi

(24)

Global influence analysis (leverage)

Generalized leverage matrix (forfixed effects), by=Xbβ L1 = ∂by

∂y> =X

X>V−1X−1

X>V−1, tr(L1) =p High leverage unit: tr(L1i)/mi >2p/n whereL1i isi-th block ofL1 High leverage observation: L1ijj >2p/N whereL1ijj isj-th diagonal element ofL1i

Since by=Xβb+Zbb: Generalizedjoint leverage matrix L= ∂yb

∂y> = ∂yb

∂y> + ∂Zbb

∂y> =L1+ZΓZ>Q L2 =ZΓZ>: variability explained by random effects

Demidenko and Stukel (2005, SIM) suggest using H2=ZΓZ>Q as generalized leverage matrix for random effects

SinceH2 =L2V−1[In−L1], Nobre and Singer (2011, JAS) argue for L2 =ZΓZ>

(25)

Global influence analysis (case deletion)

Impact of a unit on some characteristic (e.g., parameter estimate) βb−βb(I)= (X>V−1X)−1X>V−1UI(U>IQUI)−1U>IQy

Cook´s distance

DI= (βb−βb(I))>(X>V−1X)(bβ−βb(I))

p = (yb−yb(I))>V−1(yb−yb(I)) p

Conditional Cook distance (forRi2Imi) Dcondi(j) =

n

X

i=1

(ybi −byi(j) )>(byi −byi(j)) σ2(n+p)

whereybi=Xiβb+Zibb,ybi(j)=Xiβb(i(j))+Zibb(i(j)) Ratio of variance ellipsoids

ρ(I)= V(bb β(I))

|V(bb β)| =

IN+X>V−1UI

U>IQUI

−1

U>IV−1X

X>V−1X−1

(26)

Global influence analysis

Diagnostic for effect on Global influence measure Index plot of

Fixed portion of Generalized marginal L1i(jj) [tr(L1i)/mi]vs fitted value (Xbβ) leverage matrixL1 observations (units) Random portion of Generalized random component L2i(jj) [tr(L2i)/mi]vs fitted value (Zbb) marginal leverage matrixL2 observations (units) Regression coefficients (β)b Cook’s distanceDI Di(j) [Di]vs

observations (units) Covariance matrix of Ratio of variance ρi(j) i]vs regression coefficients [V(bb β)] ellipsoidsρ(I) observations (units)

Diagnostic for effect on Index plot of

Regression coefficients (bβ) D1i(j)condvs observations Random effects (bb) D2i(j)condvs observations Changes in covariance

betweenβbandbb D3i(j)condvs observations

(27)

Local influence analysis

Changes in the analysis resulting fromsmall perturbationson the data or on some element of the model

Behaviour oflikelihood displacement: LD(ω) = 2n

L(bψ)L(bψω|ω)o L: likelihood for proposed model

ψ: parameter vector ω: vector of perturbations

ψb andψbω: MLE ofψ based onL(ψ)andL(ψ|ω) Usual perturbation schemes

Response variables: yii) =yi+ωi

Explanatory variables: Xi(Wi) =Xi+Wi

Random effects covariance matrix: G(ωi) =ωiG Error covariance matrix: Rii) =ωiRi

Index plots of normalized eigenvectors corresponding to the largest eigenvalue of−H>−1Hwhere F¨ = [∂2L(ψ)/∂ψ>∂ψ]ψ=

ψb and H= [∂2L(ψ|ω)/∂ψ>∂ω]ω=ω

0;ψ=ψb suggest units or observations with greater impact

(28)

Treatment: fine tuning of model

Diagnostic tools depend oncorrect specification of covariance structure

Examination of linear models fitted to individual profiles (or to rows of within-unit covariance matrix when available) [Rocha and Singer (2012, submitted)]

Use of simplet-tests

Coefficients significantly different from zero are candidates for random effects

Plots of covariances and correlationsversus lags (Grady and Helms (1995, SIM): useful to identify auto-regressive structures

Modelling covariance structure as function of explanatory variables [Singer and C´uri (2006, Environ Ecol Stat)]

(29)

Treatment: heavy-tailed distributions

Elliptically-symmetric distributions Useful to accommodate outliers

Density function: f(y) =|Σ|−1/2g[(yµ)>Σ−1(yµ)]

gnon-negative valued function E(y) =µ,V(y) ==αΣ

αconvenient constant (=ν/(ν2), ν >2for multivariate-twithνdf) Includesmultivariate-t, slash, contaminated normaletc

LMM may be defined hierarchically

yi|biESmi[Xiβ+Zibi,Ri(θ), αi, γi] biESq[0,G(θ), αi]

eiESmi[0,Ri(θ), γi]

Joint distribution of(y>i ,b>i )> may not belong to the same class Maximum likelihood estimation similar to Gaussian case (but more problematic)

Asymptotic properties of estimators still deserves study Local influenceconsidered by Osorio et al. (2007, CSDA) Residual analysis andglobal influence analysis ?

(30)

Treatment: asymmetric distributions

Skew-ellipticaldistributions

Fitting of general case is difficult in practice [Jara et al. (2008, CSDA)]

In general: Bayesian methods

Alternative: skew-normal hierarchical LMM

yi|[β,bi,Ri(θ),Λei]SNmi[Xiβ+Zibi,Ri(θ),Λei] bi|[G(θ),Λb]SNq[0,G(θ),Λb]

Λei andΛb are asymmetry parameters

Asymptotic properties of estimators still deserves study

Local influencebased on EM algorithm considered by Bolfarine et al.

(2007, Sankhya)

Residual analysis andglobal influence analysis ?

(31)

Treatment: GLMM models

GLMM allow non-normal distributions and non-linear models Models may be defined in a two-stage approach

f(yij|bi) = exp{φ[yijϑija(ϑij)] +c(yij, φ)}

aandc: known functions andφ: scale parameter E(yij|bi) =µij=da(ϑij)/dϑij

V(yij|bi) =φ−1d2ij)/dϑ2ij g(µij) =ηij =x>ijβ+z>ijbi

Second stage, usually: biN[0,G(θ)]

Fitting is complicated (usually based on EM algorithm) Interpretation of parametersis not straightforward Residual analysis?

Case deletion analysis [Xu et al. (2006, CSDA)]

(32)

Treatment: GEE based models

GEE-based models focus on marginal distributions: not mixed model No need to specifyform of underlying distribution

E(yij) =µij andV(yij) =φ−1νij)

ν(µij): known function of the mean and φ: scale parameter.

Relation between response mean and explanatory variables:

g(µij) =ηij =x>ijβ

Working correlation matrix: VW i(θ) =φA1/2i RW(θ)A1/2i Ai=mj=1i ν(µij)

RW(θ): known positive-definite matrix Generalized estimating equations

n

X

i=1

X>i i[VW i(θ)]−1[yiµi(X>i β)] =0

βb asymptotically normal even if working covariance matrix misspecified

Residual analysis: Venezuela et al. (2007, JSCSimulation) Local influence: Venezuela et al. (2011, CSDA)

(33)

Computation

Random effects GorRW Error Ri

Library Function Fits distribution matrix distribution matrix

lme4 lmer LMM gaussian unstructuredG gaussian σ2Imi

nlmer NLMM gaussian unstructuredG gaussian structured

glmer GLMM gaussian unstructuredG exponential NA

family

nlme lme LMM gaussian structuredG gaussian structured

nlme NLMM gaussian structuredG gaussian structured

gls LM NA NA gaussian structured

gee gee GEE-based NS structuredRW exponential NA

model family or NS

geepack geeglm GEE-based NS structuredRW exponential NA

model family or NS

heavy heavyLme ES-LMM elliptically unstructuredG elliptically NA

symmetric symmetric NA

NA: not applicable NS: not specified

Functions for diagnostic available only from authors Difficult to use in more complicated problems

First version of functions for residual diagnostic based on lme4 and nlme being developed

(34)

Ozone example - standard model (A)

Results (standard model): µb= 46.1,bσa2 = 100.4,bσ2 = 104.8,k= 0.75 Standardized marginal residuals - Ozone standard model

30 40 50 60

−3−2−10123

Marginal fitted values

Standardized marginal residuals

5.1

Standardized marginal residuals

Density

−2 −1 0 1 2 3

0.000.100.200.30

(35)

Ozone example - standard model (B)

Standardized Mahalanobis distance - Ozone standard model

2 4 6 8

0.00.20.40.6

Units

Standardized Mahalanobis distance

1 2

(36)

Ozone example standard model (C)

QQ plot for Mahalanobis distance - Ozone standard model

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.00.51.01.52.02.53.03.5

Chi−squared quantiles

Mahalanobis distance

(37)

Ozone example standard model (D)

Standardized LeSaffre-Verbeke measure - Ozone standard model

2 4 6 8

0.00.10.20.30.40.50.60.7

Units

Standardized Lesaffre−Verbeke measure

3

5

(38)

Ozone example standard model (E)

Standardized conditional residuals - Ozone standard model

35 40 45 50 55

−3−2−10123

Predicted values

Standardized conditional residuals

5.1

Standardized conditional residuals

Density

−2 −1 0 1 2 3

0.000.100.200.30

(39)

Ozone example standard model (F)

Standardized least confounded conditional residuals - Ozone standard model

−2 −1 0 1 2

−1.5−1.0−0.50.00.51.01.5

N(0,1) quantiles

Standardized least confounded residuals

Standardized least confounded residuals

Density

−2 −1 0 1 2

0.00.10.20.30.4

(40)

Ozone example heteroskedastic model (A)

Suggested (heteroskedastic) model

yij =µ+ai+eij with eij ∼N(0, σi2) For parsimony: σ2i2, i= 3,5,σi22, otherwise Shrinkage constant: ki2a/(σa2i2/3)

Results heteroskedastic model: µb= 46.4,bσa2 = 114.3,σb2 = 49.6, τb2 = 274.0,ki6=3,5 = 0.87,ki=3,5 = 0.56

Results homoskedastic model): µb= 46.1,σb2a= 100.4,bσ2= 104.8, k= 0.75

Predicted latent values

Heteroskedastic model: by3∗= 43.8, by5∗= 53.9 Standard model: by3∗= 42.8, by5∗= 56.4

(41)

Ozone example heteroskedastic model (B)

Standardized Mahalanobis distance - Ozone heteroskedastic model

2 4 6 8

0.00.20.40.60.8

Units

Standardized Mahalanobis distance

1 2

(42)

Ozone example heteroskedastic model (C)

Standardized Lesaffre-Verbeke measure - Ozone heteroskedastic model

2 4 6 8

0.00.20.40.60.8

Units

Standardized Lesaffre−Verbeke measure

1

9

(43)

Ozone example heteroskedastic model (D)

Standardized conditional residuals - Ozone heteroskedastic model

30 35 40 45 50

−3−2−10123

Predicted values

Standardized conditional residuals

1.3

Standardized conditional residuals

Density

−2 −1 0 1 2

0.00.10.20.30.4

(44)

Ozone example heteroskedastic model (E)

Standardized least confounded conditional residuals - Ozone heteroskedastic model

−2 −1 0 1 2

−2−1012

N(0,1) quantiles

Standardized least confounded residuals

Standardized least confounded residuals

Density

−3 −2 −1 0 1 2 3

0.000.100.200.30

(45)

Ozone example heteroskedastic model (F)

Period Reflectance Period Reflectance

1 27.0 6 47.9

1 34.0 6 60.4

1 17.4 6 47.3

2 24.8 7 50.4

2 29.9 7 50.7

2 32.1 7 55.9

3 35.4 8 54.9

3 63.2 8 43.2

3 27.4 8 52.1

4 51.2 9 38.8

4 54.5 9 59.9

4 52.2 9 61.1

5 77.7

5 53.9

5 48.2

(46)

Kcal intake example (A)

Model: yijkji+aijk+eijk, α1 = 0

G=

σ12 σ12 σ13 σ12 σ22 σ23

σ13 σ23 σ23

, R=σ2I3

Results:

1 = 2085±62 bµ2 = 2246±52 αb2 =−290±84

(47)

Kcal intake example (B)

Standardized conditional residuals

1000 2000 3000

−4−2024

Predicted values

Standardized conditional residuals

1001.2

1003.3 1008.1

1031.1 1041.31051.1 1066.21069.2

1071.1

1079.1

1090.3 1092.2 1099.1

1142.2 1194.1 2033.1 2083.2

2135.2

2145.3 2164.1

2164.2

2173.1 2181.3

Standardized conditional residuals

Density

−3 −2 −1 0 1 2 3

0.00.10.20.30.4

(48)

Kcal intake example (C)

Standardized least confounded conditional residuals

−3 −2 −1 0 1 2 3

−3−2−10123

N(0,1) quantiles

Standardized least confounded residuals

Standardized least confounded residuals

Density

−3 −2 −1 0 1 2 3

0.00.10.20.30.4

(49)

Kcal intake example (D)

Residual analysis suggests inadequacy of correlation structure for conditional errors

Alternative model:

G=τ2I3, R=

σ12 ρσ1σ2 ρσ1σ3

ρσ1σ2 σ22 ρσ2σ3 ρσ1σ3 ρσ2σ3 σ23

Results:

1 = 2083±62 bµ2 = 2244±52 αb2 =−287±84

ρb= 0.36

(50)

Kcal intake example (E)

Standardized conditional residuals

1800 2000 2200 2400

−4−2024

Predicted values

Standardized conditional residuals

1001.2

1003.3 1008.1 1031.1

1041.3 1051.1

1066.2 1069.2 1079.1

1090.3 1092.2 1099.1

1142.2 1194.1

2033.1 2083.2

2135.2 2145.32164.1

2164.2 2173.1 2181.3

Standardized conditional residuals

Density

−3 −2 −1 0 1 2 3

0.00.10.20.30.4

(51)

Kcal intake example (F)

Standardized least confounded conditional residuals

−3 −2 −1 0 1 2 3

−3−2−10123

N(0,1) quantiles

Standardized least confounded residuals

Standardized least confounded residuals

Density

−3 −2 −1 0 1 2 3

0.00.10.20.30.4

(52)

Preterm neonates example

Model:

yijki1(t1jk−26) +γ2(t2jk−26)2+aij+bij(tijk−26) +eijk

iindexes group (1=AGA and 2=SGA) j indexes neonates (j= 1, . . . , ni) kindexes week (k= 1, . . . , mij)

bij = (aij, bij)>∼N2(0,Gi) independent Gi=

σ2ai σabi σabi σ2b

i

eij = (eij1, . . . , eijmij)>∼Nmij[0, σ2Imij]independent bij andeij independent

(53)

Preterm neonates example (A)

Standardized marginal residuals

4 5 6 7 8

−4−2024

Marginal fitted values

Standardized marginal residuals

1.1 1.3 4.3

12.2

19.1 28.3

32.4 35.3

53.1 36.1 58.4 58.5

58.7 61.2

Standardized marginal residuals

Density

−3 −1 0 1 2 3

0.00.10.20.30.4

(54)

Preterm neonates example (B)

Standardized Mahalanobis’s distance

0 10 20 30 40 50 60

0.000.050.100.150.20

Units

Standardized Mahalanobis distance 4

11 12

28 32

5253 61

(55)

Preterm neonates example (C)

QQ plot for Mahalanobis’s distance

0 2 4 6 8 10 12 14

024681012

Chi−squared quantiles

Mahalanobis distance

(56)

Preterm neonates example (D)

Standardized conditional residuals

4 6 8 10

−4−2024

Predicted values

Standardized conditional residuals

1.1 1.3 4.3 12.2

19.1 28.3

32.4 35.3

53.1 36.1

58.4 58.5

58.7 61.2

Standardized conditional residuals

Density

−3 −1 0 1 2 3

0.00.10.20.30.4

Referências

Documentos relacionados

Table 4 also shows us that the bivariate linear mixed-effects model based on Gumbel copula was selected as the best one, according to both considered criteria (it has the

Tendo em vista que o sistema lab-on-a-chip a ser desenvolvido é voltado para análises voltamétricas, a modelagem do chip foi feita visando, como mostrado na Figura 7,

Embora tivéssemos campo magnético suficiente para saturar todas as proporções estequiométricas, luz circularmente polarizada (LCP) (no nosso caso aproximadamente

Abstract: Generalized linear models provide a general framework for handling regression modeling for normal and non-normal data, including multiple linear regression, ANOVA,

First version of functions for residual diagnostic based on lme4 and nlme available from www.ime.usp.br/∼jmsinger/lmmdiagnostics.zip.. Boston house

Standardized least confounded residuals may be employed to evaluate the plausibility of the normality assumption for the conditional error even when the random effects are not

Modelos Lineares Generalizados Generalized Linear Models (GLM) Modelos Aditivos Generalizados Generalized Addtive Models (GAM) Outro